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ABSTRACT

A deterministic square root ensemble Kalman filter and a stochastic perturbed observation ensemble

Kalman filter are used for data assimilation in both linear and nonlinear single variable dynamical systems.

For the linear system, the deterministic filter is simply a method for computing the Kalman filter and is

optimal while the stochastic filter has suboptimal performance due to sampling error. For the nonlinear

system, the deterministic filter has increasing error as ensemble size increases because all ensemble members

but one become tightly clustered. In this case, the stochastic filter performs better for sufficiently large en-

sembles. A new method for computing ensemble increments in observation space is proposed that does not

suffer from the pathological behavior of the deterministic filter while avoiding much of the sampling error of

the stochastic filter. This filter uses the order statistics of the prior observation space ensemble to create an

approximate continuous prior probability distribution in a fashion analogous to the use of rank histograms for

ensemble forecast evaluation. This rank histogram filter can represent non-Gaussian observation space priors

and posteriors and is shown to be competitive with existing filters for problems as large as global numerical

weather prediction. The ability to represent non-Gaussian distributions is useful for a variety of applications

such as convective-scale assimilation and assimilation of bounded quantities such as relative humidity.

1. Introduction

Many Monte Carlo methods for geophysical data as-

similation and prediction have been developed. The

most general methods are particle filters that can rep-

resent arbitrary analysis probability distributions (Van

Leeuwen 2003). However, the number of particles re-

quired increases very rapidly as the size of the predic-

tion model increases. At present, no variant of a particle

filter that is practical for large geophysical models is

known (Snyder et al. 2008).

Ensemble Kalman filter methods are not as general as

particle filters but practical variants exist that work for

very large problems like operational numerical weather

prediction (Houtekamer and Mitchell 2005; Whitaker

et al. 2008; Szunyogh et al. 2008). Ensemblemethods use

a set of model states to compute sample estimates of the

variance and covariance of model state variables and

observations. Ensemble methods that have been suc-

cessfully applied to large geophysical problems share

three simplifying assumptions. First, estimates of the prob-

ability distribution of an observation are approximated

by a Gaussian during the assimilation. Second, the like-

lihood function for the observation is specified as a

Gaussian. Third, the relation between the observation

and all unobserved model state variables is approxi-

mated with a least squares fit.

Althoughmany variants have been proposed, ensemble

Kalman filters that work with large models can be cate-

gorized as either deterministic or stochastic. The time

evolution of deterministic ensemble Kalman filters de-

pends only on the initial ensemble and the observations.

Deterministic methods like the ensemble adjustment

Kalman filter (EAKF; Anderson 2001) studied here

are simply algorithms for computing the Kalman filter

(Kalman 1960; Kalman and Bucy 1961) solution if the

prediction model is linear, observations are a linear func-

tion of the state variables, and the observation likeli-

hood is Gaussian. Stochastic filters make use of a random

number generator when assimilating each observation.

Stochastic filters like the ensemble Kalman filter (EnKF;

Evensen 1994; Burgers et al. 1998) studied here approx-

imate the solution to the Kalman filter, but include
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sampling error that is expected to decrease as ensemble

size increases.

TheKalman filter is generally not the optimal solution

to the data assimilation problem when the forecast

model is not linear. Nevertheless, both the EnKF and

EAKF produce successful analyses when applied in at-

mospheric general circulation models that are non-

linear. There have been several studies of how the

different types of filters perform with nonlinear models

(Lawson and Hansen 2004; Leeuwenburgh et al. 2005;

Sakov and Oke 2008a,b; Sun et al. 2009; Mitchell and

Houtekamer 2009). In fact, even a single variable model

with a quadratic nonlinearity can prove challenging to

ensemble filtering methods. Cycling of the nonlinear

model with periodic assimilation can lead to prior en-

semble distributions that are highly non-Gaussian. As-

suming Gaussianity when assimilating an observation

can result in poor filter performance. Ensemble filters

also can have difficulty when assimilating observations

that are not expected to have Gaussian distributions.

The most obvious examples are observations of bounded

quantities like precipitation, tracer concentration, or cloud

fraction where Gaussianity is obviously inappropriate.

Observation likelihood functions for instruments must

also be approximated by Gaussians. For instance, in-

struments with skewed error distributions like some

radiometers can be problematic.

An ensemble filter method that can represent arbi-

trary prior and posterior observation distributions and

observation likelihoods is developed here. It is first

shown to greatly reduce problems caused by weakly

nonlinear forecast models that generate significantly

skewed prior distributions. It is also shown to be com-

petitive with both deterministic and stochastic ensemble

filters for practical ensemble sizes in large numerical

weather prediction applications. Section 2 describes the

most common deterministic and stochastic ensemble

Kalman filter algorithms in aBayesian context. Section 3

illustrates the difficulties that occur when these ensem-

ble filters are applied to problems with a nonlinear fore-

cast model. Section 4 presents the new ensemble filter

update algorithm, the rank histogram filter (RHF). Com-

parisons of the new filter with the deterministic and sto-

chastic ensemble Kalman filters for both simple and

complex models are presented in section 5 with con-

clusions presented in section 6.

2. Ensemble filters

Ensemble Kalman filter algorithms have two parts.

First, a prediction model is applied to each member of a

posterior ensemble at time t1 to produce a prior ensemble

at some later time t2. Second, an update algorithm is used

to fuse observations available at t2 with the prior en-

semble to produce a posterior ensemble at t2. Only al-

gorithms for the second part are examined in detail here.

Observational error distributions for each observation

are assumed to be independent here so that the obser-

vations can be assimilated sequentially (Houtekamer and

Mitchell 2001). Update algorithms are described for a

single scalar observation without loss of generality. If

observational error distributions for observations avail-

able at the same time are Gaussian but not independent,

the update problem can be rotated to a space in which the

error covariance matrix is diagonal and a scalar update

algorithm can be applied (Anderson 2003). If the obser-

vational error distribution for observations available at

the same time is not Gaussian and the observational er-

rors are not independent, the update algorithms pre-

sented here are not sufficiently general. These algorithms

are also insufficient to assimilate observations available at

different times that have dependent observational error

distributions (Evensen 2003).

It is also assumed that each observation is related to

themodel state variables such that linear regression is an

accurate approximation of the relationship. It follows that

the impact of an observation on each scalar state variable

can be computed independently (Anderson 2003). Given

these assumptions, an update algorithm consists of three

steps. First, a prior ensemble estimate of the scalar ob-

servation y is computed by applying a forward observa-

tion operator h to each of theN prior ensemble estimates

of the model state vector:

ypn 5 h(x
n
), n5 1, . . . ,N, (1)

where the superscript p indicates a prior.

Second, the observed value yo and the observational

error variance so
2 are used to compute incrementsDyn for

each prior ensemble estimate in (1). This report explores

several variants for computing Dyn in the second step of

the update algorithm; the rest of the steps remain un-

changed. In the EAKF algorithm described in section 2a,

the ensemble mean of the Dyn is the standard Kalman

filter update increment at the measurement location.

Third, increments for each component of the prior

state vector are computed by linear regression of the

observation increments using the prior joint sample of

the state variables and the observed variable:

Dx
m,n

5 (sp,m/s
2
p)Dyn, m5 1, . . . ,M, n5 1, . . . ,N,

(2)

where sp,m is the prior sample covariance of the ob-

served variable and themth element of the state vector,
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sp
2 is the prior sample variance of the observed variable

and M is the size of the model state vector.

Several ensemble Kalman filter update algorithms are

described in the geophysics literature. They are commonly

described in terms of linear algebra using a Kalman

gain (Houtekamer and Mitchell 1998), but can also be

presented in the Bayesian context described above

(Anderson 2003). These algorithms can be divided into

two classes: stochastic perturbed observation filters and

deterministic square root filters. Perturbed observation

filters (Burgers et al. 1998; Pham 2001) are commonly

referred to as EnKFs. Several variants of deterministic

square root ensemble Kalman filters appear in the lit-

erature (Anderson 2001; Bishop et al. 2001; Whitaker

and Hamill 2002; Tippett et al. 2003). The ensemble

adjustment Kalman filter is used here but the behavior

described is generic. The relative performance of the

perturbed observation and deterministic filter algorithms

is application dependent (Thomas et al. 2009).All of these

algorithms assume that the observational error variance

is Gaussian so that the observational likelihood is Nor-

mal(yo, so
2).

a. Ensemble adjustment Kalman filter update

algorithm

The EAKF update first computes the ensemble mean

y
p
and variance sp

2 of the prior observation ensemble

and approximates the prior with Normal( y
p
,s2

p). The

product of this prior Gaussian with the observational

likelihood Gaussian is a continuous posterior that is

a constant times Normal( y
u
,s2

u). The prior ensemble is

then compressed [first term in (3)] and translated [last

two terms in (3)] to give an updated ensemble with

sample mean y
u
and variance su

2. The resulting in-

crements for the observation ensemble are

Dy
n
5 (yp

n � y
p
)(s

u
/s

p
)1 y

u
� ypn, n5 1, . . . ,N. (3)

For a linear prediction model, linear forward obser-

vation operators, and normally distributed observa-

tional error distributions, the EAKF is an exact method

for computing the standard Kalman filter (KF) for all

ensemble sizes N . Dmax. The KF represents the prior

and posterior distributions at each time as Gaussians.

The Dmax is the largest number of nonzero singular

values in a singular value decomposition of the prior and

posterior covariance matrices from the KF application.

If an N-member ensemble with N . Dmax has prior

sample mean x
t
and covariance matrix St at time t and

a KF at time t has prior distribution Normal(x
t
,S

t
) then

the EAKF sample mean and covariance will be identical

to the KF mean and covariance at all subsequent times

(Anderson 2009a).

If N # Dmax, the EAKF sample covariance is rank

deficient and no longer duplicates the KF results. If the

linear prediction model operator has any eigenvalues

greater than 1 then the EAKF estimate of the mean

will diverge from the KF solution. For geophysical prob-

lems, it is usually not computationally affordable to have

N . Dmax. To avoid filter divergence, localization

(Houtekamer and Mitchell 2001; Hamill et al. 2001) can

be applied to allow small ensembles to work for large

problems. Errors associated with using localization for

small ensembles increase as the ensemble size decreases,

but there is no general analytic characterization of this

sampling error.

b. Perturbed observation EnKF update algorithm

The EnKF (Burgers et al. 1998) update also computes

the mean y
p
and variance sp

2 of the prior observation

ensemble. An N-member random sample of the obser-

vational error distribution is generated

ŷon 5 yo 1 «
n
, n5 1, . . . ,N, (4)

where «n is drawn from Normal(0, so
2). The mean of this

sample is replaced by the observed value yo giving an

ensemble with elements:

yon 5 ŷon ��
N

n51
ŷon/N1 yo. (5)

The nth updated ensemble member is the mean of the

product of Normal(yn
p, sp

2) and Normal(yn
o, so

2) so that

y
u,n

5s
2
u( yp/s

2
p 1 yon/s

2
o), (6)

where

s
2
u 5 [(s2

p)
�1

1 (s2
o)

�1]�1. (7)

Observation increments are computed as Dyn 5

yu,n 2 yp,n.

Unlike the EAKF, the EnKF is a Monte Carlo ap-

proximation of the KF if N . Dmax and the sampling

error in estimates of the ensemble variance is expected

to be proportional to N20.5. Like the EAKF, the EnKF

becomes degenerate when N # Dmax and in this case

filter divergence is likely for geophysical applications

without the use of localization.

The EnKF algorithm applied here also pairs the sorted

observation prior and sorted observation posterior en-

semble members when computing observation incre-

ments to minimize the expected value of the increments.

Let Zk
p and Zk

u be the kth-order statistics of the prior and
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updated observed ensemble, respectively. The order

statistics of the increments are DZk 5 Zk
u
2 Zk

p. The

values of the updated ensemblemembers are unchanged,

but prior and updated members are paired so that the

expected value of the increment is minimized. In a linear

Gaussian system, sorting the increments like this does not

change the answers produced by the EnKF. However, if

the EnKF is applied to a nonlinear system, sorting re-

duces the expected errors from assuming a linear relation

when regressing the observation increments onto state

variable increments (Anderson 2003, section 4c). The ex-

pected value of this regression error increases as the en-

semble size decreases. Without this algorithm the EnKF

would be seriously handicapped for the nonlinear ap-

plications in the next sections.

3. Application to single variable system

The EAKF and EnKF are applied to the prediction

model:

x
t11

5 x
t
1 0.05( x

t
1ajx

t
jx

t
), (8)

where x is a scalar, the subscript indexes time, and a is

a constant. A perfect model assimilation experiment is

performed with the truth assumed to be 0 at all times.

This is the same as a situation where (8) represents the

evolution of the state linearized around an arbitrary

time-varying trajectory. The true state is observed once

every time step with unit error variance so that obser-

vations are drawn from Normal(0, 1). Observations are

generated for 51 000 time steps. An initial ensemble

for x is drawn from Normal(0, 1). The first 1000 assim-

ilation steps are discarded to avoid any initial transient

behavior.

a. Linear system

When a 5 0 in (8) the system is linear and the distri-

bution of the prior ensemble around its ensemble mean

at time t2 is a linear expansion of the distribution of the

posterior at time t1 around its mean. The KF is the op-

timal solution for this problem and the EAKF solution is

identical to the KF solution for any ensemble sizeN. 1.

Figure 1 shows the time-mean value of the absolute

value of the ensemble mean as a function of ensemble

size forN5 10, 20, 40, 80, 160, 320, and 640. The EAKF

time-mean root-mean-square error (RMSE) is indepen-

dent of ensemble size and is slightly less than 0.31. The

time-mean RMSE for the EnKF is a decreasing function

of ensemble size; for 640 ensemble members it has de-

creased to about 0.315.

For all ensemble sizes, the sample variance for the

EAKF converges to the same value as for the KF and is

constant in time after fewer than 100 time steps (with

the 64-bit reals used in the computation). All higher-

order moments of the EAKF are also constant in time

after the transient spinup, but their values depend on the

details of the initial ensemble. The sample variance and all

other moments of the EnKF vary in time with the amount

of variation decreasing as ensemble size increases.

b. Nonlinear systems

When a . 0 in the model in (8) an extra nonlinear

growth in time is added to the linear expansion of the

ensemble around its mean. The prior and posterior dis-

tributions for x are no longer Gaussian (Reichle et al.

2002) and the Kalman filter is no longer optimal. Figure 2

shows the time-mean RMSE for the EnKF and EAKF as

a function of ensemble size for the case with a5 0.2. The

EnKF RMSE decreases with increasing ensemble size

and has a value less than 0.33 forN5 640. TheEAKFhas

time-mean RMSE of about 0.33 for N 5 10, but the

RMSE increases with increasing ensemble size to about

0.46 for N 5 640. Similar problems for deterministic fil-

ters in nonlinear systems are documented in Sakov and

Oke (2008b) and Mitchell and Houtekamer (2009, see

their Fig. 4).

The initial evolution of anN5 20 EAKF for a5 0.8 is

shown in Fig. 3. The same behavior can be seen for a 5

0.2, but the increased nonlinearity in Fig. 3 accentuates

the problem. The smallest ensemble member is farthest

from the ensemble mean at the initial time. The other 19

ensemble members collapse to a single value during the

first 250 assimilation steps, while the smallest member

remains distinct and moves away from the rest. This

FIG. 1. Time-mean prior RMSE of the ensemble mean for the

linear single variable model as a function of ensemble size. Results

are shown for the ensemble adjustment Kalman filter (thin dashed

line), perturbed observation ensemble Kalman filter (solid line),

and the rank histogram filter (thick dashed line).
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behavior can be understood by comparing the EAKF

update step and the model advance. In the update, en-

semble members are linearly compacted around the

ensemble mean. In the advance, members farther from

the mean are moved out quadratically with the most

remote member being moved out the most. To keep the

ensemble variance constrained, the update uses a linear

compaction that is sufficient to constrain the outermost

ensemble member, but this compaction is larger than

required for the other members. The result is thatN2 1

ensemble members eventually collapse to a single value

and one member remains distinct. As N increases, the

expected distance between the outlier and the cluster

must increase in order to maintain approximately the

correct sample variance.

The sample kurtosis:

k5

�
N

n51
(x

n
� x)4

(N � 1)s 4
, (9)

where x is the ensemble mean and s
2 is the sample

variance is a statistic that is especially sensitive to the

presence of outliers (Lawson and Hansen 2004). For the

a5 0.2 case, the time-mean kurtosis for the EAKF is an

increasing function of ensemble size and ranges from 8

for N 5 10 to 98 for N 5 640. Figure 4 plots the time-

mean and maximum kurtosis of the ensemble for the

EnKF as a function of ensemble size. The mean value

increases relatively slowlywhile themaximum value does

not demonstrate an obvious trend with values around

8 for all ensemble sizes.

Figure 5 shows the initial evolution of an N 5 20

EnKF for a5 0.8 for comparison with Fig. 3. The EnKF

does not suffer from the obvious degenerate behavior of

the EAKF, but it does have frequent instances where

one ensemble member has become an outlier due to the

nonlinear dynamics of the model advance. For instance,

around t5 60 one ensemble member has a much smaller

value than the rest and the kurtosis is close to 10. Al-

though there is no analytic answer available for this

nonlinear problem, the fact that the kurtosis is much

larger than the value of 3 expected for a Gaussian dis-

tribution is some indication that the EnKF outlier is too

extreme. Further evidence is presented in later sections.

The outlier behavior does not persist in time for the

EnKF because the update algorithm adds random noise

to the ensemble members, essentially mixing them at

each assimilation step.

4. A non-Gaussian filter update for nonlinear

systems

A deterministic filter update designed to work ap-

propriately with non-Gaussian likelihoods and priors is

described here. It avoids the EnKF sampling error and

the EAKF outlier problems and is able to handle high-

kurtosis priors like those seen in Fig. 3.

A viable ensemble update algorithm for geophysical

applications must satisfy the following constraints. First,

increments should be as small as possible in order to

minimize errors from assuming linearity when comput-

ing state variable increments. Second, the algorithm

should work nearly as well as the EAKF for problems

that are Gaussian. Third, it should outperform the EAKF

and EnKF for cases that are significantly non-Gaussian.

FIG. 2. As in Fig. 1, but for the nonlinear single variable model with

nonlinearity parameter a 5 0.2. FIG. 3. Initial evolution of 20 ensemble members (light solid

lines), the ensemble mean (dark solid line), and the truth (dashed

line, constant value of 0) for an ensemble adjustment Kalman filter

applied to the single variable model with the nonlinearity param-

eter a 5 0.8.
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Finally, it should not be prohibitively costly for large

problems.

An ensemble sample of the prior and some continuous

(usually Gaussian) representation of the likelihood are

the inputs to an ensemble filter update algorithm. The

outputmust be an ensemble representation of the updated

distribution. One way to proceed is to compute a contin-

uous approximation to the ensemble prior and multiply it

by the likelihood to get a continuous posterior fromwhich

a posterior ensemble is constructed. For example, the

EAKF approximates the prior with a Gaussian. In the

kernel filters described inAnderson andAnderson (1999),

the prior is represented as a sum of N Gaussians. The

kernel filter satisfies the second and third criteria for a fil-

ter listed above, but not the first and it is computationally

expensive.

Figure 6 is a schematic of how a continuous prior

(shaded in the figure) is constructed from the ensemble in

the filter update developed here. The ensemble members

are assumed to partition the real line into N 1 1 regions

each of which contains 1/(N1 1) of the probability. This

is the assumption made in using the rank histogram

(Anderson 1996; Hamill 2001) for verification of ensem-

ble predictions, so the method is referred to as a RHF

here. The continuous prior probability density function is

assumed to be constant in regions bounded on both sides

by an ensemble member. The probability density in the

unbounded regions on the tails of the ensemble is rep-

resented by a portion of a Gaussian distribution. If the

smallest ensemble member is Z1, then the probability

density for x, Z1 is Normal(m, sp
2), where sp

2 is the prior

ensemble sample variance and m is selected so that the

cumulative density atZ1 is 1/(N1 1). The density for x.

ZN is approximated analogously. Other representations

of the density in the unbounded regions are possible and

can lead to differences in the behavior of the filter that are

discussed in section 6.

The RHF computes a continuous posterior distribu-

tion by taking the product of the prior and the likelihood

at each point, and then normalizing the product so that it

is a probability distribution. Given a continuous poste-

rior, the RHF computes updated ensemble members

with rank statistics Zn
u that partition the real line into

N 1 1 regions, each of which contains 1/(N 1 1) of the

posterior probability. Computing this updated ensemble

for a Gaussian likelihood is computationally intensive.

To reduce the cost of computing the updated ensem-

ble members, the continuous Gaussian likelihood can

be approximated in the interior regions by a piecewise

linear approximation as shown by the dashed line in

Fig. 7. The likelihood is unchanged in the unbounded

regions on the tails of the prior ensemble. The contin-

uous posterior distribution, shown by the thick solid

lines in Fig. 7, is piecewise linear in the interior regions

and is a weighted Gaussian in the two outer regions

(Anderson and Anderson 1999).

To find the updated ensemble members, the cumula-

tive probability of the posterior at the position of each

prior ensemble member is computed by integrating the

posterior PDF over the regions between each prior en-

semble member. The value of the cumulative posterior

density at the updated ensemble members is

C
n
5 n/(N1 1), n5 1, . . . ,N.

Finding the location of an updated ensemble member

that lies in one of the interior regions requires integrating

FIG. 4. Time-mean (thick line) and maximum (thin line) value of

ensemble kurtosis as a function of ensemble size for the single

variable model with the nonlinearity parameter a 5 0.2. Results

are plotted for the ensemble Kalman filter (solid line) and the rank

histogram filter (dashed line).

FIG. 5. As in Fig. 3, but for an assimilation with a perturbed

observation ensemble Kalman filter.
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the linear probability distribution in the region and solving

the resulting quadratic equation to find where the cumu-

lative posterior density equals Cn. Finding the location of

an updated ensemble member that lies in the unbounded

regions requires inverting the normal cumulative distri-

bution function. This can be done efficiently by using an

accurate polynomial approximation.

Figure 7 shows that the posterior ensembles for the

RHF and the EAKF are similar for this simple five-

member example. In general, for approximatelyGaussian

priors the RHF and EAKF perform similarly even for

very small ensembles and are increasingly similar as en-

semble size increases. Figure 8 illustrates the RHF con-

tinuous prior and posterior and the updated ensembles for

the RHF and EAKF for a prior ensemble with an outlier.

This prior is analogous to priors that arise during the

initial stages of the nonlinear EAKF assimilation shown

in Fig. 3. The RHF posterior eliminates the outlier since it

occurs in a region where there is very small likelihood.

The EAKF can only shift and compact the prior, so a

significant outlier remains and the other ensemble mem-

bers are shifted too far in the opposite direction. An en-

semble Kalman filter with a mean-preserving random

rotation (Sakov andOke 2008b) is anothermechanism for

removing outliers (Evensen 2009) but discards any non-

Gaussian information that might exist in the ensemble.

The key to the Kalman filter algorithm is the assump-

tion that the prior and the observation likelihood are both

Gaussian distributions. Since the RHF no longer makes

this assumption, it ismore appropriately categorized as an

ensemble filter as opposed to an ensemble Kalman filter.

5. Results

a. Single variable model

Figure 1 shows the time-mean RMSE as a function of

ensemble size for the linear model with the RHF. The

RHF undergoes filter divergence for N , 12. For larger

ensemble sizes, the RHF time-mean RMSE is within

0.001 of the exact KF value and is significantly smaller

than the EnKF RMSE, while the spread is within 0.001

of the KF value.

Figure 2 shows the RHF time-mean RMSE for the

nonlinear problem with a 5 0.2. In this case, the RHF

shows a small decrease in RMSE with increasing en-

semble size and has smaller time-meanRMSE than both

the EAKF and EnKF for all ensemble sizes. Figure 4

shows the time-mean and maximum kurtosis as a func-

tion of ensemble size for the EnKF and the RHF. The

time-mean values are similar with the EnKF being

slightly larger for all ensemble sizes except N 5 10.

However, the maximum kurtosis over 50 000 assimila-

tion steps for the RHF increases from approximately 3

to just greater than 4 as N increases from 20 to 640. The

maximum kurtosis for the EnKF is approximately 8 for

all ensemble sizes. This is additional circumstantial ev-

idence that the EnKF is producing sporadic outliers.

b. Lorenz63 model

The three-variable model of Lorenz (1963) is used as

the second in a series of increasingly complex tests of the

three ensemble filter updates. Each of the three state

variables is observed every 12th time step (with a

FIG. 6. Schematic of first phase of rank histogram filter algo-

rithm. The locations of five prior ensemble members are indicated

by large asterisks at the bottom. The continuous approximation to

the prior probability density is indicated by the four shaded boxes

and the shaded portions of Gaussians on the tails. The continuous

likelihood is the dashed line with the values at the ensemble

members marked by small asterisks.

FIG. 7. Schematic of the rank histogram filter algorithm. The

prior and posterior ensembles along with the posterior from an

ensemble adjustment Kalman filter are marked by asterisks at the

bottom. The continuous approximation to the prior probability

density is shaded. The dashed line is a piecewise linear interior

approximation to the likelihood. The continuous posterior proba-

bility distribution is the thick solid line.

FIG. 8. As in Fig. 7, but for a prior ensemble with an outlier.
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standard 0.01 nondimensional time step) with an ob-

servational error simulated by a draw from a normal

with mean 0 and variance 8. Ensemble initial conditions

are random draws from a very long free integration of

the model. A total of 101 000 assimilation steps are

performed and summary results are averaged over the

last 100 000 steps of the assimilation to eliminate the

impact of transient behavior. The prior covariance in-

flation value from the set f1, 1.01, 1.02, . . .g that mini-

mizes the time-mean ensemble-mean RMSE over the

last 100 000 assimilation steps is selected for each en-

semble size and filter type.

Model trajectories in the Lorenz63 system rotate

around two ellipsoidal lobes that are joined at one edge

with transitions between the lobes occurring sporadi-

cally. The space between the two lobes is not part of the

attractor. This attractor can lead to situations where some

members of a prior ensemble have transitioned into the

other lobe while other members do not, resulting in large

kurtosis for prior distributions.

Figure 9 shows the evolution of the x variable from an

80-member EAKF ensemble and the truth during 40

assimilation steps. There is evidence of an outlier in the

ensemble that is below the rest of the ensemble at times.

Around assimilation 2795, the truth and 79 ensemble

members transition to the upper lobe of the attractor,

but the remaining ensemble member initially starts to

return to the lower lobe. After that, this outlier becomes

detached from the rest of the ensemble and is unrelated

to the truth. Eventually, the outlier rejoins the rest of the

ensemble by chance at about assimilation step 2900 and

the assimilation begins to function properly again. The

EAKF assimilation has repeated episodes of this type of

behavior.

Figure 10 shows the time mean of the RMSE of the

prior ensemble mean for the three filters as a function of

ensemble size. The EAKF has smallest RMSE of about

1.18 forN5 10 and this increases rapidly as a function of

N. The EnKF has RMSE of about 1.3 for N 5 10,

a minimum RMSE for N 5 40, and a slight increase as

ensemble size gets larger. The RHF has RMSE of about

1.5 forN5 10 and this decreases uniformly as a function

ofN. The RHFRMSE is less than that for the ENKF for

N 5 80 and larger. Even the best results here are not

as good as those produced with the ESRF with mean-

preserving random rotation by P. Sakov (2010, personal

communication).

Figure 11 shows the time-mean and maximum kur-

tosis as a function of ensemble size for each filter. The

time-mean values for all three filters increase with in-

creasing ensemble size with the RHF being smallest, the

EnKF slightly larger, and the EAKF much larger. The

maximum kurtosis is a measure of the occurrence of

occasional large outliers. For the EAKF, the maximum

value is too large to display in the figure because of

events like that in Fig. 9. The EnKF maximum also

grows rapidly and is associated with less frequent and

less severe outlier episodes while the RHF maximum

grows to about 50 for N 5 640. This suggests that the

EnKF is subject to outlier problems, but that the mixing

from the random part of the perturbed observation al-

gorithm and the nonlinear aspects of the model dy-

namics eliminates outliers fairly quickly.

FIG. 9. A portion of the evolution of 80 ensemblemembers (light

solid lines), the ensemble mean (dark solid line), and the truth

(dashed line) for the x variable of an ensemble adjustment Kalman

filter assimilation for the Lorenz63 model.

FIG. 10. Time-mean prior RMSE of the ensemble mean for an

assimilation with the Lorenz63 model as a function of ensemble

size. Results are shown for the ensemble adjustment Kalman filter

(thin dashed line), perturbed observation ensemble Kalman filter

(solid line), and the rank histogram filter (thick dashed line).
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c. Lorenz96 model

The 40-variable configuration of the Lorenz96 model

is frequently used for evaluating geophysical ensemble

filters (Lorenz and Emanuel 1998). A truth integration

of 100 000 time steps is observed every time step. Forty

observations of the following form:

y
j
5 (x

j
1 x

j11
)/21Normal(0, 4), j5 1, . . . , 40, (10)

where j is a cyclic index are taken every time step. The

impact of observations was localized (Hamill et al. 2001)

with a Gaspari–Cohn (Gaspari and Cohn 1999) function

with half-width equal to 30% of the domain width and

an adaptive spatially varying inflation (Anderson 2009b)

was applied for all three filters.

Figure 12 shows the RMSE of the ensemble mean for

the three filters as a function of ensemble size. All three

demonstrate their worst performance for N 5 10. The

EAKF has its smallest RMSE for N 5 20 and has in-

creasing RMSE for larger N. The RHF and EnKF have

RMSE that decreases withN for all ensemble sizes. The

EnKF has smaller RMSE for N up to 40 while the RHF

has smaller RMSE for larger N. Figure 13 shows the

time-mean and maximum kurtosis and provides evi-

dence that the EAKF is still suffering from sporadic

outlier problems; the maximum kurtosis for the EAKF

is off the plot for all ensemble sizes. The time-mean

kurtosis for the RHF and EnKF are very similar while

the EnKF maxima are larger for large ensemble sizes

suggesting that the EnKF is mostly immune to outlier

issues for this model and observation set.

Sakov and Oke (2008a,b) have recently studied the

performance of several other ensemble filter variants

including a random rotation that removes outliers from

ensemble distributions. The Lorenz96 case they docu-

ment is significantly more linear and only uses obser-

vations of state variables, which reduces the challenges

of non-Gaussianity. The appendix provides results from

the filters used here for direct comparison with their

results.

d. B-grid dynamical core

The three filters were used with a low-resolution ver-

sion of the B-grid dynamical core that was developed for

the Geophysical Fluid Dynamics Laboratory (GFDL)

atmospheric model version 2 (AM2). The model grid has

60 longitudes and 30 latitudes with 5 levels in the vertical

and a total state vector size of 28 200. The model has no

orography and is forced following the Held–Suarez

framework (Held and Suarez 1994). This is close to the

minimum size at which the model produces baroclinic

waves. Themodel was integrated from a state of rest for

1000 days to ‘‘spin up’’ the model climate. The in-

tegration was continued for 100 days and synthetic

observations were generated by simulating 300 radio-

sonde locations randomly located on the surface of the

sphere and fixed in time every 12 h. Each radiosonde

observes the temperature and wind components at

each model level as well as the surface pressure. The

observational error variance is 1 K for the temperatures,

1 m s21 for the wind components, and 1 hPa for the

FIG. 11. Time-mean (thick line) and maximum (thin line) value

of ensemble kurtosis as a function of ensemble size for the x vari-

able of the Lorenz63 model. Results are plotted for the ensemble

adjustment Kalman filter (dashed line, maxima too large to display

on plot), the perturbed observation ensemble Kalman filter (solid

line), and the rank histogram filter (dashed line).

FIG. 12. Time-mean prior RMSE of the ensemble mean for an

assimilation with the Lorenz96 40-variable model as a function of

ensemble size. Results are shown for the ensemble adjustment

Kalman filter (thin dashed line), perturbed observation ensemble

Kalman filter (solid line), and the rank histogram filter (thick

dashed line).
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surface pressure. Observation impact was localized with

a Gaspari–Cohn function with a 0.2 rad half-width and

no inflation was used as in Anderson et al. (2005).

For the B-grid assimilation, the RHF gave the lowest

time-mean globally averagedRMSE for all state variables

on each model level. The EAKF and EnKF produced

somewhat larger time-mean RMSE. Even in this large

model application where there is lots of ‘‘noise’’ from

sampling error, localization, and a nonlinearmodel, there

is evidence of outlier issues with the EAKF. Figure 14

shows a time series of the evolution of an 80-member

EAKF and the truth for a temperature grid point at the

top model level in the midlatitudes (508N, 308W). There

is a clear outlier between days 6 and 17. The kurtosis

for the EAKF ensembles continues to have very large

maximum values for all variables; however, the time-

mean kurtosis is similar to that for the EnKF. This

suggests that outliers are occurring less frequently than

was the case in low-order models or are being more

rapidly eliminated by nonlinear model dynamics and

the use of many observations that impact each state

variable.

6. Discussion and conclusions

Many publications have discussed the relative per-

formance of various flavors of ensemble Kalman fil-

ters in low-order models (Whitaker and Hamill 2002;

Lawson and Hansen 2004) and there is ample evidence

that different types of filters are better for different ap-

plications. Often, however, there is little understanding of

why this is the case nor is there an ability to generalize

results to other applications. The RHF algorithm de-

scribed here is specifically designed to deal with sig-

nificantly non-Gaussian priors. It is expected to do well

compared with the traditional Gaussian filters when pri-

ors are bimodal, skewed, or bounded. As an example, it

may have advantages in applications to radar data assim-

ilation for convective scale storms. Priors in such casesmay

be bimodal for important variables; either convection has

initiated at a grid point or it has not. The Gaussian filters

tend to produce a posterior that is an average between

convecting and not convecting, a situation that is un-

realistic. With compelling observations, the RHF should

produce a posterior that is convecting or not convecting as

appropriate.

The RHF has been compared here to results from an

EAKF and an EnKF with sorting of observation in-

crements. There are many other ensemble Kalman filter

variants described in the literature that could also have

been used as controls. The appendix compares the

EAKF and EnKF to a variety of ensemble Kalman fil-

ters tested by Sakov and Oke (2008a,b).

All three filter methods discussed have been applied

to a global numerical weather prediction experiment

with the Community Atmosphere Model (CAM) ver-

sion 3.5 (Collins et al. 2006) with a 28 grid resolution and

26 vertical levels. All temperature and wind observa-

tions from radiosondes, the Aircraft Communication, Ad-

dressing, and Reporting System (ACARS), and other

aircraft and satellite motion vector winds from the Na-

tional Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) re-

analysis input files for 1 September 2006–30 August 2007

were assimilatedwith an 80-member ensemble.A spatially

varying adaptive inflation (Anderson 2009b) and locali-

zation with a 0.2 rad Gaspari–Cohn function were used.

FIG. 13. As in Fig. 11, but for the first variable of the Lorenz96

40-variable model.

FIG. 14. A portion of the evolution of 80 ensemble members

(light solid lines), the ensemble mean (dark solid line), and the

truth (dashed line) for a temperature variable in the midlatitudes

on the top model level from an assimilation with the dynamical

core of the B-grid general circulation model.
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The results were evaluated by computing the difference

between the ensemble mean 6-h forecast predictions of

the observations and the observed values. All three filters

produce results that are comparable to or better than those

produced by the NCEP operational system from this pe-

riod with the EAKF and RHF being consistently better

than the EnKF for this application. This demonstrates that

the RHF can be competitive with the Gaussian filters

even for very large applications with model error and real

observations. Much additional study is needed to better

understand the performance of the different filter variants

in realistic atmospheric applications.

Several modifications to the RHF algorithm can reduce

computational cost or lead to interesting new capabilities.

The approximate representation of the likelihood can be

further simplified so that its value between each pair of

ensemble members is a constant equal to the average of

the likelihood evaluated at the bounding ensemble mem-

bers. In this case, computing the location of posterior

ensemblemembers in the interior regions requires solving

a linear equation, not a quadratic. This piecewise constant

form for the likelihood also tends to give posteriors with

greater spread. Loss of spread is a persistent problem in

ensemble filters (Houtekamer andMitchell 1998;Mitchell

and Houtekamer 2009). The piecewise constant variant

generally required less inflation (Anderson andAnderson

1999) and produced slightly smaller RMSE in cases where

inflation was needed for good filter performance.

A second modification to the approximate represen-

tation of the likelihood involves replacing the Gaussians

in the unbounded regions with a constant that is just

the value of the likelihood evaluated at the outermost

ensemble member. At first, this seems like a drastic ap-

proximation. However, in general it has only a small im-

pact on the posterior since the product in the tails usually

has small probability. Since the likelihood on the tails is

increased with this approximation, posterior spread is

increased again resulting in a reduced need for inflation.

Applying this approximation to the low-order model ex-

amples above led to very small increases in time-mean

RMSE in all cases.

Assuming a flat tail facilitates the use of arbitrary

observation likelihoods with the RHF. The only infor-

mation needed about the likelihood is its value for each

of the prior ensemble members. There are a number of

observations that have non-Gaussian likelihoods. The

most obvious examples are observations of bounded

quantities like precipitation, tracer concentration, or

cloud fraction. Observations with lognormal likelihoods

can be assimilated directly without the need to convert

state variables to logarithmic forms and back. Some in-

struments like certain radiometers are known to have

skewed likelihood functions. Initial applications of the

RHF to observations of bounded quantities suggests that

it is much more effective than Gaussian filters in keeping

posterior ensemble members appropriately bounded. All

of these variants of the RHF are available as part of the

standard release of the Data Assimilation Research Test

bed from NCAR (Anderson et al. 2009).

For most geophysical applications, the cost of the ob-

servation increment computation in an ensemble filter

[computing Dyn for use in (2)] is a small fraction of the

computation. The observation increments for the three

filters discussed here all have cost O(KN), where K is

the number of observations and N is the ensemble size.

The constant factor for the RHF observation increment

computation is about 4 times greater than that for the

EnKF and EAKF. However, the cost of updating the

state variables using (3) given the observation increments

is O(KMcN), where Mc is the average number of state

variables that are impacted by a given observation. For

geophysical problems, Mc is generally much larger than

4 so the RHF cost is negligible. For instance, the total

computational time for the RHF is less than 10% more

than the cost of theEAKF for allmultivariate experiments

described here.

The flat tail variant for the likelihood presents in-

teresting possibilities for future ensemble filter develop-

ment. The observation update only requires the values of

the likelihood for each ensemblemember. This is identical

to the weights that are associated with each ensemble

member in a particle filter. One could use this RHF al-

gorithm to update state variables directly, given the like-

lihood, without the intermediate steps of computing

observation increments and regressing them on the state

variables. A filter constructed in this fashion would no

longer assume linearity by using regression and could have

a computational cost that is much smaller than the en-

semble filters described above. However, there are chal-

lenges related to dealing with sampling noise, localization,

and inflation in an ensemble particle filter of this type. It is

not yet clear if therewill be applicationswhere such a filter

will be competitive with traditional ensemble filters.
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APPENDIX

Additional Lorenz96 Results

A 1.1 million step control integration of the Lorenz96

model is observed every time step with 40 observations

of the following form:

y
j
5 x

j
1Normal(0, 1), j5 1, . . . , 40. (A1)

Assimilations with ensemble sizes of 16, 18, 20, 25, 30,

40, 60, 80, and 160 are performed with the EAKF, the

EnKF, and the RHF with no localization. The prior

covariance inflation value from the set f1, 1.01, 1.02, . . .g

that minimizes the time-mean ensemble-mean RMSE

over the last 1 million steps is selected for each ensemble

size and filter type. Initial ensemble members are ran-

dom draws from an extended free run of the model.

Results in Fig. A1 can be compared to Fig. 5 in Sakov

and Oke (2008a) and Fig. 4 in Sakov and Oke (2008b).

This system is very linear compared to the Lorenz96

case in section 5c and does not display much non-

Gaussianity that would challenge the EAKF or give an

advantage to the RHF. The EAKF is distinctly better

than the best results from Sakov and Oke for ensembles

of size 16 and 20, while all three filters are competitive

for ensemble sizes larger than 20. The EnKF results

here are also better than those from Sakov and Oke for

small ensemble sizes. The EnKF used here sorts the

observation increments (see section 2b) and also adjusts

the mean of a perturbed observation to be the same as

the original observed value; neither of these operations

were done in the Sakov and Oke filter (P. Sakov 2010,

personal communication) and may account for the dif-

ferences in results.
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