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Among numerous multi-objective optimization algorithms, the Elitist non-dominated sorting genetic
algorithm (NSGA-II) is one of the most popular methods due to its simplicity, effectiveness and minimum
involvement of the user. This article develops a multi-objective variation of the Nelder-Mead simplex
method and combines it with NSGA-II in order to improve the quality and spread of the solutions. The
proposed hybrid algorithm, called non-dominated sorting hybrid algorithm (NSHA), is compared with
NSGA-II on several constrained and unconstrained test problems. The higher convergence rate and the
wider spread of solutions obtained with NSHA make this algorithm a good candidate for engineering prob-
lems that require time-consuming simulation and analysis. To demonstrate this fact, NSHA is applied to the
design of a carbon fibre bicycle stem simultaneously optimized for strength, weight and processing time.
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1. Introduction

The majority of engineering design problems require optimizing multiple conflicting objectives.
For instance, designing a part made of composite materials calls for simultaneous optimization
of the structural performance and the manufacturing cost or time. These objectives are often
conflicting and strongly coupled (Le Riche et al. 2003, Park et al. 2005, Ghiasi et al. 2008) and thus
the corresponding multi-objective optimization problem does not have a single optimum solution,
but a set of solutions, called ‘Pareto optimum’. Pareto optimum solutions represent the trade-off
among multiple objectives. In their previous works, the present authors (Ghiasi et al. 2008, 2009b)
showed that when one or a small number of Pareto solutions are required, using a globalized form
of a classical simplex method and a multi-objective optimization approach can be more efficient
than an evolutionary method. In contrast, when a large number of Pareto solutions are required,
an evolutionary algorithm (EA) can perform better than a classical optimization method.

EAs are simple, robust and independent of gradient information, and use a population based
approach that allows generating multiple solutions in a single run. EAs have received significant
attention and a variety of these algorithms has been developed to solve multi-objective problems;
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40 H. Ghiasi et al.

examples include Pareto-archived evolution strategy (PAES; Sayin and Karabati 1999), strength
Pareto-evolutionary algorithm (SPEA2; Zitzler et al. 2001) and multi-objective differential evo-
lution (MODE; Babu and Anbarasu 2005). An overview of the earlier works using EAs for
multi-objective optimization can be found in Fonseca and Fleming (1995) and in Coello (1999,
2002), who provided a comprehensive survey and a critical review of multi-objective EAs.

Among numerous multi-objective EAs, some of which are listed above, genetic algorithms
(GAs) have attracted the most attention (Coello 1999) because of their ability in supporting
parallel computation and addressing discontinuous, non-differentiable and non-convex functions
with multiple peaks. The potential of GAs in multi-objective optimization was initially hinted by
Rosenberg in the 1960s and later by Goldberg (1989); however, this area remained unexplored
until recently. A comprehensive review of GA-based methods is outside the scope of this article
due to the large number and diversity of the applications. The following paragraphs include only
a brief review of the most popular multi-objective GAs.

Assigning a single measure of fitness to each individual is the main challenge in using a GA
for multi-objective optimization. Hajela and Lin’s genetic algorithm (HLGA; Hajela and Lin
1992) used the method of weighted-sum to perform this task. The complexity of determining
appropriate weights was the main drawback of this method (Bingul 2006). The vector evaluated
genetic algorithm (VEGA; Schaffer 1984) avoids this problem by creating a number of sub-
populations and performing the selection according to each objective function, in turn. In this
method no weighting coefficient is required, but the population may tend to split into different
species, each particularly good in one of the objectives.

The multi-objective genetic algorithm (MOGA) by Fonseca and Fleming (1993) and its real-
coded variation by Purshouse and Fleming (2001) used a rank-based fitness assignment procedure
to assign a single fitness to each individual. In this method, each individual is ranked by the
number of its dominating individuals. The Niched Pareto genetic algorithm (NPGA; Horn et al.
1994) is another example that uses a Pareto domination tournament. The tournament selection
includes picking two (or more) candidate solutions at random and comparing them with a random
comparison set and with each other. The candidate selected for reproduction is the one that is
not dominated by the comparison set or the one that is better than the other candidate. Fonseca
and Fleming’s multi-objective genetic algorithm (FFGA; Fonseca and Fleming 1993) used niche
formation methods with a modified fitness assignment that permitted the intervention of an external
decision maker. Non-dominated sorting genetic algorithm (NSGA; Srinivas and Deb 1994) and
its improved form NSGA-II (Deb et al. 2002a) are other examples of GA-based methods using
Pareto optimality to rank individuals within the population. This algorithm is used in this article
and is explained in the following sections.

More information about VEGA, MOGA, NPGA, NSGA and their comparative strengths and
weaknesses can be found in Coello (2002) and Zitzler et al. (2000). By testing several functions,
Zitzler et al. (2000) showed that NSGA could find the closest solutions to the Pareto front among
other GA-based multi-objective optimization methods. The other methods ranked from best to
worst are: VEGA, HLGA, NPGA and FFGA. In this article, an improved form of NSGA, called
NSGA-II, is hybridized with a multi-objective adaptation of the Nelder-Mead simplex method
(NM). The proposed hybrid method, called the non-dominated sorting hybrid algorithm (NSHA),
maintains all the features of NSGA-II, while it improves the convergence rate and the scope of
solutions.

The remainder of this article is organized as follows. First, the NSGA-II is explained and
the improvements proposed in the literature are reviewed. Most of these modifications can be
equally applied to the proposed hybrid algorithm. The next section describes our proposed hybrid
method called NSHA. Section 4 compares NSHA with NSGA-II on some test problems. After
demonstrating the superiority of NSHA over NSGA-II, the hybrid algorithm is applied to a
composite design problem in Section 5. Finally, Section 6 concludes the article.
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Engineering Optimization 41

2. Non-dominated sorting GA

NSGA-II, proposed by Deb et al. (2002a), has been demonstrated to be one of the most efficient
and popular algorithms for multi-objective optimization. This section briefly describes NSGA-II
and its advantages and shortcomings and also the modifications and improvements suggested in
the literature to improve its performance.

2.1. NSGA-II

NSGA-II (Deb et al. 2002a) is a multi-objective evolutionary algorithm that uses non-dominated
sorting and a crowded-comparison approach to find a set of evenly distributed solutions to a multi-
objective optimization problem. NSGA-II was proposed to reduce computational complexity,
improve diversity of the solutions and add elitism to its ancestor NSGA by Srinivas and Deb
(1994).

The optimization process in NSGA-II starts with a random population of solutions (or indi-
viduals) sorted by non-dominated sorting approach. In this sorting procedure, all non-dominated
solutions are ranked 1 and are temporarily removed from the population. The next set of non-
dominated solutions in the population is then defined and ranked 2. The procedure is continued
until all the solutions are ranked. The population of parents is generated by applying a binary tour-
nament selection to the current population. The binary tournament selection randomly picks two
solutions from the current population and selects the better one with respect to the non-domination
rank. Solutions at the same non-domination front are compared by a crowding distance, which is
a measure of the density of the solutions at the neighbourhood of that solution. Next, a population
of off-springs is generated by applying the genetic operators (i.e. recombination and mutation)
to the population of parents. The next population is formed by taking the best solutions from the
combined population of parents and off-springs. The selection criteria are first the non-domination
rank and then the crowding distance. The procedure is terminated when a user-defined maximum
number of generations is reached.

Simplicity, effectiveness, modularity and low number of user-defined parameters, are the main
factors determining the popularity of NSGA-II among multi-objective optimization methods (Deb
2008); however, NSGA-II has also a few shortcomings. For instance, NSGA-II usually requires
a large number of generations to approach the Pareto front. The population initially moves fast
towards the real Pareto front but slows down further into the process and finally approaches the
Pareto front only asymptotically (Lahanas et al. 2003). In addition to the low convergence rate,
NSGA-II may not be efficient in generating a Pareto set that covers the entire true Pareto front
within a reasonably low number of generations (Gao et al. 2008). The deficiency is caused by the
limitation of the crossover and mutation operators for sufficiently intensifying the search.

Deb (2008) provided a functional decomposition of NSGA-II into three main operations: (i)
elitism that supports fast and reliable convergence towards better solutions, (ii) non-domination
sorting that accentuates non-dominated solutions and assures a progress towards the Pareto front
and (iii) crowding distance that put emphasis on less crowded solutions to maintain the diversity of
the solutions. In order to overcome the above shortcomings of this algorithm, various extensions
of NSGA-II are proposed based on the rational of altering at least one of its operators.

2.1.1. NSGA-II with modified genetic operators

Deb et al. (2002b) suggested an improvement in convergence of NSGA-II by using more than
two parents to create one descendant. Iorio and Li (2004) replaced the real-coded crossover
and mutation with a differential evolution scheme that used the difference between solutions to
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42 H. Ghiasi et al.

perturb the population. Another modified operator was the jumping gene operator, entailing the
replacement of a randomly selected part of the chromosome with a new randomly generated set
of binary numbers (Agarwal and Gupta 2008, Kasat and Gupta 2003). To improve the diversity
of the solutions, Yijie and Gongzhang (2008) forced the crossover operator to perform more
likely on genes located far from each other within the design space. Murugana et al. (2009)
recommended a controlled elitist and a virtual mapping procedure for the same purpose. Methods
with modified operators have been tested on a number of test problems, where, in most cases, mixed
improved convergence rate and spread of solutions were reported. Not a noticeable improvement
in convergence and spread was reported for a general test problem.

Not only the genetic operators, but also the structure of the chromosome and the population
has been altered to improve the performance of NSGA-II. Maneeratana et al. (2005) and Praveen
Kumar et al. (2007) proposed a co-evolution of multiple species by splitting the population into a
number of sub-populations or species that share a gene similarity. Hierarchical genotype encoding
proposed by Kumar et al. (2009) is another modification. Tran (2005) suggested simultaneously
running multiple populations with different population sizes, in order to automatically select the
population size. In some cases, an improvement was reported in the quality of the solutions;
however, additional computation due to working with multiple populations is the main drawback
of these methods.

2.1.2. NSGA-II with modified non-dominated sorting

Altering the non-dominated sorting procedure can also affect the progress towards the Pareto-
optimal front. Examples of this approach include ε-MOEA, a proper domination, fuzzy
domination (Deb 2008) and quick sort (Zheng et al. 2004). The aims of these improvements
are to reduce the time to converge to the Pareto front and to reduce the computational complexity,
but the subsequent penalty is that part of the real Pareto front may be excluded.

2.1.3. NSGA-II with modified crowding distance

The diversity preservation procedure may also be altered in order to achieve a better distribution of
solutions or to emphasise part of the Pareto front. Clustered NSGA-II (Deb 2008) claimed to find a
better distribution of points by replacing the crowding distance operator with a K-mean clustering
approach. Li et al. (2008) tried to achieve the same goal by replacing the crowding distance
operator with an algorithm based on minimum spanning tree (MST). In another attempt, the
selection procedure was modified to accept a point to be in the new population only if its distance
to all current points in the new population is greater than a user-defined value (Ghomsheh et al.,
2007). Other similar attempts are reviewed by Deb (2008), including: projection-based diversity
preservation, niching, omni-optimizer, extreme-point preference, and other methods. Although
the modified algorithm can find a better distribution of the solutions, these methods generally
require a longer computational time than the original NSGA-II.

2.2. NSGA-II in hybrid algorithms

One promising approach to increase the convergence rate and the solution diversity is to hybridize
NSGA-II with a local search. The local search operator replaces or follows the mutation operator
and helps to intensify the search in various areas pointed by the genetic mechanisms. This type
of hybrid algorithm, called a memetic algorithm (MAs; Moscato 1989), has been shown to be
more efficient than a genetic algorithm (Hart and Belew 1996). A review of some of these hybrid
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Engineering Optimization 43

methods can be found in El-Mihoub et al. (2006). This section provides a summary of the hybrid
multi-objective optimization methods that uses NSGA-II as the global optimizer.

Hu et al. (2003) integrated a sequential quadratic programming (SQP) algorithm into NSGA-II.
In this hybrid form, the SQP optimized a randomly chosen objective of one of the current solutions,
while the remaining objectives were restricted to be less than or equal to their current value. It was
judged that the hybrid form is successful regarding the convergence rate, and not deteriorating in
terms of diversity of the solutions. Another hybrid form was proposed by Kumar et al. (2007),
who resorted to SQP in order to locally improve one objective in the set of non-dominated
solutions. A mixed improvement in performance was reported considering the convergence and
diversity of the solutions. Gao et al. (2008) also proposed a hybrid form, where NSGA-II and
SQP run almost independently, but with some exchange of information. The proposed hybrid
form was found more efficient than NSGA-II in terms of convergence, particularly at the earlier
steps.

SQP requires calculating the function gradient and the optimum step length at every iteration, an
operation that can be costly for a practical engineering problem. To reduce the computational cost,
Hernandez-Diaz et al. (2008) proposed using the gradient information only at the beginning of the
search. The steepest descent method was adapted to generate a number of non-dominated points
which formed the initial population for NSGA-II. Lahanas et al. (2003) used a similar approach
but with a different local search called L-BFGS. The last two methods required considerably less
computational time but presented a lower convergence rate than the hybrid forms using the local
search during the optimization process.

One way to avoid time-consuming calculation of gradient information is to opt for a direct
local search method. An example of hybrid methods with direct local search is PHC-NSGA-II
(Bechikh et al. 2008) that uses Pareto hill climbing (PHC) as a local search. A higher convergence
rate was reported compared to the original NSGA-II; however, not a significant improvement in
the diversity of the solutions was achieved.Another similar hybrid form is S-MOGLS by Ishibuchi
and Narukawa (2004), who used the r-Opt algorithm as a local search. The r-Opt is a heuristic
optimization method that improves the current solution by sequentially replacing one, two or
three adjacent genes in the chromosome. Xu et al. (2008) also used a similar hybrid form, where
the r-Opt was run only during the initialization process. The local search methods used in these
algorithms are not efficient and can be improved.

The simplex method by Nelder and Mead (1965) is one of the most common direct search
methods and has been shown to be effective in producing a rapid initial improvement in the
objective function values (Lagarias et al. 1998). Numerous hybrid forms of this simplex method
with genetic algorithm have been proposed for single-objective optimization problems (e.g. Yen
et al. 1998, Chelouah and Siarry 2003, Hongfeng et al. 2009). However, its application to multi-
objective optimization problems is less studied because it requires aggregating multiple objectives
into one single objective. Koduru et al. (2005) used the concept of fuzzy dominance to assign a
single measure of fitness to each individual. In their proposed hybrid algorithm, called FSGA,
K-means clustering was used to break up the population into closely spaced clusters. Some suf-
ficiently populated clusters were chosen, from which a simplex was randomly selected for the
application of the NM method. The major difficulty here is the computational time required for
the clustering procedure. The second problem is the shape of the initial simplex, which may be
poorly scaled, because the simplex is randomly selected. Finally, in this method NM is called
after every generation of NAGA-II. Since the difference between the two subsequent popula-
tions is usually very small, calling the local search every iteration may not lead to a significant
improvement.

Martinez and Coello (2008) alleviated the last problem by performing the local search only after
a certain number of generations. In their proposed method, called NSS-GA, solutions with the best
value for each objective were selected to be locally improved with respect to that objective.To avoid

D
ow

nl
oa

de
d 

by
 [

M
cG

ill
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
0:

15
 0

3 
A

ug
us

t 2
01

2 



44 H. Ghiasi et al.

the tendency toward the anchor points, an aggregating objective that minimizes a weighted sum
of all the objectives was used. Although effective, the use of one aggregating objective is not able
to provide an even distribution of solutions on the Pareto front. In addition, since the efficiency of
the NM method strongly depends on the number of design variables (Han and Neumann 2006)
this method is not efficient for problems with a large number of design variables.

The hybrid form presented in this article also uses NM method as the local search due to its
good convergence rate and simplicity of the algorithm. NM method typically requires only one
or two function evaluations per iteration (except in shrink, which is rare in practice), while many
other direct search methods that use a finite-difference approximation of the function gradient,
such as the derivative free conjugate directions method, model-based methods, implicit filtering,
etc. (Nocedal and Wright 2006), require either O(n) or O(n2) function evaluations per iteration.
This figure is very important in applications where the function evaluation is expensive or time-
consuming. Pattern search methods, such as coordinate search (Nocedal and Wright 2006), Hooke
and Jeeves method (Hooke and Jeeves 1961) or method of Rosenbrock (Nocedal andWright 2006),
also require more function evaluations than the NM method, because of the line search that must
be performed at each iteration.

The next section proposes a hybrid algorithm that improves the performance of NSGA-II and
does not suffer from the shortcomings of the previous hybrid algorithms. The main features and
benefits of the proposed hybrid algorithm include:

(1) the use of a multi-objective form of NM method as a local search,
(2) not having a tendency toward a certain region(s) of the Pareto front,
(3) taking a full benefit of the local search by its proper initialization,
(4) maintaining the efficiency of the local search even for high-dimensional problems,
(5) maintaining the simplicity of NSGA-II,
(6) not requiring additional user-defined parameters that need prior insight into the problem, and

finally,
(7) using the same building blocks as NSGA-II and preserving its modular aspect.

3. Non-dominated sorting hybrid algorithm (NSHA)

The hybrid algorithm proposed in this article integrates the Nelder-Mead (NM) simplex method
into NSGA-II in order to improve the quality of the solutions and to accelerate the advancement
of the non-dominated front toward the true Pareto front. The next subsection describes the main
optimization loop of NSHA.

3.1. Main optimization loop

As shown in Figure 1, NSHA starts with a randomly generated population with a user-defined
size. Using this initial population, a few generations of NSGA-II are carried on. The local search
is activated only after all the individuals of the current population are located at the first non-
domination front. When activated, the local search operates only on a subset of αl% of the current
population. To increase the efficiency of the local search, only a randomly selected subset of three
to five design variables are used for the local optimization and other variables are kept constant
at their current value. For each selected solution, the local search generates an initial simplex, a
regular hyper-polygon with a predefined size, a, where the selected solution is located at one of
its vertices. The local optimization process is terminated when either a user-defined maximum
number of function evaluations, nfl,max, is reached or any other stopping criterion indicating
convergence to a local optimum is satisfied. The selected solutions in the current population are
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Engineering Optimization 45

Figure 1. Pseudo code of the main loop in NSHA.

then replaced by the improved solutions found by the local search, creating a locally improved
population.

The locally improved population is used as an initial population for the next few generations
by NSGA-II. The number of generations performed by NSGA-II before calling the local search,
nfg,max, is defined by the user at the onset of the process.The values for nfl,max and nfg,max specify the
share of NSGA-II and NSNM in the optimization process. nfg,max should be selected sufficiently
large to give NSGA-II the chance to improve the population before the next local search is being
called. On the other hand, nfl,max must be selected large enough to allow convergence of the local
search. The main optimization loop is repeated until either the total maximum number of function
evaluations, nft , or any other user-defined stopping criterion is reached.
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46 H. Ghiasi et al.

Figure 2. Pseudo code of the local simplex optimizer NSNM.

3.2. Local search algorithm (NSNM)

The local optimization method used in our hybrid algorithm is called non-dominated sorting
Nelder-Mead (NSNM) method. The flowchart in Figure 2 shows NSNM algorithm, which is
similar to Nelder-Mead simplex method but using the non-domination rank as the objective to be
minimized. The crowding distance may not be used to rank the solutions located at the same non-
domination front, thus these points are ranked by preserving their order in the original simplex.
This method of ranking was tested on several random initial populations and was found to be
efficient in reaching a diverse set of solutions on the Pareto front. Finally, the local optimization
algorithm is terminated if one of the following stopping criteria is met:

(i) all of the points within the simplex are located at the same non-domination front,
(ii) the simplex size becomes smaller than a pre-defined value,

(iii) a user-defined maximum number of function evaluations is reached.

3.3. Constraint handling method

NSNM used the concept of constrained domination (Deb 2008) to handle a general non-linear
constraint expressed as an inequality that must be greater than or equal to zero. In this ranking
scheme, all infeasible solutions assume a non-domination rank higher than the last feasible solu-
tion. A crowding distance is assigned to the feasible solutions, while a value equal to the sum of all
violated constraints is assigned to the infeasible solutions. Since the constraints are formulated as
inequalities that must be positive or zero, the sum of the value of the violated constraints is a nega-
tive value that shows the extent of constraint violation. Solutions lying at a certain non-domination
front are sorted in descending order by the crowding distance if the solutions are feasible or by the
extent of the constraint violation if the solutions are infeasible. A more elaborate algorithm that
also resorts to non-domination ranking for infeasible solutions is possible; however, Deb et al.
(2002a) showed that the procedure explained in this paragraph is generally more effective.

4. Mathematical test problems

In this section, NSHA is applied to a set of constrained and unconstrained test problems from
the literature and its performance is compared with the real coded NSGA-II, considering two
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Engineering Optimization 47

performance metrics introduced by Deb et al. (2002a). The first metric, γ , measures the extent of
the convergence to a known set of Pareto-optimal solutions, while the second metric, �, provides
information about the extent of spread achieved by the solutions. Both metrics are positive real
numbers with zero representing the best performance. This section describes the test problems
and compares the results obtained by NSGA-II and NSHA.

4.1. Test problems

Table 1 shows the list of unconstrained problems used to compare the performance of NSHA to
NSGA-II. The first six test problems have two objectives and a known, continuous Pareto front.
MOP4 has a discontinuous 2-dimensional (2D) Pareto front, whose closed-form expression is not
available to the authors. The Pareto front of DTZL1 is 3-dimensional (3D) and the performance
metrics may not be properly calculated for this test problem. Therefore, for MOP4 and DTZL1,
only a visual comparison of the results is discussed.

Table 2 shows the list of selected constrained test problems. The first test problem is chosen
due to its continuous 2D Pareto front, which enables using the performance metrics for a precise
comparison of the two optimization algorithms. The second test problem is more complex because
it requires consideration of six design variables and six constraints. The theoretical Pareto optimal
front of this test problem consists of several discontinuous broken-lines.

For all test cases, a constant population of randomly generated 100 individuals is used and the
optimization process is continued for up to 25,000 function evaluations, except for DTZL1, for
which 100,000 function evaluations are performed. The maximum number of points participating
in the local improvement process is 20% of the population size. The size of the initial simplex for
the local optimization algorithm is set to 10% of the smallest edge of the hyper-cube surrounding
the design domain, while the minimum simplex size at which the local search is terminated is
chosen to be 0.1% of this value. The maximum number of function evaluations for the local search,
nfl,max, and for the NSGA-II, nfg,max, are respectively limited to 100 and 2000 function evaluations.
These choices provide almost equal contribution of the local search (i.e. 20 × 100 = 2000 function
evaluations) and NSGA-II (i.e. half of the total number of function evaluations is used by NSGA-
II and the other half by NSNM). Due to the stochastic nature of the algorithm, each test problem
is solved several times and the averaged performance metrics are compared.

4.2. Impact of the selective use of design variables

The first point demonstrated here is that using a selected subset of the design variables for the
local search is more efficient than using the entire of set of the design variables. Among several
test problems, ZDT1 is chosen for this purpose. Three different scenarios are studied. The first
scenario uses the NSGA-II. The second scenario, shown by NSHA-All, uses NSHA where the
entire set of design variables is involved in the local search. The third scenario, shown by NSHA,
uses a random subset of three to five design variables during the local optimization process.

Figure 3 shows that NSHA achieved a better convergence (lower γ ) than the two other methods.
When all 30 design variables of the ZDT1 are used during the local search (NSHA-All), the
convergence rate of the local search is very slow, thus the local search is unable to locally improve
the solutions and the function evaluations performed during the local search are ineffective.

4.3. Unconstrained test problems

This section compares the performance of NSHA with NSGA-II when applied on some uncon-
strained test problems shown in Table 1. For each test function the performance metrics are
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Table 1. Unconstrained test problems used to compare the performance of NSHA and NSGA-II.

Problem n xi ∈ Objective functions Optimal solution Reference

FON 3 [−4, 4] f1 = 1 − exp

(
−

3∑
i=1

(
xi − 1√

3

)2
)

x1 = x2 = x3 ∈
[
− 1√

3
,

1√
3

]
Deb et al. (2002a)

f2 = 1 − exp

(
−

3∑
i=1

(
xi + 1√

3

)2
)

ZDT1 30 [0, 1] f1 = x1 x1 ∈ [0, 1] Deb et al. (2002a)

f2 = g(x)[1 − √
x1/g(x)] xi = 0,

g(x) = 1 + 9

n − 1

n∑
i=2

xi i = 2, . . . , n

ZDT2 30 [0, 1] f1 = x1 x1 ∈ [0, 1] Deb et al. (2002a)

f2 = g(x)[1 − (x1/g(x))2] xi = 0,

g(x) = 1 + 9

n − 1

n∑
i=2

xi i = 2, . . . , n

ZDT3 30 [0, 1] f1 = x1 x1 ∈ [0, 1] Deb et al. (2002a)

f2 = g(x)

[
1 − √

x1/g(x) − x1

g(x)
sin(10πx1)

]
xi = 0,

g(x) = 1 + 9

n − 1

n∑
i=2

xi i = 2, . . . , n

ZDT4 10 x1 ∈ [0, 1], f1 = x1 x1 ∈ [0, 1] Deb et al. (2002a)

xi ∈ [−5, 5] f2 = g(x)[1 − √
x1/g(x)] xi = 0,

i = 2, . . . , n g(x) = 1 + 10(n − 1) +
n∑

i=2

(x2
i − 10 cos(4πxi) i = 2, . . . , n
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Table 1. (Continued)

Problem n xi ∈ Objective functions Optimal solution Reference

ZDT6 10 [0, 1] f1 = x1 x1 ∈ [0, 1] Deb et al. (2002a)

f2 = g(x)[1 − (f1(x)/g(x))2] xi = 0,

g(x) = 1 + 9

[
n∑

i=2

xi/(n − 1)

]0.25

i = 2, . . . , n

MOP4 3 [−5, 5] f1 =
n−1∑
i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))
A piecewise curve Yijie and Gongzhang (2008)

f2 =
n∑

i=1

(|xi |0.8 + 5 sin(xi )
3)

DTZL1 7 [0, 1] f1 = 1

2
x1x2g(x) A linear optimal front Deb et al. (2001)

f2 = 1

2
x1(1 − x2)g(x)

f3 = 1

2
(1 − x1)g(x)

g(x) = 1 + 100

[
5 +

7∑
i=3

[(xi − 0.5)2 − cos(20π(xi − 0.5))

]

Table 2. Constrained test problems used to compare the performance of NSHA and NSGA–II.

Problem n xi ∈ Objective functions Constraints Reference

CONSTR 2 x1 ∈ [0.1, 1] f1 = x1 g1(x) = 9x1 + x2 − 6 � 0 Deb et al. (2002a)
x2 ∈ [0, 5] f2 = (1 + x2)/x1 g2(x) = 9x1 − x2 − 1 � 0

COK 6 x1, x2, x6 ∈ [0, 5] f1(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 g1(x) = x1 + x2 − 2 � 0 Yijie and Gongzhang (2008)
x3, x5 ∈ [1, 5] −(x4 − 4)2 − (x5 − 1)2 g2(x) = 6 − x1 − x2 � 0

x4 ∈ [0, 6] f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 g3(x) = 2 + x1 − x2 � 0
g4(x) = 2 − x1 + 3x2 � 0

g5(x) = 4 − (x3 − 3)2 − x4 � 0
g6(x) = (x5 − 3)2 + x6 − 4 � 0

D
ow

nl
oa

de
d 

by
 [

M
cG

ill
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
0:

15
 0

3 
A

ug
us

t 2
01

2 



50 H. Ghiasi et al.

0

0.01

0.02

0.03

0.04

0.05

0 5000 10000 15000 20000 25000

Number of function evaluations

ga
m

m
a

NSGA-II

NSHA

NSHA-All

Figure 3. Convergence measure, γ , versus number of function evaluations performed when NSGA-II, NSHA, and
NSHA. All are applied to the ZDT1 test problem. The results are averaged over 10 trials with random initial populations.

Figure 4. Average performance parameters γ and � for FON, ZDT1, 2, 3, 4, and 6 averaged over 10 trials for each test
function.

calculated and averaged over ten trials with different random initial points. The results for the first
six test functions (i.e. FON, ZDT1, 2, 3, 4 and 6), which all have two objectives and a continuous
known Pareto front, are averaged and presented in Figure 4. The individual presentation of the
results is omitted for the sake of brevity but it can be found in Ghiasi (2009).

Figure 4 shows that convergence of the two algorithms is generally the same at the very
beginning of the optimization process. However, at later stages where the local search is activated,
the solutions found by NSHA are closer to the real Pareto front than the one obtained by NSGA-II
(showed by lower values for the convergence metric). The other promising point observed in the
convergence properties of the two algorithms is that NSGA-II stopped progressing toward the
Pareto front after 10,000 function evaluations, while NSHA continued the progress for a longer
period, and even after 23,000 function evaluations, a small move toward the Pareto front was
observed.

The individual assessment of the convergence metrics for these test functions shows that for
simple and smooth test functions such as FON and ZDT6 (i.e. this function lacks the trigonometric
term that exist in other ZDT test functions, thus the function is relatively smooth) the performance
of the two algorithms is similar all along the process and both reach a solution set very close to
the real Pareto front. However, for more complicated and noisy test functions, such as ZDT1, 2, 3
and 4, NSHA evidently finds solutions closer to the Pareto front and continues to converge toward
the real Pareto front far beyond where the NSGA-II stops progressing.

Regarding the spread of the solutions, measured by � and shown in Figure 4, the two algorithms
achieved the same overall spread of the solutions, because the crowding-comparison operator,
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Engineering Optimization 51

Figure 5. Non-dominated solutions obtained by NSGA-II and NSHA for MOP4 test problem, the solid line shows the
real Pareto front.

which is responsible for achieving an even spread of solutions, is similar in both algorithms.
Since during the local search no crowding distance is calculated, the distribution of the solutions
may get worse, but it is improved as soon as a few generations of NSGA-II are performed. To avoid
a poor spread of the solutions in the final set of solutions, the recommendation is to terminate the
optimization process with a few generations of NSGA-II. The visual comparison of the solutions
confirms that the two algorithms also performed similarly regarding the scope of the solutions,
with a slightly better performance for NSHA.

MOP4 is used to compare the performance of the two algorithms on problems with a piecewise
Pareto front. Since the performance metrics are not suited for problems with piecewise Pareto
fronts, the results are visually compared in Figure 5. The non-dominated solutions obtained by
the two algorithms are illustrated after 2500 and 25,000 function evaluations. It shows that both
algorithms achieved almost the same quality of the solutions (spread and closeness to the real
Pareto front) after 25,000 function evaluations; however, NSHA arrived to this solution faster
than NSGA-II. The faster convergence is confirmed when the solutions found after 2500 function
evaluations are compared; the solutions of NSHA are closer to the real Pareto front and cover a
wider portion of the Pareto front compared to the solutions of NSGA-II.

The last unconstrained test problem is DTZL1, which has three objectives. The set of solutions
obtained by the two algorithms after 100,000 function evaluations is illustrated in Figure 6, which
shows that the solutions obtained by NSHA are dominating the ones obtained by NSGA-II (i.e.
are closer to the origin). Generally, both algorithms performed poorly, as previously reported also
by Deb (2008), who suggested improving the solutions by using ε-domination in NSGA-II. Since
NSHA uses the same non-domination sorting algorithm, this modification can also be applied to
NSHA to improve the distribution of the solutions for this test problem.

4.4. Constrained test problems

The constrained test problems shown in Table 2 are solved in this section. The first test problem is
CONSTR, for which the two algorithms performed similarly, although the performance metrics
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52 H. Ghiasi et al.

Figure 6. Non-dominated solutions obtained by NSGA-II (left) and NSHA (right) for DTZL1 test function after
performing 100,000 function evaluations.

Figure 7. Solutions found by NSGA-II and NSHA for CONSTR after 2000 function evaluations.

were less stable for NSHA. As shown in Figure 7, the significant difference between the two
algorithms is in the scope of the solutions. For small number of function evaluations (e.g. less
than 5000), NSHA performed better than NSGA-II and provided a wider scope of solutions;
however, the solutions obtained by the two algorithms after 15,000 (not shown here) are similar
and cover the entire Pareto front of the problem.

The second constrained test problem, COK, also has a discontinuous piecewise Pareto front
and includes six design variables and six constraints. Since the closed-form representation of the
Pareto front is not available, the solutions obtained after 200,000 function evaluations are visually
compared in Figure 8. This figure shows that the solutions obtained by NSHA cover almost the
entire Pareto front, whereas NSGA-II could find only half the Pareto front.

4.5. Sensitivity to the user-defined parameters

NSHA requires a few parameters to be determined by the user, including the frequency of calling
the local search and the number of individuals participating in the local search. In this section the
ZDT1 test problem is used to study the effect of these user-defined parameters on the performance
of NSHA.
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Figure 8. Progress of the solutions found by NSGA-II and NSHA toward the Pareto front of COK.

To examine the sensitivity of the convergence rate to these parameters, ZDT1 is solved by
NSHA with the local search being called every 5, 10 or 20 generations and the numbers of solutions
participating in the local search varied between 10, 20, 30 and 40% of the current population. The
results showed that the user-defined parameters have a minor effect on the convergence of NSHA.
For instance, calling the local search every 5 or 20 generations could change the convergence
metric only by 3%. Similarly, changing the percentage of the population participating in the local
search from 10% to 40% yielded a difference less than 15% in the convergence metric. The
detailed results for this sensitivity analysis can be found in Ghiasi (2009). Considering the low
sensitivity of the performance measures to these parameters, assigning a reasonable value to these
two parameters is not a difficult task and does not require a priori insight into the problem. For
a general problem, the authors suggest calling the local search every 10 generations and having
the local search performed on 20% of the population.

5. Design of a composite part

Design and manufacturing of a composite part is used in this section as an example to demon-
strate the ability of the proposed hybrid algorithm in solving a practical engineering problem.
Composite materials are well-known for having many design variables, which gives the designer
more opportunities to tailor the material for a given application. However, it requires solving a
more complex design problem. Different optimization algorithms have been used to solve the cor-
responding design optimization problem (Ghiasi et al. 2009a). In this section, the application of
NSHA in solving a multi-objective design problem, which takes into account both manufacturing
and structural parameters, is demonstrated.

5.1. Composite test problem

The part studied in this section is a carbon fibre bicycle stem, the component of the bicycle
that connects the handlebar to the fork, as shown in Figure 9. Bladder assisted resin transfer
moulding (RTM) is used as the manufacturing method, because of the small size of the part, its
complicated geometry with hollow sections, the high level of surface finish and fast production
cycle required. In this manufacturing method, first, a dry pre-form consisting of four layers of
continuous braided carbon fibre sleeves is placed around an inflatable bladder and is positioned
inside a solid airtight mould. After inflating the bladder, an injection pump is used to push the
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54 H. Ghiasi et al.

Figure 9. Stem is part of a bicycle that connects the handlebar to the fork.

resin through the fibres which are compressed between the bladder and the mould surface. The
air exits through the strategically placed vents as the resin front advances. The part is ready to
be de-moulded when the cure procedure is completed. This manufacturing process results in
a strong interconnection between the structural and the manufacturing parameters; therefore, a
multi-objective optimization method is required to solve the corresponding design problem.

5.2. Optimization problem

The corresponding optimization problem consists in finding the minimum weight and mould
filling time and the maximum strength or minimum inverse Tsai-Wu strength ratio. The design
variables consist of four braid diameters, injection pressure and bladder pressure. The optimization
problem is formulated as follows:

min
di ,Pinj,Pbladder

⎧⎪⎨
⎪⎩

W(di, Pinj, Pbladder)

T (di, Pinj, Pbladder);
S(di, Pinj, Pbladder)

i = 1, . . . , 4

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

38.1mm < di < 63.5mm; i = 1, . . . , 4

100kPa < Pinj < 450kPa

150kPa < Pbladder < 500kPa

Pbladder − Pinj � 50kPa

(1)

where W , T and S in this equation represent weight, filling time and the inverse Tsai-Wu strength
ratio, respectively, di is the braid diameter, and pinj and Pbladder stand for injection and bladder
pressures. The flowchart in Figure 10 shows the interconnection between the design variables
and the objectives and the method to calculate each parameter. The function evaluation process
consists of a structural analysis and a flow simulation. A finite element analysis in ANSYS� is
employed for structural analysis, while the flow simulation is performed using a MATLAB� code
developed by the first author. The function evaluation process for this problem is time consuming
and takes about 100 seconds on a computer with Intel-Pentium4, 3.2GHZ, 2GB RAM. Therefore,
the number of function evaluations must be kept as low as possible. As a result, the higher
convergence rate of the hybrid optimization algorithm introduced in this article is an important
asset for situations similar to this test problem.

5.3. Results and discussion

NSHA is applied to the stem design problem using a population of 40 individuals. The optimization
process is terminated after 5000 function evaluations. Figure 11 shows the final solutions in the
3D criterion space and in the pair-wise 2D spaces. This figure gives insight into the problem by
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Engineering Optimization 55

Figure 10. Interconnection among design variables, intermediate parameters and the objectives of the stem design
problem.

Figure 11. Solutions found by NSHA for the Stem design problem after 5000 function evaluations, (a) solutions in 3D
criterion space (b)–(d) pair wise 2D plots of the solutions.

presenting the achievable values for the objectives. For instance, part (c) in this figure shows that
there is no trade-off between strength and filling time, thus one may find a solution that has the
minimum production time and the maximum strength at the same time; however, simultaneously
achieving the maximum strength and minimum weight (Figure 11(b)) or minimum weight and
minimum filling time (Figure 11(d)) is impossible. In addition to the presence and significant
effect of the coupling terms, this figure also provides the numerical values for the achievable
objectives. In addition, part (b) of this figure shows a knee point, marked by letter (A). This knee
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point shows that decreasing the inverse Tsai-Wu strength ratio from 1.1 to 0.78 is associated with
a smaller penalty in weight than improving the strength of the part beyond this value.

The solid circle shown in Figure 11 part (b) to (d) is the experimental design found in our
laboratory after months of trial and error (Thouin 2004). This point is very close to the Pareto
front regarding the weight and the filling time (part (d) in this figure); however, this point is not
close to the Pareto front regarding the trade-off between weight and strength. The results found
in this research can be used to find a solution better than the one found by experiments, while
saving the large amount of time usually spent on designing a part by experiment.

The distribution of the solutions within the design space, which shows the values for design
parameters, is also studied and a tendency toward the solution with the best strength is observed
among the results. This tendency shows that the optimum design is dominated by the structural
parameters and is closer to the best structural design than to the best design for manufacturing.
Note that the proximity to the structural design is with respect to the design variables; therefore, it
is not in conflict with the reported strong coupling in performance. The domination by structural
design was also previously reported by Henderson et al. (1999) for a blade-stiffened composite
panel.

To summarize the results of the practical design problem, the following three points are noted:

(1) The trade-off between structural performance and manufacturing concerns can be captured
and quantified using this multi-objective optimization method.

(2) The solutions obtained by this method can help distinguishing the feasible combination of
performances and finding the critical designs.

(3) A coupled design with a reasonable combination of structural and manufacturing perfor-
mances can be achieved by making only small changes in the best structural design.

6. Conclusions

An efficient multi-objective optimization algorithm is required to solve multi-objective design
problems. Evolutionary algorithms are a popular tool for this purpose, because of their ability in
achieving more than one solution in a single run. Among these methods, NSGA-II has received
a significant attention and popularity; however, like other evolutionary algorithms, it is slow
in convergence and usually needs several function evaluations before a reasonably good set of
solutions is reached.

In this article, NSGA-II was hybridized with a local search algorithm based on the Nelder-Mead
(NM) simplex method to improve its convergence rate and quality of the solutions. In order to make
NM capable of handling multi-objective problems, we used the non-dominated sorting algorithm
used in NSGA-II. The constrained-domination was used to handle the inequality constraints in
constrained optimization problems.

The proposed algorithm called non-dominated sorting hybrid algorithm (NSHA) was compared
with NSGA-II on eight unconstrained and two constrained test problems from the literature. The
performance of the two algorithms was compared using two performance metrics measuring the
convergence to the real Pareto front and the spread of the solutions. Using several test problems,
it was demonstrated that the hybrid algorithm significantly increases the convergence rate and
the extent of the solutions. It was observed that to obtain the same quality of the results, NSHA
requires a smaller number of function evaluations than NSGA-II. The local search integrated into
the algorithm significantly intensifies the ability of the algorithm in searching the design space and
reaching critical solutions, such as knee points and discontinuities in the Pareto front. Therefore,
the hybrid algorithm was shown to be able to obtain a wider portion of the Pareto front, even when
irregularities exist in the Pareto front of the problem. Since the diversity preservation mechanism
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is only applied within NSGA-II, the similar spread of solutions was observed for both NSHA and
NSGA-II.

To demonstrate the capability in handling practical engineering problems, NSHA was applied to
the optimum design of a composite bicycle stem. Finite element analysis and resin flow simulation
were required to evaluate the three objectives of this problem, which made the function evaluation
process time consuming. The optimum solutions found by NSHA reveal the trade-off among
conflicting objectives, the extreme values for each objective, and the critical design points. The
results were found close to the solutions obtained by experiment and trial and error.

By intensifying the search and reducing the computational time, NSHA provides an effective
tool which benefits from the robustness of a genetic algorithm and the high convergence rate of
the Nelder-Mead method. This optimization tool is suitable for solving complex time-consuming
multi-objective optimization problems. One of the major advantages of NSHA is that it maintains
the simplicity and modular aspect of NSGA-II, while achieving a wider scope and higher quality
solutions. Most modifications proposed in the literature to adapt NSGA-II to special applications,
can be applied to NSHA to further improve its performance for a particular application.
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