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A class of systems exists in which dissipation, external drive and interactions compete and give rise to non-
equilibrium phases that would not exist without the drive. There, phase transitions could occur without the
breaking of any symmetry, yet with a local order parameter – in contrast with the Landau theory of phase
transitions at equilibrium. One of the simplest driven-dissipative quantum systems consists of two-level atoms
enclosed in a volume smaller than the wavelength of the atomic transition cubed, driven by a light field. The
competition between collective coupling of the atoms to the driving field and their cooperative decay should
lead to a transition between a phase where all the atomic dipoles are phase-locked and a phase governed by
superradiant spontaneous emission. Here, we realize this model using a pencil-shaped cloud of laser-cooled
atoms in free space, optically excited along its main axis, and observe the predicted phases. Our demonstration
is promising in view of obtaining free-space superradiant lasers or to observe new types of time crystals.

Systems of interacting particles at equilibrium exhibit col-
lective phenomena such as the existence of phases and transi-
tions between them. They result from an interplay between in-
teractions and the action of external parameters. Equilibrium
properties of quantum many-body systems are intensively
studied in particular in a quantum simulation approach [1].
Here instead, we experimentally investigate a model consist-
ing of a collection of atoms driven by a resonant laser field,
where two non-equilibrium phases now result from a compe-
tition between the drive and the dissipation (e.g. [2–5]). A key
feature of the model, which we will refer to here as the driven
Dicke model (DDM), is the identical (cooperative) coupling
of all the atoms to the electromagnetic field, a fact automat-
ically ensured in sub-wavelength samples [6–12]. However,
confining an ensemble of emitters in a sub-wavelength vol-
ume is experimentally very challenging in the optical regime.
For extended ensembles, the condition of cooperative cou-
pling to the field has thus been realized by placing the emitters
in a cavity where they share the same electromagnetic mode
[13]. Superradiant phase transition [14, 15] as well as dissi-
pative time crystals [16, 17] have been observed in this sys-
tem. Superradiant lasing has also been obtained [18–22], but
finding cavity-free configurations sustaining steady-state su-
perradiance could simplify experiments and be of interest in
metrology.

In this work, we realize the DDM in free space, using a
pencil-shape cloud of up to N ≈ 2000 cold atoms, optically
excited along its main axis. By measuring both the atomic and
photonic degrees of freedom, we characterize the two non-
equilibrium phases predicted by the model. In particular, we
observe the characteristic N2 scaling of the photon emission
rate in the superradiant phase, thus demonstrating steady-state
superradiance in free space. Finally, we observe a modifica-
tion of the statistics of the superradiant light as we cross the
phase transition.

The DDM describes an ensemble of N two-level atoms
(states |g〉 and |e〉) as a collective spin Ŝ± =

∑N
i=1 σ̂

±
i

(here σ̂−i = |ei〉 〈gi| = (σ̂+
i )†), see Methods A. The in-
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discernability of the atoms with respect to the field restricts
the accessible states to the permutationally symmetric ones,
|S = N/2,m = −S, ..., S〉, which form a ladder (see Fig.1a).
The Hamiltonian describing the interaction of this collective
spin with a classical light field, resonant with the single-atom
transition, is ĤL = (~Ω/2)(Ŝ+ + Ŝ−), with Ω the Rabi fre-
quency. The dynamics of the collective spin is governed by
the equation:

dρ

dt
= − i

~
[ĤL, ρ]+

Γ

2
(2Ŝ−ρŜ+− Ŝ+Ŝ−ρ−ρŜ+Ŝ−) , (1)

where the last term describes the collective spontaneous emis-
sion (here Γ is the single-atom decay rate from |e〉). In steady-
state, this model supports two non-equilibrium phases, de-
pending on the ratio between the drive and the collective dis-
sipation β = 2Ω/(NΓ) [12] (see Methods B). For β < 1, the
atomic dipoles phase-lock and the ensemble develops a col-
lective dipole 〈Ŝ−〉st = −iΩ/Γ, as represented in Fig. 1(b).
As β increases, so does the amplitude of the dipole until it
reaches its largest value N/2 for β = 1. Conversely, the total
magnetization 〈Ŝz〉st decreases to 0. For β � 1, all the states
of the ladder are equally populated (see Fig. 1a), the collective
dipole vanishes and superradiance dominates with the charac-
teristic N2 scaling of the photon emission rate. We will re-
fer to the β < 1-phase as magnetized and the β > 1-one as
superradiant. In the limit N → ∞, the value β = 1 corre-
sponds to the critical point of a second order phase-transition
(see Method B 3). These are the two phases that we observe
and characterize here.

Our experiment (see Fig. 1c) [23] relies on a cloud of up
to ' 2000 laser-cooled 87Rb atoms placed in a dipole trap.
We isolate the two states |g〉 = |5S1/2, F = 2,mF = 2〉 and
|e〉 = |5P3/2, F = 3,mF = 3〉 of the D2 transition (λ =
2π/k = 780 nm, linewidth Γ ' 2π × 6 MHz) using a
96 G-magnetic field. The ensemble has axial and radial sizes
`ax = 20 − 25λ and 0.5λ. The mean distance between atoms
in the cloud is r ∼ 3/k, so that the coherent dipole interac-
tions can be neglected in a first approximation (see discussion
at the end of the text). For our pencil-shape ensemble of two-
level atoms, Ref. [24] shows that Eq. (1) remains valid in a
mean-field model simply replacing Γ by Γµ. The parame-
ter µ ∼ ∆Θ/(4π) characterizes the coupling of the extended
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Figure 1. Non-equilibrium phases in the Driven Dicke Model. (a) Populations of the N + 1 states in the Dicke ladder (N = 10),
corresponding to the vectors reported in (b). (b) Bloch-sphere representation of the collective spin predicted by the steady-state DDM, for
different values of β. The collective dipole is 〈Ŝ−〉 = −i〈Ŝy〉. (c) Experimental setup. A pencil-shape cloud of laser-cooled 87Rb atoms is
prepared in a dipole trap (not shown), placed between four high-numerical aperture lenses. A resonant laser beam propagates along the main
axis of the cloud (1/e2-radius of 5µm). Its linear polarization is perpendicular to the magnetic field ~B, so that only the σ+ component of
the light drives the atoms. The emitted light is collected in two different directions by two fiber-coupled avalanche photodiodes, APD// and
APD⊥, operating in single photon counting modes. APD⊥ gives access to the atomic excited state population (magnetization). A spatial
filtering (SF) separates the laser light from the one emitted axially by the cloud, so that APD// measures the rate of superradiant light emission
γSR(t).

cloud to its diffraction mode extending over a solid angle ∆Θ
[13, 24–27] : Ñ = Nµ is then the effective number of atoms
corresponding to the cooperative coupling to the diffraction
mode (Method A 3). Here µ ∼ λ/(2π`ax) ' 0.003(2) (see
Method C), allowing us to reach Ñ ∼ 10, a value suffi-
ciently large to observe the crossover between the two non-
equilibrium phases of the DDM. After optically pumping the
atoms in |g〉 and switching off the trap for ∼ 500 ns, we
excite the cloud with 150 ns-long pulses of a resonant laser
beam propagating along its main axis. With a temperature
' 200µK, the atoms can be considered as frozen during the
excitation. We repeat this procedure 30 times on the same
cloud and average over ∼ 2000 clouds. We measure the
number of emitted photons in two orthogonal directions with
avalanche photodiodes (APDs). The first one (APD⊥), radi-
ally aligned, is sensitive to the excited state population ne(t),
related to the magnetization sz(t) = 2ne(t)− 1 (see Methods
C). This quantity acts as an order parameter for the system.
The second one (APD//) measures the photon emission rate in
the superradiant mode γSR(t) = Γ〈Ŝ+Ŝ−〉 [25, 28].

We start by investigating the dynamics of the magnetiza-
tion during the application of a laser excitation pulse. First,
we fix the Rabi frequency of the laser driving to Ω = 4.5Γ
and vary N . Examples of experimental curves for different
N are reported in Fig. 2 (a). For low N , the dynamics is well
described by the solution of the two-level optical Bloch equa-
tions (OBEs), indicating independent atom behavior. As N
increases, we observe a reduction of the frequency and ampli-
tude of the oscillations, until they vanish for the largestN . We
fit each curve by the analytical solution of OBEs [29], with an
effective Rabi frequency ΩEff and the decay rate as free pa-

rameters. Figure 2(b) reports the fitted values of ΩEff, which
decrease asN increases. Second, we perform the complemen-
tary experiment where we fix N ' 1800 and vary Ω. We ob-
serve oscillations of ne only above a critical driving strength
Ωc, and ΩEff becomes comparable to Ω only in the strongly
driven regime (Ω > 10Γ).

Our observations can be explained in the framework of the
DDM. When driven by the laser, the ensemble develops a
collective dipole 〈Ŝ−〉, which in turn radiates a field whose
amplitude inside the cloud is 〈ÊSc〉 = −i~Γ〈Ŝ−〉/d (d is
the dipole matrix element of the e − g transition) [10, 11].
The field EEff in the cloud results from the superposition of
the laser field EL = ~Ω/d and of 〈ESc〉, yielding an ef-
fective Rabi frequency ΩEff = dEEff/~ = Ω − iΓ 〈Ŝ−〉.
For a resonant excitation, 〈Ŝ−〉 is purely imaginary so that
|ΩEff| ≤ Ω: the collective dipole gives rise to a π-shifted field
which screens the laser field. Qualitatively, the screening in-
creases with the amplitude of the collective dipole, hence with
N . To compare quantitatively the data to the DDM, we solve
numerically Eq. (1) to get ne(t), and fit the solution with the
same functional form as for the data. The only free parameter
in the simulation is µ = Ñ/N . We find a good agreement be-
tween the theoretical prediction and the experimental results
for µ ' 0.005, as shown in Fig. 2(b,c). Considering the errors
on the determination of the cloud sizes and atom numbers, this
value is consistent with the inferred one (see Methods C).

We also calculate the steady-state solution of Eq. (1) to
extract 〈Ŝ−〉 and thus ΩEff, using the value of µ obtained
above. As visible in Fig. 2(b,c), the steady-state values of ΩEff

matches the ones extracted from the dynamics. This fact in-
dicates that, for β = 2Ω/ΓÑ < 1, the collective coherence
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Figure 2. Collective dynamics during excitation. (a) Excited state
population ne(t) during the laser pulse measured with APD⊥ (tem-
poral bins: 1 ns), for different N . Dashed black line: solution of
OBEs. Colored line: fit using the analytical solution of the OBEs.
(b,c) Colored diamonds: experimental values ΩEff as a function of
Ñ = Nµ (b) and of Ω (c). Error bars on ΩEff from the fit. Uncer-
tainties on Ñ and Ω: 10% shot-to-shot fluctuations, evaluated from
a sample of 1000 repetitions. Blue dots: prediction from the solution
of the time-dependent DDM fitted as in the experiment. Continuous
blue lines: ΩEff from the steady state of the DDM.

giving rise to the screening is established inside the cloud in a
timescale (∼ 1/ÑΓ) faster than the driving period 1/Ω. Thus,
ΩEff ≈ Ω − iΓ 〈Ŝ−〉st. The existence of the threshold in Ω
observed in Fig. 2(b,c) can now be understood: for a given
Ñ , and for β ≤ 1 (magnetized phase), 〈Ŝ−〉st = −iΩ/Γ, so
that ΩEff ≈ 0 up to a critical driving strength Ωc/Γ = Ñ/2
where the dipole reaches its largest amplitude. For Ω � Ωc

(β � 1), the system is saturated, the collective dipole 〈Ŝ−〉st
is suppressed as N/β (see Methods B 1), and ΩEff ' Ω. Con-
versely, for a fixed value of Ω/Γ > 1, increasing Ñ drives the
system from the superradiant phase (β > 1) where the col-
lective dipole increases with Ñ , hence ΩEff decreases, to the
magnetized phase (β < 1) where ΩEff ≈ 0.

The agreement between the data and the DDM obtained
with µ as a single free-parameter validates the applicability
of the model for our cloud in free space using an effective
atom number Ñ . This result allows us to investigate the tran-
sition between the two non-equilibrium phases predicted by
the DDM. To do so we now focus on the steady-state proper-
ties of the system.

The steady-state values of the magnetization sz (APD⊥)
and emission rate γSR (APD//) are measured by averaging
over a 50 ns-time window before the end of the driving pulse.
We report in Fig. 3 (a,b) these values as a function of β =
2Ω/(ÑΓ) for three Ñ , together with the theoretical predic-
tions of the DDM. The data, plotted as a function of the scaled
parameter β, show both for sz and γSR a crossover between
two phases. It becomes steeper as Ñ increases and should

tend towards a phase transition for Ñ →∞ [10, 11].
To characterize further the phases, we study the dependence

of γSR with Ñ . Fig. 3(c) presents two examples corresponding
to different Ω’s, together with a polynomial fit γSR ∝ Ñα.
As reported in Fig. 3(d), the exponent α varies from below
1 in the weak driving regime to 2 in the strong driving one,
as was also observed for superradiant lasers [19, 22]. Once
again, this is expected from the DDM. For β � 1 (superra-
diant phase), the populations of Dicke states are saturated and
the dipole vanishes: superradiant spontaneous emission dom-
inates, and 〈Ŝ+Ŝ−〉 ∝ Ñ2. Conversely, in the magnetized
phase (β < 1) the system develops a collective dipole, and
γSR = 〈Ŝ+Ŝ−〉 ≈ |〈Ŝ−〉|2 = Ω2/Γ2, independent of Ñ . In
the crossover between the two regimes, 〈Ŝ+Ŝ−〉 ∼ Ñ (see
Methods B 2). The same analysis applied to the numerical
solution of the DDM yields results in very good agreement
with the data, as shown in Fig. 3(d).

As seen above, the transition separates a phase where a
collective dipole is driven by the laser, from a phase where
collective spontaneous emission dominates. We therefore ex-
pect a change in the statistics of the light emitted by the cloud
[30, 31] as we move through the crossover. To explore this, we
measure the steady-state intensity correlations at equal times
g

(2)
N (0) = 〈(Ê−s (t))2(Ê+

s (t))2〉/|〈Ê−s (t)Ê+
s (t)〉|2 of the light

field Ês emitted in the superradiant mode in the far field. To
do so we place a 50/50 fibered beamsplitter after the lens col-
lecting this mode, and one APD in each output port [29]. We
register the simultaneous coincidences in 1 ns time bins, for
the last 50 ns of the laser pulse. Figure 4 presents the mea-
sured value of g(2)

N (0) as a function of β. It does show a
modification of the statistics of the emitted light around the
transition: g(2)

N (0) ' 1 below threshold (β ≤ 1), indicating
that the light has the same statistics than the one of the driving
laser field, as expected for a classical dipole in steady-state
(see also [32]); in the strong driving regime, g(2)

N (0) saturates
around 1.45, thus showing bunching. To compare to the pre-
diction of the DDM, and as Ê+

s ∝ Ŝ− [29], we calculate
g

(2)
N,DDM(0) = 〈(Ŝ+)2(Ŝ−)2〉/|〈Ŝ+Ŝ−〉|2 [33, 34]. The re-

sult is presented in Fig. 4. Despite the lack of quantitative
agreement with the experimental data, the DDM also predicts
a change in the light statistics at the transition. The quantita-
tive mismatch between the data and the model requires further
theoretical investigations. In particular, it may be that despite
the good agreement between the DDM and the data observed
for the magnetization and γSR, the model is too simple to cal-
culate the statistical properties of the light emitted by an ex-
tended sample, as it ignores the spatial correlations between
atoms.

Finally, we compare the findings of this paper with our pre-
vious works where we investigated dense atomic ensembles
[35] or a chain of atoms spaced by∼ λ [36], driven by a near-
resonant laser. In both cases, we observed in the weak driving
regime (Ω � Γ) a shift of the line induced by the coherent
dipole interactions: for the atomic ensembles, they resulted
from the large spatial density, while for the much more diluted
chain they were a consequence of constructive interferences
of the fields scattered by the atoms. On the contrary, at strong
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Figure 3. Onset of the superradiant phase. (a,b) Experimental steady-state values of sz and γSR as a function of β, for different atom
numbers Ñ . Lines: predictions of the DDM. (c): examples of the dependence γSR ∝ Ñα in the weak (black empty-circles, Ω ' 2.5 Γ) and
strong (red triangles, Ω ' 10Γ) driving regimes. (d) Exponent α of the fit. Grey line: prediction of the DDM. Error bars on sstz and γstSR:
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0 1 2
0.8

1

1.2

1.4

1.6

β=2Ω/(ΓN
˜
)

g
N
(2
) (
0
)

Figure 4. Intensity correlations at equal time in the superradiant
mode. Diamonds: g(2)

N (0) as a function of β for Ñ ' 7. Grey line:
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driving (Ω & Γ), the shift was suppressed in the chain, owing
to the fact that atomic dipoles vanishes at high intensity. In the
present work, the atomic ensemble is about an order of mag-
nitude more dilute than in Ref. [35] and the driving strength
is such that Ω > 2.5Γ, making the role of coherent dipole
interactions negligible in a first approximation. However we
do expect the dipole interactions to play a small role at very
weak driving, and therefore that the DDM is not a faithful de-
scription of the experimental configuration for β � 1 (see in
particular Fig. 5 in Methods A 3). We also show in Methods
A 3 that the coherent dipole interactions plays no role at the
mean-field level. What is their role beyond mean-field is an
important question that will be the subject of future works.

In conclusion, we have observed the transition between
a magnetized and a superradiant non-equilibrium phase pre-

dicted by the DDM in free-space. The applicability of this
model for an elongated sample in free-space is perhaps unex-
pected but is validated here by the good agreement between
the experiment and the model, at least at the level of precision
reached in the experiment. Our observations raise questions
that deserve further investigations. In particular, what is the
microscopic justification of the validity of the DDM in free-
space for an extended cloud simply using an effective atom
number [37, 38]? This work also opens promising prospects
for the realization of superradiant laser in free space, e.g. us-
ing thermal atomic beams [39], or for the observation of new
types of time crystals [16]. Finally, increasing the density of
the sample could lead to the regime where dipole-dipole in-
teractions between atoms play a role and stabilize exotic non-
equilibrium phases [2, 3, 5, 40].
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METHODS

A. The Driven-Dicke model

1. Description of the model

The Driven Dicke model considers a system ofN -two-level
atoms (resonant frequency ω0), all located at the same posi-
tion and driven by a laser field with Rabi frequency Ω and
detuning ∆ with respect to the transition frequency. Since
the system size is much smaller than λ, the state evolution is
restricted to the N + 1 permutationally symmetric states con-
taining m excitations [6]. One thus introduces a collective
spin operator Ŝ =

∑N
i=1 σ̂i/2 (σi are the Pauli matrices), and

the relevant Hilbert space is spanned by the eigenstates of Ŝz ,
|S = N/2,m〉, with −N/2 ≤ m ≤ N/2. The actions of the
collective spin operators on these states are:

Ŝ2 |S,m〉 = S(S + 1) |S,m〉
Ŝz |S,m〉 = m |S,m〉
Ŝ+ |S,m〉 = (Ŝx + iŜy) |S,m〉 = Am |S,m+ 1〉
Ŝ− |S,m〉 = (Ŝx − iŜy) |S,m〉 = Am−1 |S,m− 1〉

(2)

whereAm =
√
S(S + 1)−m(m+ 1). The Hamiltonian de-

scribing the interaction of the collective spin with the light is
given by

ĤL = ~
Ω

2

(
Ŝ+ + Ŝ−

)
− ~

∆

2
Ŝz . (3)

Importantly, the coherent (spin-exchange) component of the
dipole-dipole interactions between atoms is ignored in this
simplified model: one simply assumes that it leads to a renor-
malization of the resonant frequency ω0.

The dynamics of the system is governed by the following
master equation:

dρ

dt
= − i

~
[ĤL, ρ]+

Γ

2
(2Ŝ−ρŜ+− Ŝ+Ŝ−ρ−ρŜ+Ŝ−) . (4)

In the |S,m〉 basis, and for the resonant case ∆ = 0, it leads
to a system of N(N + 1)/2 coupled differential equations for
the matrix elements ρm,m′ = 〈S,m|ρ|S,m′〉:

ρ̇m,m′ = −iΩ
2

(Am−1ρm−1,m′ +Amρm+1,m′

−Am′−1ρm,m′−1 −Am′ρm,m′+1)

+
Γ

2
(2AmAm′ρm+1,m′+1 −A2

m−1ρm,m′ −A2
m′−1ρm,m′) .

(5)
They can be easily solved numerically for the small atom
numbers considered here. From the solutions, we then evalu-

ate the expectation values of the following operators:

〈Ŝz〉(t)/N = 2ne(t)− 1 =
1

N

S∑
m=−S

mρm,m(t)

〈Ŝ−〉(t) =

S∑
m=−S

Am−1ρm,m−1(t)

〈Ŝ+Ŝ−〉(t) =

S∑
m=−S

A2
m−1ρm,m(t)

〈Ŝ+Ŝ+Ŝ−Ŝ−〉(t) =

S∑
m=−S

A2
m−1A

2
m−2ρm,m(t) .

(6)

2. Semi-classical approach

The DDM has a semi-classical limit for N � 1 when
considering the average value of the collective spin 〈Ŝ〉 =

(〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉) [12]. To see it, we use:

d〈Ŝα〉
dt

= Tr[Ŝα
dρ

dt
] (7)

combined with the master equation (4) and the commutation
relations of the spin operators. This leads to the set of coupled,
non-linear equations (for ∆ = 0):

d〈Ŝx〉
dt

=
Γ

2
(〈ŜxŜz〉+ 〈ŜzŜx〉)−

Γ

2
〈Ŝx〉 (8)

d〈Ŝy〉
dt

= Ω〈Ŝz〉+
Γ

2
(〈ŜyŜz〉+ 〈ŜzŜy〉)−

Γ

2
〈Ŝy〉 (9)

d〈Ŝz〉
dt

= −Ω〈Ŝy〉 − Γ(〈Ŝ2
x〉+ 〈Ŝ2

y〉) . (10)

We now assume that for large spins (i.e. N � 1),
〈ŜαŜβ〉 ≈ 〈Ŝα〉〈Ŝβ〉 for α 6= β. Neglecting the dissipative
terms Γ〈Ŝx,y〉 ofO(N) only, we then obtain a set of equations
that conserves the total spin 〈Ŝ〉2 = 〈Ŝ2

x〉 + 〈Ŝ2
y〉 + 〈Ŝ2

z 〉 =

N2/4. If we now consider that 〈Ŝx〉(0) = 0, then 〈Ŝ−〉(t) =

−i〈Ŝy〉 and the system reduces to two coupled equations:

d〈Ŝ−〉
dt

=
(
iΩ + Γ〈Ŝ−〉

)
〈Ŝz〉 (11)

d〈Ŝz〉
dt

= iΩ〈Ŝ−〉 − Γ

(
N2

4
− 〈Ŝ2

z 〉
)
. (12)

The first equation shows explicitly that the dipole 〈Ŝ−〉 is
driven by the effective Rabi frequency.

3. The driven Dicke Model for a pencil-shaped cloud

We now extend the Driven Dicke Model to our pencil-
shaped cloud, relying on Sec. 6 of [24]. There, the dynamics
of a nearly one-dimensional system (direction k0) subjected to
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collective dissipation and driving (wavevector kL) is derived
and given by Eq. (6.9):

dρ

dt
=

1

i~
[ĤL + Ĥdd, ρ]− Γµ

∑
i≥j

(D̂+
kL,i

D̂−kL,jρ

+ ρD̂+
kL,j

D̂−kL,i − D̂
−
kL,j

ρD̂+
kL,i
− D̂−kL,iρD̂

+
kL,j

) ,

(13)

where D̂±kL,i = e±ikL · ri σ̂±i . We have taken here k0 ≈ kL,
as experimentally relevant. The geometrical factor µ accounts
for the coupling to the diffraction mode and is calculated in
Sec. C. The Hamiltonian describing the laser driving is :

ĤL =
~Ω

2

N∑
i=1

D̂+
kL,i

+ D̂−kL,i . (14)

With respect to Eq. (6.9) of [24], we have included the coher-
ent part of the resonant dipole-dipole interactions:

Ĥdd = ~
∑
i 6=j

Vije
ikL · (rj−ri)D̂−kL,jD̂

+
kL,i

(15)

where Vij is related to the real part of the field radiated by i-th
atoms in the position of the j-th (see Eq. (18) of Sec. A 4).
This equation holds for any disordered spatial distribution.

The equation of motion for 〈D̂−kL,i〉 then reads

d〈D̂−kL,i〉
dt

= iΩ〈D̂z
kL,i〉+ 2Γµ

∑
i≥j

〈D̂−kL,jD̂
z
kL,i〉

−
∑
m 6=n

Vmne
ikL · (rm−rn)×

(〈D̂−kL,lD̂
+
kL,m

D̂−kL,n〉 − 〈D̂
−
kL,n

D̂+
kL,m

D̂−kL,l〉)

(16)

Now considering a one dimensional model, we assume that
the amplitude of the dipole of a given atom i depends on
its position only via a phase factor (spin-wave approxima-
tion), i.e., 〈D̂±kL,i〉 = 〈D̂±〉 (or 〈σ̂−i 〉 = 〈σ̂−〉eikL · ri ).
The equation of motion obtained in this way is identical
to Eq. (6.27) of [24] with an external resonant driving.
Importantly, performing the mean-field approximation (e.g.
〈D̂−kL,lD̂

+
kL,m

D̂−kL,n〉 = 〈D̂−kL,l〉〈D̂
+
kL,m
〉〈D̂−kL,n〉), the contri-

bution of the coherent part of the dipole interactions vanishes.
Using also 〈D̂−D̂z〉 = 〈D̂−〉〈D̂z〉, Eq. (16) leads to

d〈D̂−〉
dt

= (iΩ + µNΓ〈D̂−〉)〈D̂z〉 (17)

It is equivalent to our Eq. (11), replacing 〈Ŝ−〉 = N〈σ̂−〉 by
〈D̂−〉 = µN〈σ̂−〉. This justifies the use of an effective atom
number Ñ = Nµ to describe a pencil-shape cloud.

The discussion above suggests that the Driven-Dicke model
can be applied to an extended ensemble of randomly dis-
tributed emitters if the spin-wave and mean-field approxi-
mations are fulfilled. We expect this condition to be valid
for a sufficiently strong driving. Conversely, in the weakly
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/Γ
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-Δ/Γ0
Γ/Γ0

Figure 5. Shift and width of the atomic transition as a function
of the saturation parameter for N ≈ 3000. Color (white) filled di-
amonds: shift (width). The dashed line is the single atom power
broadening

√
1 + s/4. Error bars on ∆ and Γ are from the fit. Er-

ror bars on s = I/Isat correspond to 10% shot-to-shot fluctuations
evaluated from 1000 repetitions.

driven regime, this approximation is not valid and in the sys-
tem is subject to the effect of Ĥdd which manifests as a fre-
quency shift and broadening of the atomic transition. To ver-
ify how appropriate the spin-wave approximation is, we report
in Fig. 5 the measured shift ∆ and width Γ of the transition in
the same conditions as in the experiment, but using ' 3000
atoms. We observe a broadening consistent with the single-
atom power broadening and a shift ∆ < Γ0 for s ≥ 20. As
the atom number is here nearly two times the largest one used
in the experiment (Ñ ' 10), it means that for β ≥ 0.3 the spin
wave approximation can be applied. For smaller values of β,
the applicability of the DDM has to be tested by comparing
the data to ab-initio calculations including interactions, as the
one performed in [28].

4. Field scattered by the collective dipole inside the cloud

We used in the main text the field radiated inside the cloud
by the collective dipole 〈ÊSc〉 = −i~Γ〈Ŝ−〉/d. This expres-
sion corresponds to the limit r → 0 (Dicke limit) of the imag-
inary part of the field radiated by a dipole D = d〈Ŝ−〉:

ESc =
D

4πε0

[(
1

r3
− ik

r2

)
(3 cos2 θ − 1) +

k2 sin2 θ

r

]
eikr ,

(18)
using ~Γ = d2k3/(3πε0), with k = ω0/c. The real part of
ESc gives rise to the coherent part of the dipole-dipole inter-
action. It diverges for r → 0 and is assumed to lead to a
renormalization of the resonance frequency ω0. For the ex-
tended sample considered in the experiment, we also neglect
the real part of ESc: it would lead to a shift ∆ω of the tran-
sition frequency in the low excitation intensity limit, and as
here the mean interatomic distance fulfills kr ∼ 3, we ex-
pect ∆ω . Γ. Moreover, for the Rabi frequencies used in the
experiment, the shift is suppressed further [36].
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B. Predictions of the model

In order to get an intuition about the phases predicted by the
DDM, we present here analytical and numerical, steady-state
solutions of Eq. (5) for the range of parameters Ω/Γ and Ñ
accessible in our experiment.

1. Steady-state solution of the semi-classical approach

Equations (11) and (12) predict that either 〈Ŝ−〉 = −iΩ/Γ,
in which case 〈Ŝz〉 = (N/2)

√
1− β2 with β = 2Ω/(NΓ) <

1, or 〈Ŝz〉 = 0 and 〈Ŝ−〉 = −iN/(2β), for β > 1. The
value β = 1 thus appears as a critical point separating two
regimes: (i) for β < 1, the collective spin vector lies on the
N -atom Bloch sphere of radius N/2, and rotates around the
x-axis, from the z-axis to the equatorial plane (y-axis) as β
increases up to 1. The angle θ between the spin 〈Ŝ〉 and the
z-axis is such that tan θ = |〈Ŝ−〉|/|〈Ŝz〉| = β/

√
1− β2; (ii)

when β ≥ 1, the component 〈Ŝz〉 is locked to 0, while the
component 〈Ŝ−〉 along the y-axis decreases as β increases.

2. Numerical solutions of the DDM

Figure 6 shows the results for the collective dipole
Im[〈S−〉], the magnetiztion 〈sz〉, the effective Rabi frequency
ΩEff = Ω − iΓ〈S−〉 and the superradiant emission rate γSR

as a function of the excitation laser Rabi frequency Ω. We
observe two regimes.

In the first one, corresponding to Ω/Γ ≤ N/2, the col-
lective dipole Im[〈S−〉] is proportional to Ω and the screen-
ing of the driving field by the field scattered by the col-
lective dipole is efficient. To better understand the screen-
ing, we consider the limiting case where Ω/Γ � N/2.
We may then restrict ourselves to the two lowest Dicke
states, |N/2,−N/2〉 and |N/2,−N/2 + 1〉, corresponding
respectively to |G〉 = |ggg...g〉 and |W 〉 = (|egg...g〉 +

|geg...g〉 + ...|ggg...e〉)/
√
N . The matrix element of the

collective dipole connecting the two states is d
√
N , with

d the single-atom dipole, so that the decay rate of |W 〉 is
NΓ and the collective coupling to the laser is Ω

√
N . Re-

stricting ourselves to this two-level system, γSR = NΓπW
where πW ≈ (Ω

√
N)2/(NΓ)2 is the population of the |W 〉

state. Hence, γSR = Ω2/Γ, independent of N . Similarly,
〈S−〉 = i

√
N(Ω

√
N)/(NΓ), also independent of N . As we

approach Ω/Γ . N/2, however, 〈S−〉 remains proportional
to Ω despite the fact that we significantly populate the Dicke
states up tom ≈ 0: the suppression of the coherences ρm,m−1

due to the strong driving is counteracted by the enhanced cou-
plingAm−1 between Dicke states |S,m〉 and |S,m−1〉. Thus,
despite the saturation of the lowest Dicke states, a collective
dipole corresponding to a collective Bloch vector can develop
even close to the equatorial plan. This would be impossible
for a two-level system and this is a feature of the ladder of
Dicke states.
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Figure 6. Steady state values of the collective dipole Im[〈S−〉],
the magnetiztion 〈sz〉, the effective Rabi frequency ΩEff and the
superradiant emission rate γSR as a function of Ω/Γ, plotted for
N = (2, 5, 10, 15) (red, blue, black, green).

In the second regime, Ω/Γ� N/2, the system is saturated,
the collective dipole 〈S−〉 → 0, and the population of each
Dicke state |S,m〉 is ρm,m = 1/(N+1). Calculating the sum
in Eqs. (6), we get γSR = N(N + 2)/6, independent of Ω.

We also plot in Fig. 7 ΩEff and γSR as a function of N for
different Ω. We confirm that for N ≥ 2Ω/Γ the screening
from the collective dipole operates, and that γSR → Ω2/Γ for
N → ∞. We also observe that for increasing values of N
starting from 1, γSR ∝ Nα, with α decreasing from 2 to 0.
Such a decrease is observed in the experiment (Fig. 3(c)).
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Figure 7. Steady state values of ΩEff , and γSR as a function of N ,
for Ω/Γ = (1.1, 4.5, 11) (red dots, blue squares, black diamonds).

3. Analytical derivation of the phase transition

Finally, we briefly rederive the prediction of a second-order
phase transition in the thermodynamics limit (N → ∞), fol-
lowing Ref. [11]. The field operator Ê+

Eff inside the cloud is
the superposition of the classical laser field Ê+

L and of the
fields scattered by all the atoms, Ê+

sc = −i~ΓŜ−/d. Hence,
Ê+

Eff = Ê+
L − i~ΓŜ−/d, leading to

Ω2 =
~2

d2
〈Ê−L E

+
L 〉 ≈ Ω2

Eff +
N2Γ2

4
〈σ̂+σ̂−〉 , (19)

with Ŝ− = Nσ̂−/2 and Ω2
Eff = ~2〈Ê−EffE

+
Eff〉/d2. We have

neglected here the terms 〈E−Eff Ŝ
+〉 and 〈E+

Eff Ŝ
−〉, which are

of order N only. Each two-level atom in the cloud is driven
by the effective Rabi frequency ΩEff , hence:

〈σ̂+σ̂−〉 =
1

2

2Ω2
Eff/Γ

2

1 + 2Ω2
Eff/Γ

2
(20)

in steady-state and on resonance (∆ = 0) [25]. Introducing
β = 2Ω/(NΓ) and x = 2ΩEff/(NΓ) yields:

β2 = x2 +
N2x2/2

1 +N2x2/2
. (21)

Considering that N � 1, x2 ≈ β2 − 1 for β ≥ 1, hence

β ≥ 1⇒ x ≈
√
β2 − 1 . (22)
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Figure 8. DDM and second order phase transition. Comparison
between the numerical solution of Eq. (21) for N = 20 (black line),
and the analytical solution x =

√
β2 − 1 (red dashed line), showing

the existence of a critical point for N →∞.

For β < 1, we get x� 1, so that:

β2 ≈ N2x2/2

1 +N2x2/2
⇒ x ≈

√
2

N

β√
1− β2

. (23)

These two last equations show the existence of a critical point
for β = 1, with ΩEff = 0 for β < 1 when N → ∞, reminis-
cent of a second order phase transition.

It may look inconsistent to obtain Ωeff = 0 while 〈Ŝ−〉 =
−iΩ/Γ 6= 0 in the case β < 1, as the effective field is
the source of Ŝ−. However, for large but finite N , ΩEff =

O(1/N) [Eq.(23)], so that 〈Ŝ−〉 ∝ NΩEff remains finite.
Figure 8 shows the numerical solution of Eq. (21) forN = 20,
together with the analytical solution of Eq. (22).

C. Cooperative coupling between an atomic ensemble and a
diffraction mode

In this section, we evaluate the cooperative coupling be-
tween a generic atomic distribution and a diffraction mode in
free space. The intensity emitted in a direction k by a cloud
containing N atoms is given by [25]:

IN (k) = I1(k)
[ N∑

i

〈σ̂zi 〉+ 1

2
+

N∑
i 6=j

eik · (ri−rj)〈σ̂+
i σ̂
−
j 〉
]

(24)
where I1(k)(〈σ̂zi 〉 + 1)/2 is the single atom intensity. The
first term on the right side of Eq. (24) is the incoherent in-
tensity emitted by the system. The second term describes the
correlations between different atoms and is responsible for the
coherent part of the emission.

As done in [25] for the non-driven case, we now assume a
collective, factorizable atomic state of the N atoms, excited
by a laser with a wavevector kL: 〈σ̂+

i σ̂
−
j 〉 ≈ 〈σ̂

+
i 〉〈σ̂

−
j 〉 =

|〈σ̂+〉|2 e−ikL · (ri−rj). The coherent part of the radiation is
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then:

Icoh
N (k) = I1(k)|〈σ̂+〉|2

N∑
i 6=j

ei(k−kL) · (ri−rj) . (25)

Introducing the structure factor:

Γ(k,kL) =
1

N2

N∑
i 6=j

ei(k−kL) · (ri−rj) (26)

leads to:

Icoh
N (k) = N2I1(k)|〈σ̂+〉|2Γ(k,kL) . (27)

In analogy with cavity QED, we define the effective atom
number coupled to the diffraction mode (extending over a
solid angle ∆Θ) as Nµ = P coh

N /(NP1) where P coh
N is the

power radiated by N atoms into the diffraction mode, i.e.,
P coh
N =

∫
4π
dΩkIN (k) and P1 is the power radiated by a

single atom in 4π. In the weak driving regime, |〈σ̂+〉|2 ≈
(〈σ̂zi 〉+ 1)/2 and we get:

Nµ =

N2

∫
4π

dΩkI1(k)Γ(k,kL)

N

∫
4π

dΩkI1(k)

. (28)

As the structure factor Γ(k,kL) has non-zero values only in
∆Θ, µ ∼ ∆Θ/(4π). This derivation shows that the effective
atom number comes from the shape factor introduced in the
context of the (non-driven) superradiance in extended clouds
[25, 26]. Note that the value of µ depends on the direction of
the excitation laser.

We now calculate µ for the specific geometry of our experi-
ment. For circularly polarized dipoles, I1(k) = I1(φ, θ) =
(1 + cos2 φ sin2 θ)/2, with θ and φ the polar and az-
imuthal angles with respect to the quantization axis. (k̂ =

(cos θ, sin θ cosφ, sin θ sinφ)). Then, P1 ∝ 8π/3. To cal-
culate Γ(k,kL) and P coh

N , we replace the sum over discrete
positions by an integral over a continuous density distribution
ρ(r):

Γ(k,kL) =

∣∣∣∣∫ d3r ρ(r) ei(k−kL) · r
∣∣∣∣2 . (29)

Assuming a Gaussian density ρ(r) with r.m.s. size `ax along
x̂ and `rad in ŷ and ẑ, setting kL along x̂, we obtain:

P coh
N ∝ π

∫ π

0

dθ sin θ
(
1 +

sin2 θ

2

)
×

exp[−(k`rad sin θ)2] exp[−(k`ax)2(cos θ − 1)2] . (30)

A Taylor expansion of the second exponential in the integral
indicates that the integrant is non negligible in the solid angle
∆Θ/(4π) ∼ µ ∼ λ/(2π`ax). With the experimental values
`ax and `rad, we get µ ' 2.5 × 10−3, a factor 2 smaller than
the value used in the main text, obtained as a free parameter.
However, a precise estimation of the trap size is challenging
and subjected to overestimation (due to radiation pressure ef-
fects for instance). Considering a 50% error in the measure of
`ax makes the result consistent with the value used in the main
text.

Importantly, the structure factor, and consequently the value
of µ, depends both on the cloud geometry and the direction of
the excitation laser kL. In previous works [28, 41], we excited
the same atomic ensemble, but perpendicularly to the main
axis. This led to a value of µ smaller than the one achieved
here by one order of magnitude. Consequently, in that case,
Ñ � 1, making it impossible to observe the phase transition.

Finally, we compare the magnitudes of the two contribu-
tions in Eq. (24). Assuming that the correlations between
atomic dipoles are perfect (〈σ̂+

i σ̂
−
j 〉 ∼ 1) and that the atoms

are nearly saturated (〈σ̂zi 〉 ≈ 0), the contribution of the cor-
relation terms in the transverse direction is ∼ N Γ(k,kL)
smaller than the population term. For our experimental con-
figuration Γ(k,kL) ∼ exp[−(k`ax)2] ∼ exp(−1202), i.e. to-
tally negligible. This indicates that the dominant contribution
to the APD⊥-signal does come from the atomic population.
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