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Electricity markets

Electricity exchanges organize trade in:

I Hourly spot electricity, next-day delivery

I Financial forward/futures contracts

I European options on forwards

In particular, from a mathematical finance point of view:

I Spot electricity: non-storability of electricity renders market
highly incomplete, underlying not tradable

I Forwards: Delivery of electricity over period of
weeks/months/quarters of year rather than fixed delivery



Electricity price modelling

Two categories of approaches for electricity price modelling:

1. Direct modelling of futures prices

I Transfer of concepts from interest rate theory (HJM approach)
(Clewlow & Strickland 1999, Manoliu & Tompaidis 2002,
Benth & Koekebakker 2005)

I Advantage: complete market and risk neutral pricing
machinery available

I Problem: no inference about spot prices possible (arbitrage
relations not valid)



Electricity price modelling

2. Spot price modelling

I Various structured OTC products depend on spot evolution →
spot price model required

I Use spot price model to derive prices of futures (and other
derivatives)

I breakdown of spot-futures relationship → identification of
market price of risk (pricing measure) necessary to derive
futures prices

In this work we want to introduce a model of the second category,
i.e. a new electricity spot price model.



Essential features of spot prices

I Daily NordPool system price 01.1997-01.2001



Essential features of spot prices

Stylized features of electricity spot prices are:

I mean reversion
I seasonality

I yearly price cycle (in examples above winter has higher prices
than summer)

I weekly seasonality
I intra-daily cycles

I intrinsic feature of sharp spikes followed by sharp drops
(leptokurtic returns)

I level dependent volatility



Modelling requirements of spot dynamics

A spot price model should

I reflect statistics and path properties of historical data

I reflect physical conditions and constraints
I but also allow for sufficient analytical tractability:

I risk evaluation
I forward/futures price dynamics
I option pricing

In particular, analytical pricing of forwards and futures is very
desirable.



Common spot price models

Most common reduced form spot price models are of exponential
Ornstein-Uhlenbeck type

I guarantees positive prices

I enhances robustness of calibration procedure

However
I Is the exponential structure the right transformation for

electricity prices?
I exponential structure originates from population growth

modelling (in finance compound interest modelling)

I Most importantly, no manageable analytic expressions for
corresponding forward/futures contracts!



An arithmetic model

Benth, Kallsen, M.-B. (Appl. Math. Fin. 2006):

We propose to model the spot price as a sum of non-Gaussian
OU-processes:

S(t) = Λ(t) +
n∑

i=1

Yi (t)

where
dYi (t) = −λiYi (t) dt + σi (t) dLi (t)

I Li (t) are independent increasing time inhomogeneous pure
jump Lévy processes (additive processes).

I We suppose a Lévy measure of Li (t) of the form

νi (dt, dz) = ρi (t) dt νi (dz)

where ρi (t) controls seasonal variation of jump intensity.



An arithmetic model

I σi (t) controls seasonal variation of jump sizes

I λi different level of mean reversion

I Λ(t) deterministic seasonality function

→ The model guarantees positive prices because the Li (t)’s are
increasing.

→ Upward jumps are followed by downward drops whose sharpness
is controlled by the corresponding λi .

→ The model allows for analytical pricing of corresponding forward
and fututres contracts.



Pricing of forward/futures contracts

I Let F (t;T1,T2) be time t forward price of a contract which
delivers electricity at a rate S(t)/T2 − T1 during the
settlement period [T1,T2]:

1

T2 − T1

∫ T2

T1

S(u) du .

I Forward price defined so that time t value is zero, given
information about the spot price up to time t:

F (t;T1,T2) = EQ

[
1

T2 − T1

∫ T2

T1

S(u) du | Ft

]
,

where Q is a pricing measure to be determined.



Pricing of forward/futures contracts

Proposition:

F (t;T1,T2) = F (0;T1,T2)+
n∑

i=1

1

λi (T2 − T1)

∫ t

0
σi (s)(e

−λi (T1−s) − e−λi (T2−s))dL̄i (s) ,

where

F (0;T1,T2) =
1

T2 − T1

∫ T2

T1

{Λ(u)+

+
n∑

i=1

(
yie

−λiu +

∫ u

0

∫
R+

σi (s)e
−λi (u−s)z ν̂i (dz , ds)

)}
du

and L̄i (t) is the compensated jump process with compensating
measure ν̂i (dz , ds) under Q.



Pricing of forward/futures contracts

Or, expressed in terms of the components Yi :

Proposition:

F (t;T1,T2) =
1

T2 − T1

∫ T2

T1

Λ(u)du + Θ(t,T1,T2)

+
n∑

i=1

e−λi (T1−t) − e−λi (T2−t)

λi (T2 − T1)
Yi (t),

where

Θ(t,T1,T2) =
n∑

i=1

∫ T2

T1

∫ u

t

∫
R+

σi (s) e−λi (u−s) z ν̂i (dz , ds) du

and ν̂i (dz , ds) is the Lévy measure of Li (t) under the pricing
measure Q.



Pricing of options on forward/futures contracts

I Some notations:

Σi (t,T1,T2) =
σi (t)

λi (T2 − T1)

(
e−λi (T1−t) − e−λi (T2−t)

)
.

ψ̃i
t,T (θ) := ln EQ

[
exp(i

∫ T

t
θ(s)dLi (s))

]
=

∫ T

t

∫ ∞

0

{
eiθ(s)z − 1

}
ν̂i (dz , ds)

I Let g ∈ L1(R) be payoff of an option written on F (T ;T1,T2),
T ≤ T1. Then the price is given by

p(t;T ;T1,T2) = e−r(T−t)EQ [g(F (T ;T1,T2)) | Ft ] .



Propositions:

If g(F (T ,T1,T2)) ∈ L1(Q), then we have that

p(t;T ;T1,T2) = e−r(T−t) (g ? Φt,T ) (F (t;T1,T2))

where the function Φt,T is defined via its Fourier transform

Φ̂t,T (y) = exp

(
n∑

i=1

ψ̃i
t,T (yΣi (·,T1,T2))

)
,

and ? is the convolution product.

I Numerical pricing by fast Fourier transform techniques.

I Not available for exponential models in this explicit form.

I Exponential damping for payoffs not in L1(R) (see e.g. Carr &
Madan 1999.



Case study: simulation of the NordPool spot

We want to fit the model

S(t) = Λ(t) +
n∑

i=1

Yi (t)

dYi (t) = −λiYi (t) dt + σi (t) dLi (t)



Case study: simulation of the NordPool spot

In order to fit the model to the time series of daily Nordpool spot
price given above, we proceed in four steps:

1. Identification of the first OU-process Y1(t) modelling the
seaonal spikes.

2. We remove the spikes from the spot series and fit a
deterministic seasonal mean Λ(t) of cosines to the remaining
time series.

3. We remove the seasonal mean and fit a sum
∑n

i=2 Yi (t) of
stationary OU-processes to the remaining time series.

4. Simulation of a sample path.



Case study: simulation of the NordPool spot

1. Identification of Y1(t) modelling the seaonal spikes:

Simulated spike:

Zoom into the 3 biggest spikes of 1998, 1999, 2000:



Case study: simulation of the NordPool spot

I For an estimated mean reversion λ̂1 = 1.12 (2/3 decay after
one day), find the OU-path Ŷ1(t) with jump times
τ̂1 ≤ ... ≤ τ̂r̂ and corresponding path values µ̂1, ..., µ̂r̂ that
minimize

min
1≤τ1≤...≤τr≤N

µ1,...,µr

r∈{1,...,N}

γ · r +
r+1∑
i=1

τi−1∑
t=τi−1

(
spot(t)− µτi−1e

−λ̂(t−τi−1)
)2


I γ represents penalization of jumps

I Using dynamic programming, an adoption of an algorithm
from (Winkler, Liebscher 00) yields an exact algorithm to
solve the above min-problem.



Case study: simulation of the NordPool spot

I We assume the first OU-component Y1(t) given through

λ σ(t) ν(dz) ρ(t)

Y1 1.12 1 Exp(180) 0.07 ·

(
2˛̨̨

sin(π(t−6)
261

)
˛̨̨
+1

− 1

)



Case study: simulation of the NordPool spot

2. We fit a deterministic seasonal mean Λ(t) of cosines to the
time series spot(t)− Ŷ1(t).

3. We de-seasonalize the spot price process by removing seasonal
spikes and deterministic mean level:

despot(t) = spot(t)− Λ(t)− Ŷ1(t),

and calibrate a sum of stationary OU-processes to the
de-seasonalized spot price:

X (t) :=
n∑

i=2

Yi (t) ∼ despot(t),

where dYi (t) = −λiYi (t) dt + dLi (t) with now Li increasing
Lévy processes (no variation over time in controls).



Case study: simulation of the NordPool spot

I Already one component X (t) = Y2(t) with λ̂2 = 0.0846 is
sufficient to optimally fit the empirical autocorrelation
structure:



Case study: simulation of the NordPool spot

I We assume Y2 ∼ Gamma(ν, α) and estimate ν = 8.055,
α = 0.132 through performing maximum likelihood on despot:



Case study: simulation of the NordPool spot

4. Simulation of a complete path of the estimated process
S(t) = Λ(t) + Y1(t) + Y2(t):



Case study: simulation of the NordPool spot

I Empirical moments of NordPool spot price versus simulated
moments (averaged over 3000 simulation paths):

Mean Std. Dev. Skewness Kurtosis
Empirical 121.2387 35.9166 0.8516 6.7061
Simulated 120.6239 36.4370 0.8276 6.4120



Conclusion

I Most common spot models are of geometric type and become
unfeasible for further analysis of derivatives pricing.

I We propose an arithmetic model that is simple enough to
yield analytical forward prices. Option pricing by fast Fourier
transform techniques.

I The arithmetic model describes well both path properties and
statistics of electricity spot prices.

I Future work includes the calibration of the market price of risk
and the study of futures prices induced by the model.
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