
I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71
Published Online June 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2016.06.08

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

A Non-format Compliant Scalable RSA-based

JPEG Encryption Algorithm

Aniruddha G. Phatak
Department of Electronics and Telecommunication, PVG’s College of Engineering and Technology, Pune, India

Email: aniruddhaphatak93@hotmail.com

Abstract—A non-format compliant JPEG encryption

algorithm is proposed which is based on a modification

of the RSA encryption system. Firstly, an alternate form

of entropy coding is described, which is more suited to

the proposed algorithm, instead of the zigzag coding

scheme used in JPEG. The algorithm for the encryption

and decryption process is then elaborated. A variant of

the algorithm, also based on the RSA algorithm is also

described, which is faster than the original algorithm, but

expands the bit stream slightly. Both the algorithms are

shown to be scalable and resistant to ‘sketch’ attacks.

Finally, the encrypted file sizes for both the algorithms

are compared with the unencrypted JPEG compressed

image file size. The encrypted image is found to be

moderately expanded, but which is justified by the high

security and most importantly, the scalability of the

algorithm.

Index Terms—Image encryption, non-format compliant

algorithm, RSA, JPEG, scalability, sketch attacks

I. BACKGROUND AND RELATED WORK

Due to the increased sophistication of tools available at

the hands of intruders, sharing of sensitive images over

an insecure channel has become extremely risky. This is

even more of a concern for JPEG images, which form the

significant bulk of the images transferred over any

communications network, such as the Internet, due to

their extremely high compression ratio at the cost of

almost imperceptible loss in image quality. The special

nature of the JPEG encoding process makes JPEG-related

algorithms a class apart from those applied to other

image formats. There are two broad categories of JPEG

encryption--format-compliant [4][5][9][10] and non-

format-compliant. In the former case, the encryption

algorithm is bound by the restriction that the encrypted

output must conform to the JPEG algorithm and format.

In the latter case, there is no such restriction and hence,

these class of algorithms can afford to be much more

flexible and inventive. Format-compliant algorithms

usually are based on shuffling of DC coefficients [Niu et

al., 5], randomly shuffling the signs of the AC

coefficients, a combination of several scrambling and

shuffling operations using the XOR operation [12], a

combination of several operations at the bit stream level

[4], permutation of the zigzag scheme used in JPEG

encryption [11] or the use of fuzzy PN sequences [9].

Another class of JPEG encryption involves chaos theory

elements such as 2D chaos maps, such as the Arnold’s

cat map, Baker’s Map [6] or the Duffing’s Map, chaotic

sequence [7] or spatiotemporal chaos [8]. Still another

category is the use of space-filling curves [13], combined

with a chaotic stream cipher [14]. Most of the format-

compliant algorithms were shown by Li and Yuan [1] to

be leaky to ‘sketch’ attacks, while most of the algorithms

resistant to such attacks end up significantly expanding

the bit stream[1][2].

In this paper, a non-format compliant algorithm is

proposed which is based on the RSA encryption

algorithm. Instead of the 8x8 blocks used in the JPEG

algorithm, 16x16 blocks are used. The alternate entropy

coding scheme used is centered on defining a particular

shape inside the quantized DCT matrix, such that all the

non-zero coefficients are included within this shape. The

parameters defining this shape are then transmitted

separately and securely. This alternate scheme is shown

to be resistant to ‘sketch’ attacks, in which a silhouette of

the original image is obtained simply by thresholding the

number of non-zero AC coefficients in the JPEG

encrypted files. An alternate variant of the algorithm is

also described, which is faster than the original algorithm,

but expands the bit stream slightly. The security provided

by the two algorithms proposed is shown to be scalable,

such that security is increased largely at the cost of

execution time in the first variant, and largely at the cost

of bit stream (or image file) size expansion in the second

variant.

The encryption algorithm used in this paper is not

strictly RSA (since no public-key component is present),

but is based on it. However, the encryption algorithm will

still be referred to as RSA algorithm in the rest of the

paper for the sake of brevity.

This paper consists of two broad sections—in the first

section, the entropy coding used in the algorithm is This

paper consists of two broad sections—in the first section,

the entropy coding used in the algorithm is described,

followed by the second section, in which the actual

compression algorithm is introduced.

II. ENTROPY CODING ALGORITHM DESCRIPTION

The algorithm is described for a 8x8 block. The same

can be extended to 16x16 blocks easily.

For each 8x8 quantized block of DCT coefficients, a

particular shape is defined, such that all non-zero

 A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm 65

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

coefficients are contained within the shape. This shape is

obtained by the following process:

Let the 8x8 matrix be defined in a Cartesian coordinate

system, with the origin at the top-left corner of the matrix,

the x-axis extending along the top edge and the y-axis

extending along the left edge of the matrix.

Fig.1. (A) 8 X 8 Matrix

Initially a square is defined such that its length is equal

to the coefficient farthest from the origin, either in the X-

direction or the Y-direction.

Fig.1. (B) square area s1

Let this square be called S1 and the length be L1.

Now starting from the bottom-right corner of this

square (i.e. at position (L1,L1)), each m x m block of

coefficients is scanned, extending into the square of

length L1.

If all the coefficients in a m x m block are zero, then

the value of m is incremented and the next m x m block

is scanned. The process is repeated until a non-zero

element is found in the m × m block. Then the value of

highest value of m, such that all coefficients in the m x m

block are zero, is noted. Let this value be equal to L2 and

the square thus defined by length L2 be called S2.

Fig.1. (C) Second Square S2

The square S2 is snipped from the bottom-right section

of square S1.

Fig.1. (D) Square S2 Snipped from the Square S1 (See Fig.1 (C)

Hence the shape now defined has the following shape:

Fig.1. (E) Final Shape and The Coordinates of the Edge Points

The coefficients contained in the shape are now

numbered serially from 1 to (L1
2
 – L2

2
) starting from the

origin (top-left corner), left to right, top to bottom, in the

following manner.

66 A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

Fig.1. (F) Serial Numbering of the Squares in the Shape

III. ENCODING OF COEFFICIENTS

After the coefficients are ordered as a single string of

integers, the entropy coding of these integers is necessary.

The process used in this algorithm is a slight variant of

the coding process used in the JPEG system. Keeping in

mind the large number of zeros and frequent repetition in

the integer stream to be encoded, a zero indicator and a

repetition indicator bit are added prefixed to each

encoded integer. Also, in the proposed algorithm, the

number of bits needed to encode each pixel is encoded

separately as a Huffman encoded stream, while in JPEG,

this information is encoded along with the value of the

pixel. A more formal discussion of the encoding

algorithm is given below –

Each of the coefficients is encoded serially in the

following format:

1 2 3 4

Fig.2. Representation of Each Coefficient

1 – Zero bit indicator

2 – Repetition Indicator

3 – Sign of the coefficient

4 - Binary representation of the absolute value of

coefficient

 Zero-bit indicator: Used to indicate whether the

coefficient is zero or non-zero. If the coefficient is

zero, then a 0 is written and rest of the fields are

ignored, otherwise a 1 is written.

 Repetition indicator: In the coefficient is a

repetition of the previous coefficient, then a 1 is

written to this field, and the rest of the fields are

ignored.

 Sign of the coefficient: 1 if the coefficient is

positive, otherwise 0.

The number of bits needed to represent the value of

each non-zero, non-repeated coefficient are concatenated

together (as per the serial number of coefficients) and are

Huffman encoded. The Huffman dictionary used is

shown below. The user may define their own Huffman

dictionary to suit their particular application.

Table.1. Huffman Dictionary For The Luma Plane

Value Huffman Code

1 00

2 11

3 010

4 0110

5 011100

6 011111

7 011110

8 0111010

9 01111011

Delimiter 01

Table.2. Huffman Dictionary For Chroma Planes

Value Huffman Code

1 1

2 000

3 0010

4 00110

5 001110

6 0011111

7 0011110

Delimiter 01

(The delimiter is needed to signal the end of the

Huffman encoded bit stream.)

Finally, the entire image is encoded in the following

manner:

1 2

Fig.3 Encoding of Entire Image

1 – Huffman encoded bit stream of the number of bits

needed to represent each coefficient

2 – Coefficients encoded as per Table 1 above

This data constitutes the ‘DCT block data’ as will be

referred to in the following sections. Note that it is not

possible to decode the image unless the values of L1 and

L2 for each of the 16x16 blocks is known. This fact is

exploited in the next section, which deals with encryption.

IV. ENCRYPTION ALGORITHM DESCRIPTION

In Sections II and III, the encoding process of the DCT

coefficients was described in detail. In the following

sections, the encryption algorithm will be described and

the related results will be presented.

A. Encoding Process

(The following description assumes a 512x512 image,

thus having 1024 16x16 blocks.)

 A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm 67

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

1. The DCT blocks are scrambled using a w-bit long

key (called as a scrambling key) using any of the

scrambling algorithm described in literature.

2. The values of L1 and L2 are arranged as an integer of

2048 decimal digits, two digits corresponding to one

16x16 block. Let them be called J and K respectively.

3. J and K are divided into 2 parts called as J1 & J2 and

K1 and K2 respectively. Let J1 have d1 decimal digits

and b1 binary digits and K1 have d2 decimal and b2

binary digits. (for the rest of the paper, d1=d2=d).

4. The value of J1 and K1 are adjusted so that they are

made equal to the nearest prime number. This is done by

adding 1 to their value if they are not already odd, and

then applying probabilistic primality tests, such as the

Miller-Rabin strong pseudo prime test. Repeat this

procedure (i.e. go on incrementing 2 to the odd numbers)

till the numbers are found to be prime with probability

above a sufficient threshold. This will probably distort

the last 1-2 digits of J1 and K1, which may be

appropriately taken care of in the header of the image file,

or may be left as they are if minor errors in the output

image are tolerable.

5. J1 and K1 thus formed are the two large prime

numbers required in the RSA cryptosystem.

6. The key is then formed by multiplying J1 and K1

(called as N1). N1 has a maximum of and approximately

equal to b1+b2 number of bits and hence the RSA

system is equivalent to a (b1+b2)-RSA cryptosystem.

7. The w-bit key mentioned in step 1 is randomly

padded as per the RSA specifications. (Ensuring that

w+p < (b1+b2), where p is the number of bits padded.)

8. The value of the Euler’s totient function Φ, small

exponent e and the modular multiplicative inverse of e,

called as d, are then calculated. The same values of Φ, e

and d are made available to the receiver by the following

process:

9. The receiver can calculate the value of Φ, since the

value of J1 and K1 is known. Then among the infinite set

of possible values for e, the nth value is chosen, with the

value of n being communicated to the receiver, possibly

in the header of the image file. Also, since the value of d

is given by the following equation:

e × d -1 = n × Φ (1)

where n is any integer.

The value of d may be calculated by the receiver by

knowing the value of n, which, similar to e, is a fairly

small value and may be communicated to the receiver in

the header of the file.

10. The key of length w+p bits is then encrypted using

the RSA encryption formula:

C = (w+p)e mod (N1) (2)

11. Each digit of J2 and K2 is transmitted as a pair

(J2,K2) of 8 bits (4 bits for each of the two elements in

the pair.)

12. The actual image data is transmitted in the

following format:

Fig.4. Actual Image Data

1 – N1

2 - (J2, K2)

3 – RSA encrypted scrambling key

4 – Actual DCT block data as per the format (encoded

prior to scrambling)

13. The secret image key for the entire image, which is

transmitted securely and separately, consists of the

following values:

1 2

Fig.5. Secret Image Key

1– Value of (b1+b2), nominally 24 bits

2 – Binary representation of J1

B. Decoding Process

1. The value of J1 is extracted from the image data

since the number of bits it occupies is known from the

secret key (b1+b2).
2. Since the value of the public key N1 is known from

the actual image data, the value of K1 is easily calculated

from N1 and J1 (which is known from the secret key) and

thus, the two large prime numbers are made available at

the receiver.

3. The values of e and d are calculated as described in

step 8 in the encoding section.

4. The scrambling key of w+p bits used to scramble

the blocks is then calculated by applying the RSA

decrypting formula:

w + p = Cd mod (N1) (3)

5. After the original key of w bits is recovered (after

discarding the padding p), the blocks are rearranged in

the original order.

6. Since J1 and K1 (i.e. the values of L1 and L2 for all

1024 blocks) are known, the DCT block data is decoded

and the image is recovered.

V. EXAMPLE

The algorithm described above is illustrated using a

typical example.

A. Encoding Example

1. The blocks are scrambled using a 1024-bit long

scrambling key using any of the scrambling algorithm

described in literature.

68 A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

2. The values of L1 and L2 are arranged as an integer of

1024 decimal digits, each digit corresponding to one

16x16 block. Let them be called J and K respectively.

3. J and K are divided into 2 parts, J1 & J2 and K1 and

K2 respectively, with J1 and K1 having d=170 decimal

digits and thus each having approximately 570 bits.

(b1=b2=570)

4. J1 and K1 are rounded to the nearest prime numbers

as discussed in (4) in the encoding section.

5. The RSA key N1 is obtained by multiplying J1 and

K1. Hence N1 has approximately (and a maximum of)

b1+b2=1400 bits. Hence the system is equivalent to

RSA-1400 or RSA with a key length of 1400 bits.

6. The 1024 scrambling key is padded as per the

OAEP padding scheme.

7. The values of e and d are calculated as per (8) in the

encoding section and the appropriate values are

mentioned in the header section (so that the receiver can

obtain the same value of e and d.)

8. The scrambling key is encrypted according to the

RSA encrypting formula as in (10) in the encoding

section. The encrypted value is 1400 bits in length.

9. Each pair of digits of J2 and K2 (J2 and K2 have

(2048-170)/2= 939 digits pairs) is transmitted as a pair

(J2,K2) of 8 bits (4 bits for each of the two pairs in

(J2,K2)) Hence total number of bits required is:

939 x 2 x 4 = 7512 bits

1 2 3 4

 1400 bits 7512 bits

Fig.6. Transmitted Image Data

1 – N1

2 - (J2, K2)

3 – RSA encrypted scrambling key

4 – Actual DCT block data as per the format (encoded

prior to scrambling)

1 2

 24 bits 570 bits

Fig.7. Secret Image Key

1– Value of (b1+b2) = 1400

2– Binary representation of J1

B. Decoding Example

1. The first 1400 bits are extracted from the transmitted

image data. This is the value of N1.

2. The remaining bits are extracted from the secret

image key. This is the value of J1.

3. K1 is calculated from N1 and J1 as K1=N1/J1.

4. The values of J2 and K2 are extracted from the

transmitted image data. J2 is appended to J1 and K2 is

appended to K1. In this way, J and K are formed and thus

values of L1 and L2 are recovered for each block.

4. The values of e and d are calculated as described in

(8) in the encoding section.

5. The scrambling key of 1024 bits used to scramble

the blocks is then calculated by applying the RSA

decrypting formula as in (4) of the decoding section.

6. This key is then used to rearrange the 1024 DCT

blocks (i.e. reverse the scrambling.)

7. By using the values of L1 and L2 and the actual DCT

block data (in the transmitted image data), the DCT

blocks are reconstituted and the image is thus

successfully obtained.

VI. SECURITY ANALYSIS

In this section, the resistance of the algorithm to brute

force attacks is investigated. It is shown that the

algorithm is extremely secure and that it is impractical

for any attacker to brute force the algorithm.

A. Resistance to Brute Force Attack

Any attacker employing brute force has two choices:

1. To attack the RSA algorithm itself: Note that this is

almost impossible, since the attacker employing a brute

force attack is unaware of the actual length of the RSA

key itself. Hence the attacker will have to take a guess at

a particular key length, and then go on incrementing the

key till the right key length is found. Hence, the

algorithm is at best several times more secure than and at

least as secure as, RSA algorithm of key length (b1+b2),

if this line of attack is used.

2. The second line of attack is to step through the key

space of length w and for each key, iterating through the

possible combinations of L1 and L2. Hence the maximum

number of such trials required would be:

(w)! × (136)1024
 (4)

Since there are 136 possible combinations of L1 and L2

for a 16x16 matrix.

VII. ALGORITHM VARIANT 2

In this section, a slight variant of the above described

encryption algorithm will be presented. In this section it

will be shown that this variant is faster but expands the

resultant file (or the bit stream) slightly. Hence, selecting

one of the two algorithm variants involves a trade-off

between execution speed and the final size of the

encrypted image.

In this variation of the algorithm described above, two

completely random prime numbers, P1 and P2, of bit-

length b1 and b2, are chosen and are multiplied together

to obtain N, the RSA key, of maximum bit length

(b1+b2). J and K are not split and are transmitted in full.

 A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm 69

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

1 2 3 4

Fig.8. Transmitted Image Data For Variant 2

1 – N

2 - (J, K)

3 – RSA encrypted scrambling key

4 – Actual DCT block data as per the format (encoded

prior to scrambling)

The secret image key consists of the bit length of N

and one of the prime numbers, P1.

1 2

Fig.9. Secret Image Key For Variant 2

1 – Value of (b1+b2) i.e. bit length of N

2 – Binary representation of P1

Note that this variant is faster than the first variant

since the primality testing of (4) in the encoding of the

first variant is now avoided. Also, there is no need to

distort the last few digits of J1 and K1 in order to convert

them to prime numbers.

However, this variant expands the bit stream size

slightly, since N and the pair (J, K) are independent and

need to be transmitted individually in full.

VIII. ALGORITHM SCALABILITY

In addition to the high security, the proposed algorithm

is also scalable. The algorithm allows key lengths of

varying sizes; hence, the user may increase the length of

the security key to increase the security of the algorithm.

This increased security comes at the cost of increased

time of execution and expanded file size.

A. Variant 1:

The algorithm could be made more secure (or possibly,

less so) by changing the length of the scrambling key w

used to scramble the DCT blocks; more the key length,

more the key space to step through in the formula (1)

above and hence more secure the algorithm. Note that the

length of the RSA key N1 (by increasing the length of J1

and K1) in the actual image data and the value of J1 in

the secret image key would also need to be increased

proportionally since

w + p < (b1+b2)

where b1 is the number of bits in J1, b2 is the number of

bits in K1 and hence (b1+b2) is the maximum and

approximate number of bits in N1. However, the values

of J2 and K2 are then proportionally decreased, with the

effect that the file size is not significantly affected and

remains almost the same, even if the algorithm is scaled.

(However, the image key size is increased.)

The execution time of the algorithm will be increased

with increased security, since the primality tests

explained in (4) will now have to be carried out for larger

values of J1 and K1.

B. Variant 2:

Increasing the length of the scrambling key w will

necessitate the increase in the length of the RSA key N

(and hence increase in the values of P1 and P2) because

of formula (2). Hence, the image file size is increased

proportionally, since, unlike in variant 1, the number of

pairs (J, K) do not decrease as N is increased.

However, the execution time of the variant 2 remains

almost the same, since P1 and P2 are chosen at random,

and there is no need to carry out primality tests, which

are time-consuming.

Therefore it can be concluded that, as the security of

the algorithm is increased, variant 1 increases the

execution time slightly but maintains almost the same bit

stream(or file) size, whereas variant 2 increases the bit

stream(or file) size slightly, while maintaining almost the

same execution time. Hence, the choice between variant

1 and variant 2 may be considered to be essentially a time

vs. space tradeoff

IX. RESISTANCE TO SKETCH ATTACKS

It was shown by [1] that most of the (format-compliant)

JPEG encryption algorithms are leaky and susceptible to

the so-called ‘sketch’ attacks, in which the number of

non-zero AC coefficients are thresholded—if the number

of AC coefficients in a particular block is above a

particular threshold, then a 1 written to a bitmap at the

position of the block, otherwise a 0 is written. In this way,

it is possible to obtain a scaled down binary ‘sketch’

(outline) or a silhouette of the image, which may be

satisfactory for some intruders. Most of the JPEG

encryption algorithms rely on scrambling the sign of the

AC coefficients by XORing them with a random bit

stream, or scrambling the elements of the blocks

themselves. For the sketch attack to be successful, the

intruder must be aware of the number of elements in each

block. However, in this algorithm, since this information

is part of the encrypted data, it is not possible for the

intruder to apply this method and cause the encrypted

image to ‘leak’ data.

X. RESULTS

1. In this section, the effect of the algorithm on the

final length of the bit stream is reported. The parameters

are as mentioned in the encoding example section. The

quality factor is set at 50.

2. The quantization matrix for the 16x16 blocks used

in the algorithm is obtained by expanding each element

of the original 8x8 quantization matrix, as recommended

for quality factor of 50, into a 2x2 matrix.

3. The size reported is for the entire image, including

the two chroma components (subsampled at 4:2:0), with

each chroma component having the length of the

70 A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

scrambling key and N1 as 300 bits. (i.e. security at least

equal to RSA-300.)

4. The size of the encrypted image is excluding the

secret image key, which must be transmitted separately.

Test Image Set:

(a) (b) (c)

(d) (e) (f)

(g)

Fig.10. Test Image Set (A) Lena (B) Peppers (C) Fruits (D) Baboon (E)

Sailboat (F) Aeroplane (G) Macaw

A. Algorithm Variant 1

Table.3 Results For Algorithm Variant 1

Sr

No
Image

Unencrypted

JPEG file

size

Encrypted

file size

(excluding

the secret

key)

Percent

increase

in file

size

1
Lena (512

x 512)
24.450 24.331 -0.4867

2

Peppers

(512 x
512)

25.540 28.283 10.740

3
Fruits (512

x 512)
24.410 26.681 9.303

4

Baboon

(512 x
512)

49.485 49.577 0.1859

5

Sailboat

(512 x

512)

33.355 36.880 10.568

6
Aero plane

(512 x

512)

25.180 26.809 6.4694

7
Macaw
(512 x

512)

19.654 20.615 4.8895

B. Algorithm Variant 2

Table.4. Results For Algorithm Variant 2

Sr

No
Image

Unencry

pted

JPEG

file size

Encrypted

file size

(excluding

the secret

key)

Percent

increase in file

size

1

Lena

(512 x
512)

24.450 24.461 0.0449

2

Pepper

s (512
x 512)

25.540 28.413 11.2490

3

Fruits

(512 x
512)

24.410 26.411 8.1974

4

Baboo

n (512

x 512)

49.485 49.707 0.4486

5

Sailbo

at (512

x 512)

33.355 37.010 10.9578

6

Aeropl
ane

(512 x

512)

25.180 26.939 6.9857

7

Maca

w (512

x 512)

19.654 20.745 5.5510

As can be seen from the result table, both the

algorithms expand the bit stream size (variant 2 more so).

However, this slight expansion is justified by the

scalability and the high security provided by the

algorithm.

XI. CONCLUSION

A RSA-based non-format compliant JPEG encryption

algorithm along with the alternate entropy coding scheme

(as opposed to the zigzag scheme used in JPEG) used in

the algorithm was described in the paper. A variant of the

algorithm was also presented. The described algorithms

gives high security and expand the bit stream only

incrementally. Moreover, the algorithms are scalable,

which is an additional advantage of the algorithm.

REFERENCES

[1] Weihai Li, Yuan Yuan, ‘A leak and its remedy in JPEG

image encryption’, International Journal of Computer

Mathematics, Volume 84, Issue 9, 2007.

[2] M. Takayama, K. Tanaka, K. Takagi, Y. Nakajima, ‘A

scalable video scrambling method in MPEG compressed

domain’, International Symposium on Communications,

Control and Signal Processing, 2008.

http://www.tandfonline.com/loi/gcom20?open=84#vol_84
http://www.tandfonline.com/toc/gcom20/84/9

 A Non-format Compliant Scalable RSA-based JPEG Encryption Algorithm 71

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 64-71

[3] S. Yong, K. Yong, X. Qi, K. Tanaka, ‘Beyond format

compliant encryption for JPEG images’, Signal Processing:

Image Communication, Volume 31, February 2015, Pages

47–60.

[4] S. Auer, A. Bliem, D. Engel, A. Uhl, A. Unterweger,

‘Bitstream-Based JPEG Encryption in Real-time’,

International Journal of Digital Crime and Forensics, 5(3),

1-14, July-September 2013.

[5] X. Niu, C. Zhou, J. Ding, B.Yang, ‘JPEG Encryption with

File Size Preservation’, IIHMSP '08 International

Conference on Intelligent Information Hiding and

Multimedia Signal Processing, 2008, pp. 308 – 311.

[6] Shiyu Ji, Xiaojun Tong, Miao Zhang, ‘Image encryption

schemes for JPEG and GIF formats based on 3D baker

with compound chaotic sequence generator’, School of

computer science and Technology, Harbin Institute of

Technology, Weihai, 264209, China.

[7] D. Zhang, F. Zhang, ‘Chaotic encryption and decryption

of JPEG image’, Optik - International Journal for Light

and Electron Optics, Volume 125, Issue 2, January 2014,

Pages 717–720.

[8] Y. Luo, M. Du, D. Liu, ‘JPEG Image Encryption

Algorithm Based on Spatiotemporal Chaos’, 2012 Fifth

International Workshop on Chaos-Fractals Theories and

Applications (IWCFTA), 18-21 Oct. 2012 pp 191 – 195.

[9] B. K. ShreyamshaKumar, Chidamber R. Patil, ‘JPEG

image encryption using fuzzy PN sequences’, Signal,

Image and Video Processing, November 2010, Volume

4, Issue 4, pp 419-427.

[10] A. Unterweger, A. Uhl, ‘Length-preserving bit-stream-

based JPEG encryption’, MM&Sec '12 Proceedings of the

on Multimedia and security, pp 85-90.

[11] C. Kailasanathan, R. Safavi-Naini, P. Ogunbona,

‘Compression performance of JPEG encryption scheme’,

14th International Conference on Digital Signal

Processing, 1-3 July 2002, Vol 2, pp. 1329-1332.

[12] Kazuki Minemuraa, Zahra Moayeda, KokSheik Wonga,

Xiaojun Qib, Kiyoshi Tanakac, ‘JPEG image scrambling

without expansion in bitstream size’, 2012 19th IEEE

International Conference on Image Processing (ICIP), pp

261-264.

[13] V. Suresh and C.E. Veni Madhavan, ‘Image Encryption

with Space-filling Curves’, Defence Science Journal, Vol.

62, No. 1, January 2012, pp. 46-50.

[14] Shiguo Lian, Jinsheng Sun, Zhiquan Wang, ‘A novel

image encryption scheme based-on JPEG encoding’,

Eighth International Conference on Information

Visualisation, 2004. IV 2004. Proceedings, pp 217-220.

Authors’ Profiles

Aniruddha Phatak is a graduate in

Electronics and Telecommunication

Engineering from the University of

Pune. Currently, he is working as a

research intern at the Centre of

Excellence in Signal and Image

Processing at the College of

Engineering Pune, and plans to pursue

further research opportunities in signal and image

processing in the United States. His research interests

include digital signal, image and video processing,

cryptography and information theory.

How to cite this paper: Aniruddha G. Phatak,"A Non-format Compliant Scalable RSA-based JPEG Encryption

Algorithm", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.8, No.6, pp.64-71, 2016.DOI:

10.5815/ijigsp.2016.06.08

http://www.sciencedirect.com/science/journal/09235965
http://www.sciencedirect.com/science/journal/09235965
http://www.sciencedirect.com/science/journal/09235965/31/supp/C
http://www.sciencedirect.com/science/journal/00304026
http://www.sciencedirect.com/science/journal/00304026
http://www.sciencedirect.com/science/journal/00304026/125/2
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6380711
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6380711
http://link.springer.com/search?facet-creator=%22B.+K.+ShreyamshaKumar%22
http://link.springer.com/search?facet-creator=%22Chidamber+R.+Patil%22
http://link.springer.com/journal/11760
http://link.springer.com/journal/11760
http://link.springer.com/journal/11760/4/4/page/1
http://www.mmsec12.com/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6451323
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6451323
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shiguo%20Lian.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jinsheng%20Sun.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhiquan%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9225
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9225

