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ABSTRACT 

A comparison of the statistical properties of low altitude 
atmospheric turbulence and the characteristics of presently used 
simulation techniques shows that these techniques do not satis- 
factorily account for the non-Gaussian nature of turbulence. A 
non-Gaussian turbulence simulation, intended to be used in con- 
junction with piloted flight simulators, is developed. 

The simulation produces three sisvaltaneous random processes 
which represent the three orthogonal gust components. The proba- 
bility distribution of each component is characterized by the 
modified Bessel function of the second kind of order ?ero, K0 t 

and the power spectral densities suggested by H. L. Dryden are 
used in a slightly modified form. The rms intensity and scale 
length of each component are independent parameters. A general 
method of introducing cross spectra between components is demon- 
strated. 

The multiplication of independent random processes is used 
to generate each of the gust components. Gaussian white noise 
generators, analog multipliers, and linear filters are used 
throughout the simulation. A complete analog circuit diagram is 
presented. 
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SYMBOLS 

a Ranöoin function of  time 

A Constant 

b Random function of time 

B Constant 

C Correlation function (See list of definitions) 

D Constant 

f Frequency (cps) 

h Impulse response function 

H Transfer function (the Laplace transform of h) 

i Imaginary, /Ti 

K Constant 

L Scale length of turbulence (ft) 

m Random function of time 

n Random function cf time 

p Random function of time 

P Probability density function 

3P Probability distribution function 

q Random function of time 

r Random function of time 

s Laplace transform variable 

t Time (sec) 

T Time (sec) 

u Longitudinal gust component - aligned with mean wind 
positive in the direction of the mean wind (ft/sec) 

Ü Mean wind speed (ft/sec) 
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SYMBOLS (Cont'd.) 

v Lateral gust component - forms right handed system with 
longitudinal and vertical gust components (ft/sec) 

w Vertical gust component (ft/sec) 

x Dumny variable 

y Dummy variable 

z Dvnrnny variable 

a Dummy variable 

ß Dummy variable 

Y Dummy variable 

6 Dyrac delta function (See list of definitions) 

T] Gaussian white noise signal with zero mean value 

K0 Modified Bessel function of the second kind of order 
zero (See list of definitions) 

a rms intensity (See list of definitions) 

T Correlation variable (sec) 

f Cross spectrum (See list of definitions) 

f Power spectrum (See list of definitions) pp 

♦ Cospectrum (See list of definitions) 

$       Normalized power spectrum (See list of definitions) 
pq 

VP 

Operators 

E[] Expected value (See list of definitions) 

*       Convolution (See list of definitions) 
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SYMBOLS (Cont'd.) 

Subscripts 

t       Function of t 

T       Function of T 

Superscript 

*       Complex conjugate 

Analog Symbols 

D 

O 

Summer 

Integrator 

Multiplier 

Potentiometer 
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DEFINITIONS 

The following functions appear repeatedly throughout the 
following report. Their mathematical definitions are collected 
here for convenient reference. 

A,  Convolution 

p(t) * q(t) = f p(T}q(t - T)dT (DEF-1) 

B.  Correlation 

The general correlation tensor is defined by the relationship 

Cpq(x' &x' y» W'   z'   Az' t' T) = 

(DEF-2) 

<p{x, y, z, t)q(x + Ax, y -f- Ay, z + Az, t + T)^ 

where   ^ }       denotes ensemble average. 

If the processes p and q are stationary,  C   can be 
written ^ 

Cpq(x' Ax' y' Ay' z'   &z' T) = 

(DEF-3) 

T 

T^» 2T $  P(X' y' Z' t)q(X + "X' y + Ayj Z + Aa' t + T)dt 
-T 

In this report spatial separation  (Ax, ly, Az) will not be 
considered, and turbulence will be ass.uned homogeneous in the 
x - y plane. Therefore Cpq will not be a function of x. 
Ax, y, Ay,  or Az. Dependence upon height z will be expressed 
as a depondence upon scale length L.  Finally, the formal 
listing of the argument L will be suppressed. 
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DEFINITIONS (Cont'd.) 

The cross correlation of p and q is then defined 

T 
Cpq(T) =T^2T I P{t>a-lt +   T>dt {D£F-4) 

vhere    Cpq(T)  is understood to possibly be a function of 
scale length L . 

If p and q are identical, (DEF-4) becomes the auto- 
correlation,  C  (T) . pp 

(DEF-5) 

Implementing the expected value notation of (OEF-8) 

Cpq(T) = EfP(t,q(t + T)1 (DEF-6) 

In terms of the power spectral density 

cpp(i) = L*K>(f,ei2TTfTdf (DEF
"
7) 

C.   Expected Value 

«»«^ - £!i^PU)« (DEF.0) 



DEFINITIONS (Cont'd.) 

D.  Fourier transform 

Transform 

R(f) = fr(t)e"i2"ttdt (DEF-9) 

Inverse 

R(t) = ]:r(f)ei2,Tftdf (DEF-10) 

R(f)  exists if: 

1. "rU) dt exists 
— 00 

2. All discontinuities of r(t)  are finite 

3. .r(t) has bounded variation. 

Modified Bessel^function 

•'o (x) = Jexp[-x cosh(y)]dy     |arg x| < ^      (DEF-ll) 

F.  Probability 

Probability distribution of a function q 

IP (x) = [probability that q s x] 

Probability density distribution of a function q 

(DEF-12) 

Pq(x) =ÄtlPq(x)] (DEF-13) 
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DEFINITIONS   (Cont'd.) 

G. RMS intensity 

rms of a function p(t) 

^-":V^IT
p(t)2at         (DEF-l4, 

H. Spectra 

The cross spectrxom of two functions p(t)  and q(t) 

QD 

Wf) = r Cna(T)e"i2"fTdT               (DEF-15) 

The cospectruin of p(t)  and q(t)  is the real part of $  (f) 

1   (f) = Re{$  {f)l                 (DEF-16) 
pq          W 

That is,  $   (f)  is obtained by Fourier transforming the 
cpq 

correlation tensor. 

The power spectral density or power spectrum of p(t) 

00 

fPP(f) = •jrao
CPP(')e"i2^fTd'r              (DEF-17) 

1  (f) 
fn  (f) =  PP2                    (DEF-18) 

PP       ap 

* 
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SECTION 1 

INTRODUCTION 

The development of a new aircraft, particularly one of the 
V/STOL variety, is greatly facilitated by a piloted simulation of 
the vehicle. A simulator permits pilot evaluation of handling 
qualities, operating procedures, and other important factors 
before the vehicle itself has been constructed.  Of course the 
simulation must be as realistic as possible if the results are to 
be trustworthy. 

Atmospheric turbulence is a particularly important effect in 
low altitude operation.  Consequently, a random external distur- 
bance which simulates atmospheric turbulence is frequently used in 
low altitude simulations to present the pilot with a more realistic 
control task.  Though the benefits to be derived from a realistic 
simulation are worthy of considerable effort, little attention has 
been given to the realistic simulation of turbulence. 

The object of this report is to review the characteristics of 
low altitude atmospheric turbulence, compare the characteristics 
of presently used turbulence simulations to those of real turbu- 
lence, and finally to suggest a simulation which is more realistic 
than those presently used. 

The following development is divided into four parts.  Section 
II considers the characteristics of real turbulence and the impor- 
tance of those characteristics to simulator realism.  The proba- 
bility distribution, rms intensity, power spectral and cross spec- 
tral densities are discussed and suggestions for analytical forms 
to be used in simulation are made. 

Section III presents a summary of presently used turbulence 
simulation techniques. These are discussed in view of the char- 
acteristics of real turbulence described in Section II. 

Section IV formulates an analog circuit which produces a non- 
Gaussian turbulence simulation. A complete mathematical develop- 
ment is presented, beginning with the derivation of necessary sta- 
tistical relationships.  The result is an analog circuit which pro- 
duces outputs statistically similar to the three components of 
atmospheric turbulence occurring at a point in space.  Conventional 
analog equipment and ordinary Gaussian white noise generators are 
used throughout. 

Section V summarizes the results of Section IV for those read- 
ers who wish to omit the mathematical development, and discusses 
the simulation in some detail.  Complete analog circuit diagrams 
are presented. 



SECTION II 

STATISTICAL CHARACTERISTICS OF LOW ALTITUDE ATMOSPHERIC TURBULENCE 

Obviously the characteristics of real turbulence must be known 
before a turbulence simulation can be specified.  Unfortunately, 
the mechanism of turbulence and the effects of changing atmospheric 
conditions upon its structure are not understood now and will prob- 
ably remain so for some time.  Any description of turbulence is 
therefore restricted to a discussion of its experimentally deter- 
mined statistical properties. 

This section will not attempt to review the tremendous amount 
of data which has been published on the subject of atmospheric 
turbulence.  Instead, some typical statistical properties of turbu- 
lence will be considered in view of the problem of realistic 
simulation.  Only neutral stability conditions will be investigated 
since the greatest problems in vehicle control, and therefore the 
greatest need for a realistic simulation, result from high wind 
conditions. 

This section is divided into seven prrts and considers the 
homogeneity, stationarity, probability density, rms intensity, 
power spectra, and cross spectra of atmospheric turbulence.  The 
final section summarizes these points. 

A.  Homogeneity 

To say that atmospheric turbulence is homogeneous implies that 
its statistical properties are not functions of the spatial coor- 
dinates.  Unfortunately low-altitude turbulence does not demon- 
strate this property. 

Chapter 5 of Reference 1 presents data showing that the scale 
length of the vertical gust component varies proportionally to 
altitude.  This effect will be discussed more completely in part 
D below.  Reference 2 reports that the terrain underlying &.  turbu- 
lent region can strongly affect its intensity.  Thus the tiv bulence 
encountered by a vehicle can be expected to vary as the vehicle 
moves over different surface features. A similar effect, the 
"patchy" structure of turbulence which will be discussed at length 
in Part C below, implies that a variation of intensity with spatial 
location is an intrinsic characteristic of turbulence. 

Of these inhomogeneous effects, only those due to altitude 
variation and the "patchy" structure appear to be intrinsic to 
turbulence and therefore necessary features of a realistic simula- 
tion.  Though the influence of terrain may be required for the 
simulation of certain flight tasks 



(see for example  Reference  3),   it will not be considered here as  a 
typical  feature of  turbulence. 

B. Stationarity 

Atmospheric turbulence is a stationary process if its statis- 
tical properties are independent of time.  This is, of course, not 
true if very long time periods are considered because changing 
large-scale meteorological conditions are likely to introduce 
changes in the turbulence structure and intensity. However, few 
simulations operate continuously over such a lengthy period.  Most 
require only a few minutes of operation, during which the turbulence 
can be assumed stationary.  Therefore nonstationary effects need not 
be considered in a typical simulator application. 

C. Probability Density Distribution 

The probability density distribution of a random process, 
more commonly called its probability density, is a measure of the 
likelihood that any particular state will occur.  For example, the 
probability density of the vertical gust component describes the 
likelihood that a vertical gust velocity of any particular magni- 
tude will occur. A mathematical definition is given in the list 
of definitions.  Note that the continuous velocity time history is 
to be considered, not merely peak gust velocities. 

Despite considerable amounts of data describing gust exceedence 
probability based on total flight time (see for example References 
4 and 5), there is little data on the probability distribution of 
gust velocities in continuous turbulence. A Gaussian distribution 
has been widely assumed in the past because some data did seem to 
indicate a normal distribution and because of the great statistical 
simplifications which result.  Unfortunately there is mounting evi- 
dence that turbulence is not a Gaussian process. 

Reference 6, for example, presents a computer analysis of 
measurements taken by a hot wire anemometer in a wind tunnel.  The 
results indicate that grid generated turbulence is non-Gaussian. 

Reference 7 contains an analysis of all three gust components 
at both high and low altitude showing that atmospheric turbulence 
is definitely non-Gaussian.  The results indicate that low-altitude 
turbulence is more nearly Gaussian than that at high altitudes, but 
at all altitudes the probability density exceeds that of a Gaussian 
distribution for both small and large absolute values of gust veloc- 
ity.  Figure 1 indicates a typical result. 

A study of peak accelerations reported in Reference 8 leads to 
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conclusions similar to those of Reference 7. Based upon a large 
number of four and one-half minute samples of acceleration data 
recorded during flight below 5,000 feet, the report finds that 
atmospheric turbulence is characterized by an exponential proba- 
bility density distribution of peak gust velocities.  This leads 
to a gust velocity probability density characterized by the modi- 
fied Bessel function of the second kind of order zero, K0   . 

P(X) = ~K0Ö ("-I) 

This function is tabulated in many publications (see for example 
Reference 9). An integral representation will be found in the list 
of definitions.  Figure 2 compares the Gaussian and K0     distribu- 
tions. Note that the modified Bessel function exceeds the normal 
curve at both large and small gust velocities. 

The discontinuity of  K0  when its argument becomes zero 
presents some difficulty. An experimental verification of this 
feature would require an infinitely long turbulence time history, 
or an infinite number of ensemble records.  Such an analysis is, 
of course, impossible. 

There is, however, an argument based upon the "patchy" nature 
of turbulence which leads to the choice of  K0  to characterize 
its probability density.  Turbulence apparently has a patchy struc- 
ture.  That is, regions of intense turbulence are surrounded by 
areas of relatively calm air.  Evidence for this structure is pro- 
vided by References 8, 10, 11, and 12.  References 8 and 10 ref«ir 
specifically to low-altitude atmospheric turbulence.  If one 
assumes that the turbulence within each patch is Gaussian and that 
the intensity of the turbulence varies from patch to patch in a 
continuous Gaussian manner, then the turbulence time history 
encountered by an aircraft flying through the region is actually 
the product of two independent Gaussian random processes.  Part C 
of Section IV of this report demonstrates that the probability 
density of such a time history is characterized by the modified 
Bessel function K0   . 

If a patchy structure is assumed, the more nearly Gaussian 
nature of low-altitude turbulence reported in Reference 7 can be 
attributed to the influence of surface roughness in producing a 
more homogeneous turbulent field.  In this case longer samples 
might produce a more non-Gaussian result.  It should be noted that 
the low-altitude data presented in Reference 7 have been filtered 
to remove wavelengths longer than 7,000 feet. 

The "patchy" structure of turbulence thus suggests a modified 
Bessel function probability density as shown in Figure 2.  This 
distribution will be adopted as descriptive of atmospheric turbu- 
lence. 
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The above arguments are independent of gust direction, there- 
fore the ic0  distribution should be appled to all three gust com- 
ponents.  Ideally there should be some definition of patch size as 
a function of altitude, but these data are presently unavailable. 
The assumed probability densities are expressed in Equations (II-2), 
(11-3), and (II-4) below. 

u   u 

PV(X)=J-M^) (ii-3) 

pv(l"^«<' (I1-4' 

D.  RMS Intensity 

The rms, or variance, of a random disturbance is a measure of 
its intensity. A mathematical definition of this quantity is given 
in the list of definitions. 

Reference 1 indicates that the intensity of turbulence at low 
altitude in neutral conditions is influenced by both the mean wind 
speed and the surface roughness,  in general therefore, the absolute 
intensity chosen for a particular simulation must depend upon the 
environment being simulated. 

The ratios of the individual gust component rms values have 
been measured by several investigators.  Typical results are: 

(ju/av/ow = 2.5/2.0/1.05    (Reference 1) (II-5) 

= 2.8/2.0/1.3     (Reference 13) (II-6) 

= 1.0/1.16/.75    (Reference 14) (II-7) 

There is apparently not much agreement on these ratios.  Chapter 4 
of Reference 1 contains a complete discussion of the problem. 

The question of rms ratios is further complicated by human 
sensitivity.  Reference 15 reports the results of an airborne 
simulation which indicates that pilots are strongly influenced in 
their handling qualities judgement by the rms of an external dis- 
turbance,  it is therefore necessary that truly representative 
values be chosen for use in such research. 



In view of pilot sensitivity and the spread of available data, 
it seems best to allow a free choice of the rms value of each gust 
velocity component. 

E. Normalized Power Spectral Densities 

It is best to begin this part with a clarification of the term 
power spectral density as used in this report.  Many writers use 
what might be called a "one-sided" power spectral density, a func- 
tion of only positive frequencies.  in this report a "two-sided" 
power spectral density, an even function of frequency, is assumed 
in order to ease the mathematical manipulations which follow. A 
description of the power spectral density is to be found in the list 
of definitions. 

The normalized power spectral density can now be delined as 
the power spectral density divided by the mean square of the 
process.  Thus the integral over frequency from minus to plus 
infinity is equal to unity.  In the remainder of this report the 
term power spectral density will be shortened to spectrum or power 
spectrum. 

Experience has shown that atmospheric turbulence has reason- 
ably consistent normalized spectra, but there is a considerable 
spread in the data.  Many mathematical forms have been advanced, 
each supported by some experimental evidence, to describe these 
spectra.  In particular, Reference 16 suggests the following normd-- 
Ized expressions for isotropic turbulence. 

,n  (f) = k  __ 2 _ {II_8) 

[1 + (1.339^p) ]5/6 

2 
T  [1 + |(i.339^) ] 

$  (f) = h  3 y^        (li_g) 

U U + (la339^M) I11/6 

T   [1 + f(1.339^) ] 
in (f) =--§ ~        (11-10) 
^       [I + (1.339^) )11/6 



Reference 17 presents the results of an analysis of low-altitude 
turbulence indicating that these expressions fit the data very well, 
unfortunately the fractional exponents present considerable practi- 
cal difficulty.  As Section IV of this report will show, the turbu- 
lence simulation technique proposed here requires that linear filters 
be used.  No such filters could be found which produced the spectral 
shapes of (II-8) through (11-10). 

However, Reference 18 reports that pilots seem to be insensitive 
to small changes of the normalized spectra.  Thus any rational alge- 
braic form which reasonably approximates the data can be chosen for 
piloted simulator work. 

H. L. Dryden proposed in Reference 19 a set of rational spec- 
tral shapes which have been widely used in past aeronautical work. 

*n  <f> = h r—ir tn-ii) 
ri + {ift) ] 

2 

T    fl  +  3(^)    ] 
fn     (f)   = U       2— (II-12) 

VV 11  +   (^)    ]2 

.   [1  +  3(^)2] 

enww(f) =" 777^7 (II'13) 
ww

        [1 + (^) ]2 

These spectra are derived from observed exponential auto- 
correlations of the longitudinal gust component measured in a wind 
tunnul.  The extension to three dimensions was carried out by apply- 
ing the von Karman-Howarth relations for isotupic conditions 
(Reference 20).  Reference 17 investigates these shapes and finds 
that they do not fit observed data very well due to the use of 
integer exponents. However, these expressions permit use of linear 
filters; and, in view of pilot insensitivity to changes in spectral 
shape, they should provide a realistic simulation.  It is also 
important to note that in non-isotropic turbulence these spectra are 
strictly valid only for flight parallel to the mean wind vector. 

The agreement with experimental data can be improved by intro- 
ducing two modifications.  Reference 13 indicates that at low 



altitude the normalized spectrum of the lateral gust component 
matches the longitudinal spectrum much more closely than it matches 
the vertical spectrum. An obvious change is therefore a substitu- 
tion of the longitudinal spectrum (11-11) in place of the right-hand 
side of (11-12).  The discussion in Part F below will indicate that 
the lateral gust component is independent of (i.e., uncorrelated 
with) the other two components. Therefore the lateral component can 
be modified without interfering with other parts of the simulation. 

Another problem with the Dryden spectra is that the scale 
length L is the same in all three expressions. This does not 
seem to be verified by experimental evidence. Chapter 5 of Refer- 
ence 1 presents data indicating that the scale length of the verti- 
cal gust component varies proportionally to altitude above the 
surface.  Reference 21,  on  the other hand, finds that the scale 
length of the longitudinal component is proportional to the 4/5 
power of height. Therefore the two lengths cannot be equal at all 
altitudes. The results of Reference 13 also seem to indicate a 
difference in scale lengths,  in view of this uncertainty it seems 
wise to allow the scale length of each gust component to vary 
independen tly. 

When these changes are made, the normalized spectra become: 

n. (f) =~ 
uu 

L 
u 
U 2rrL f 

[1 + (-^-) ] U 

(11-14) 

*n  <f > = if w 2TrL f 

[1 + (--—-) ] Ü 

(11-15) 

*   (f) 
"ww 

2TTL f 
Lw [1 + 3(-ir-> ] 
U        2nL f 2 . 

w 
[i + (" U ) r 

(11-16) 

These expressions will be assumed to represent the normalized 
spectral densities of low-altitude atmospheric turbulence adequately. 
Equations (11-14), (IT-15), and (11-16) are plotted in Figure 3 in a 
form permitting direct comparison with most meteorological data. 
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F. Correlation Tensor and Cross Spectra 

Having discussed the characteristics of individual gust co?nsv^ 
nents, it is now necessary to consider the relationship between 
components.  This relationship is expressed in its most general form 
as the correlation tensor, complete discussions of which can be found 
in Relerences 1 or 22.  This tensor expresses the correlation of gust 
time histories measured at different points in space and thus de- 
scribes the three-dimensional distribution of turbulence.  If the 
correlation tensor is known, then such effects as rolling due to 
the distribution of vertical gusts along the wing span can be inclu- 
ded in a simulation of flight through turbulent air.  U fortunately, 
very little is known about the form of the tensor in non-isotropic 
turbulence.  Its full evaluation will require a tremendous amount 
of work, almost none of which has been carried out.  There is very 
little information on spatial distribution in other than the down- 
wind direction. More data, particularly dealing with the lateral 
distribution, must be collected before spatial distribution effects 
can be included in a turbulence simulation. 

If there is no spatial separation between the points at which 
gust velocities are to be correlated, the situation is somewhat 
simplified.  Even in this special case, however, few pieces of data 
are available.  Reference 13 presents the cospectral density rela- 
tions of the three gust components measured at various heights for 
a range of stability conditions.  The relationship between the 
correlation tensor and the cospectral density is described in the 
list of definitions.  The results indicate that only the vertical 
and longitudinal gusts have a significant cospectrum, that it is 
negative, and that it is non-zero only at low frequencies.  The 
data spread is quite broad and no quadrature spectra are presented, 
therefore there is little reason to attempt an accurate algebraic 
representation. However, some correlation should be introduced 
since a general form is known. 

obviously more information is required in this area before a 
realistic simulation of turbulence can be formulated.  In this 
paper it will be assumed that a low-frequency correlation exists 
between the longitudinal and vertical gust components.  No attempt 
to simulate the spatial distribution of turbulence will be made; 
that is, only the three gust components occurring at a single point 
will be modeled. 

G. Summary of Turbulence Characteristics 

The statistical characteristics of low-altitude turbulence 
which are important to simulator realism are summarized below. 

(1)  Stationarity 

Low-altitude turbulence can be approximated by a station- 
ary process for most simulations.  Long operating times, 

12 



on the order of several hours, require some allowance 
for changing weather conditions. 

(2) Homogeneity 

Turbulence seems to be intrinsically inhomogeneous. A 
simulation should include the effects of altitude vari- 
ation and the "patchy" structure of turbulence. Terrain 
features may have an influence in some instances, but 
this effect will not be considered here. 

(3) Probability Density 

Turbulence seems to be characterized by a modified Bessel 
function probability density as written in Equations 
(II-2), (II-3), and (II-4). 

(4) RMS Intensity 

The absolute rms intensity of turbulence is determined 
by prevailing conditions, and therefore no particular 
values can be specified.  The rms ratios of the gust 
components are presently not well determined. A simula- 
tion should therefore allow the rms value of each gust 
component to be varied independently. 

(5) Normalized Power Spectra 

The gust components can be characterized by the normalized 
power spectra of Equations (11-14), (11-15), and (11-16). 
These forms do not fit experimental data particularly well, 
but they do permit the use of linear filters and should 
be sufficiently reaxistic for piloted simulations. 

(6) Correlation Tensor and Cospectra 

Very little is known about the spatial distribution of 
turbulence and the relationship between gust components. 
A negative cospectrum of the longitudinal and vertical 
gust components measured at the same point in space is 
indicated, but there are insufficient data to suggest an 
analytical form. 
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SECTION III 

PRESENT TÜFBÜLENCE SIMULATIONS 

This section briefly discusses the most common turbulence sim- 
ulation methods and compares their usefulness. Three basically 
different techniques have been found: the filtered white noise sim- 
ulation, the recorded time history simulation, and the sum of sine 
waves simulation.  Parts A through C below discuss each of these 
methods in turn.  Part D summarizes the results of this section. 

A. Filtered White Noise Turbulence Simulation 

This technique is by far the most common method of turbulence 
simulation (see for example Reference 15 and References 22 through 
28). Time histories are generated by linearly filtering Gaussian 
white noise and  amplifying the resultant signal so that the normal- 
ized spectrum and rms intensity match those of real turbulence- 

This method requires few pieces of equipment and is very versa- 
tile. Reference 22, for example, proposes a filtered white noise 
turbulence simulation which allows for even the spatial dependeuce 
of the covariance tensor.  In fact, the normalized spectra, rms 
intensities, cross spectra, and even (with some difficulty) the 
effects of inhomogeneity and spatial distribution can all be simu- 
lated using filtered white noise,  unfortunately, the time histories 
produced have a Gaussian probability density. As discussed in 
Section II of this report, turbulence is not a Gaussian process. 
Therefore, although the filtered white noise method has many advan- 
tages, it must be considered an incomplete simulation because it 
does not reproduce the non-Gaussian nature of turbulence. 

B. Recorded Time History Turbulence Simulation 

This simulation of turbulence uses time histories of gjst 
velocities recorded during actual flight (see for example References 
24 and 29). There can be little argument concerning the realism 
of such a technique. However, no allowance can be made for changes 
of altitude or different atmospheric conditions without the collec- 
tion of a very large nurober of time histories. Also, extended run- 
ning times cannot be accommodated without repetition.  Therefore, 
while this model is certainly useful in the simulation of special 
conditions for which little or no statistical data is available, it 
does not appear to be flexible enough to provide a general turbulence 
simulation. 
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C. Sum of Sine Waves Turbulence Simulation 

Reference 30 reports the use of a turbulence simulation pro- 
duced by summing the outputs of ten sine wave generators.  This 
method seems to offer no advantage over the filtered white noise 
simulation discussed in Part A above unless some specific phase 
relationships between frequency components can be determined or 
unless the specific frequency content of the disturbance is an 
important factor in each test. At the present time there is no 
indication of fixed phase relationships in random turbulence, and 
most simulations do not require such complete knowledge of the 
frequency content.  Therefore, this method appears to be inferior 
to the filtered white noise technique which produces an infinite 
number of frequency components. 

D. Summary 

The most versatile and widely used turbulence simulation is 
the filtered white noise method described in Part A above.  It 
provides more flexibility than the recorded time history technique 
and contains more frequency components than the sum of sine waves 
technique.  Virtually all of the statistical properties of turbu- 
lence with the exception of its non-Gaussian probability distribu- 
tion can be simulated. 

In view of the flexibility offered by the filtered white noise 
technique, the next logical step toward the formulation of a real- 
istic turbulence simulation appears to be an extension of this 
technique to include a non-Gaussian probability distribution. 
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SECTION IV 

FORMULATION OF A NON-GAUSSIAN TURBULENCE SIMULATION 

The desired characteristics of the simulation can be summa- 
rized in the following points: 

1. An analog network is to produce three simultaneous random 
processes. These three processes are to represent the three 
orthogonal gust components occurring at a point (such as the 
center of gravity of a vehicle). 

2. Each component should have a probability density charac- 
terized by the modified Bessel function of the second type 
of order zero,  K0 . 

3. The simulated gust time histories are to have the same 
normalized spectra as were chosen in Section II to represent 
atmospheric turbulence.  The scale length of each component 
should be an independent variable. 

4. The rms intensity of each component should be an independ- 
ent variable. 

5. A negative low-frequency correlation should exist between 
the vertical and longitudinal gust components. 

6. The analog circuit should be as uncomplicated as possible, 
using Gaussian white noise generators and linear filters if 
possible. 

A.  General Approach 

With these six points in mind, the following approach is to 
be taken. The "patchy" structure of turbulence discussed in Part 
C of Section II suggests that the multiplication of two independent 
random processes can be used to provide a realistic simulation of 
each gust component.  One signal can be assumed to represent the 
turbulence within a patch, and the other to represent the variation 
of intensity from patch to patch.  It will be shown that, if the 
two signals are Gaussian processes, then the simulated gust compo- 
nent will have the desired modified Bessel function probability 
density. 

The concept of multiplying random processes will thus be 
central in the following development.  Each gust component is to be 
produced by such a multiplication.  The questions of rms intensity, 
power spectral density, and cross spectral density remain, however. 
Each of these will be considered in turn. 
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The rms intensity of each component is to be an independent 
variable. This can always be achieved through amplification, if 
necessary; and therefore does not present a problem. 

The generation of spectral densities is somewhat more difficult 
because both the spectra and probability densities have been speci- 
fied (Requirements 2 and 3 above).  Spectral shape is easily 
changed by linear filtering; but, if a non-Gaussian process is 
linearly filtered, its probability density will be changed.  Since 
the fC0  probability density is specifically desired, it follows 
that the K0 process must have the proper power spectral shape at 
the time it is generated. As mentioned previously in this section, 
it will be shown that a K0  process can be generated by the multi- 
plication of Gaussian processes.  This result will be independent 
of their spectral densities.  Since Gaussian processes remain 
Gaussian when passed through linear filters, it follows that any 
filtering may be performed upon the Gaussian processes in order to 
shape their power spectral densities without altering the fact 
that their product will have a *0     probability density.  It will 
also be proven in the following that the power spectral density of 
the product of two random processes is a function only of their 
respective spectral densities.  Thus, it will be demonstrated that, 
by means of analog multiplication preceded by linear filtering, 
the desired probability distribution and power spectral densities 
can be produced simultaneously. 

Finally, the possibility of producing cross spectra must be 
considered. A full discussion of this problem would be quite 
lengthy and very complex.  However, the fundamental idea can be 
summarized in two statements.  First, the existence of a non-zero 
cross spectrum between two random processes implies that they are 
not independent (i.e., they are dependent).  Second, dependence 
can be introduced by adding some portion of one signal fco the 
other through analog circuitry.  For example, a low-frequency 
correlation between two random processes can be produced by adding 
the low frequencies of one process to the other process.  The 
following derivation demonstrates a very general method of intro- 
ducing cross spectra into a turbulence simulation which, hopefully, 
will clarify these points.  The method is sufficiently general to 
allow almost any suggested cross spectral form to be simulated. 

Part B, C, and D of this section employ the methods outlined 
above to produce an analog turbulence simulation.  Part B summarizes 
some statistical relations between independent random processes and 
their product.  Part C applies these equations to the problem of 
simulating the three gust components.  Finally, part D describes a 
method of introducing cross spectra to the simulation. 
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B. Some General Statistical Relationships 

The appendix of this report derives the following statistical 
relations between independent random processes and their products. 
References 31, 32, and 33 may be of some help in reading the deri- 
vations of the appendix and this section. 

Assume that p(t)  and q(t)  are independent random processes 
which are multiplied to give a new random process,  r(t) .  Then: 

1.  The probability density of r(t)  is expressed by Equation 
(A-6). 

PrU) = J[Pp(x)Pq(f) + Pp(-x)Pq(-f)]f      (iv-l) 
o 

The rms intensity of r{t)  is expressed by Equation (A-ll). 

ar = Vq (IV-2) 

3.  The power spectral density of r(t)  is expressed by 
Equation (A-19). 

I  (f) = $   * $ (IV-3) rrv '   pp   qq v   ' 

These three equations will be used in Part C of this section 
to formulate analog circuits for the simulation of the three gust 
components. 

C. Simulation of the Three Gust Components 

This part will first demonstrate that a  K0  process is 
produced by the multiplication of independent Gaussian processes. 
Then it will be shown that each gust component can be simulated by 
employing conventional analog techniques and Gaussian white noise 
generators.  The three gust components are to be assumed independent 
for the time being; the problem of cross spectra will be considered 
in Part D below. 

1.  Probability Density 

It is to be shown that the product of independent Gaussian 
processes has a  K0  probability density. Assume that r(t)  is 
the product of the independent functions p(t)  and q(t). 
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r(t) = p(t)q(t) (IV-4) 

Let p(t)  and q(t)  be Gaussian processes with zero mean values; 
then: 

1        1 x 2 

P (x) = —j== exp[ -f eM ] {IV-5) 

1        1 x 2 

Pq(X) =^feeXp[-I{^) 3 (IV-6) 

Substituting   (IV-5)   and   (IV-6)   into   (IV-1)   gives 

Pv.(z)   = -J^-  rexp[ -i(—)     - i(-5-)   ]— (IV-7) r     '       TTCJ  c    " 2  a 2 xa x 
p q o P q 

Perform  the  substitution 

x    = -E|zl e y (IV-8) 

The  result is 

■i       » I z| 

pr(z) --7Trorexp[-T~r cosh(y)Jdv (IV-9) 

p qj p q 

The integral of (IV-9) is a well known integral representation of 
the modified Bessel function ^0 , and was used to define K0  in 
the definitions section of this report.  This expression is derived 
in many books dealing with the subject of Bessel functions (see for 
example Chapter 6 of Reference 34).  After making the substitution 
of (IV-2) the final result is 

!   |2|     l2l 
Pr(z) = —-M—)   — > 0 (1^-10) 

r    r     ' r 
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Thus the multiplication of independent Gaussian random pro- 
cesses always produces a process characterized by a  '-,  probability 
density.  Note that this result is independent of frequency content. 

2.  Generation of the Vertical Gust Spectrum 

Define w(t) , the vertical velocity component, to be the 
product of two independent random processes p(t)  and q(t) , with 
zero roear. values. 

w(t) = p(t)q(t) (IV-11) 

By (IV-3) 

*ww(f> = Vf) * W^ (IV-12) 

The desired form of i     (f)     is given by (11-16) ww 

! + 3(^^)
2 

Note that the w subscript on L and - has been suppressed since 
only the vertical gust component is being considered. 

Fourier transforming (IV-12) and (IV-13) gives respectively, 

C  (•) = C,,(-)C  (-r) (IV-14) ww      ff   gg 

Cw^) =-#i (H-! -^)exp(-M,T!)       (IV.15) 

Let $  (f)  and  $  (f)  take the forms 
pp       qq 

%      {f) = __A  (IV-16) 
PP      1 + Bf 2 
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(f) = 
...2 

'  i f\   - Cf 
qq      (1 + Df

2)2 (IV-17' 

Fourier transforming (iv-16) and {IV-17) 

C
PP

(
 ^ = TS" exp(--7f~) {IV-i8) 

c- 2-iTl 
cqq(T) = " ^2 (2-i !- /5)exp(- -7r-) (IV.19) 

Multiplying (IV-18) by (IV-19), 

AC 2 Cpp(T)Cqq(T) = -^Z (2-h|-/ü)expr-2~!T|(X + i)]  (IV_20) 

Equations (IV-15) and (IV-20) are identical if 

Ac - ~2-2^4o9 AC -     (ü) 2 (IV-21) 

R - f4-L 2 
b _ ( U , (IV-22) 

D - f^M2 
U _ ( U ' (IV-23) 

Substituting   these  results  into   (iv-16)   and   (IV-17),   we  can write 

~2cV29 

PP d rf   2 (IV-24) 

1   +   (^) 
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'■rc"1 = —im (IV"25! 

The power spectral shapes {IV-24) and (IV-25) are easily pro- 
duced by linearly filtering white noise.  Assume that white noise 
generators which produce power spectra characterized by the constants 
Kp and Kq are used; then, since the power spectrum of each process 
is given by the squared absolute value of the transfer function 
multiplied by the respective K , (IV-24) and (IV-25) are produced 
by filters having the transfer functions 

(IV-26) 

Hq(S> = r    2L ^.2 <IV-27) 
Ti -    ^ • u 

The symbol  s is the Laplace transform variable, equal co i2-'f , 
and the w subscript has been reintroduced in order to avoid later 
confusion. An analog circuit employing these filters to produce the 
vertical power spectrum is shown in Figure (4).  The diagrams of 
Reference 35 were used in producing the analog circuits of this 
report. 

3.  Generation of the Longitudinal Gust Spectrum 

Define u(t) , the longitudinal gust component, to be the 
product of two independent random processes p(t)  and q(t) , both 
with zero mean value 

u(t) = p(t)q(t) (IV-28) 
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By (IV-3) 

fuu(f) -  *pp<f> * »gqCf) (IV-29) 

The form of iuu(f)  is given by  (11-14): 

*uu(f) " a u  "; 2 {IV-30) 

Note  that  the    u    subscript of    L    and    a    has been suppressed. 
Following  the method of Part   (2), 

Cuu(T)   =  Cpp{T)Cqq<T) (IV-31) 

CUU{T)   = a
2exp(-^|T|) (IV-32) 

Assume 

1  + B 

Fourier  transforming   (IV-33)   and   (IV-34) 

$PP(f)   = 777 (IV-33) 

$qq(f)   = 7^72 (IV-34) 

TTA 
2nlTl 

CPP(T)   =^eXp(-^-) (IV-35) 

TTD 
2
^

T 

Cqq(T)   =7feXP(-7r") {IV-3V 

24 



Equations (IV-31) and {IV-32) will be satisfied if 

L 2 2 
AD = 16(g) a (IV-37) 

B = C^) (IV-38) 

Substituting {IV-37) and (IV-38) into (IV-33) and (IV-34) 

2 T 2 
16^(-) 

$pp(f) = —rfri <IV-39) 
i + (^) 

*aa(f) = 2 (IV-40) 

1 + (^ 

These power spectral shapes are produced by passing white 
noise through filters having the transfer functions 

uvü YDKr 
4o.. (-r 

Hp(s> =   2L s P (IV-41) 

1+^r 

1 +—«- u 

Where Kf and Kg are constants characterizing the power spectra 
of the white noise generators and the u  subscript has been re- 
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introduced. An analog circuit employing these filters to produce 
the longitudinal gust spectrum is shown in Figure (5). 

4. Generation of the Lateral Gust Spectnan 

Define v(t) , the lateral wind component, to be the product 
of two independent random processes, p(t) and q(t) , both with 
zero mean value 

v(t) = p(t)q{t) (IV-43y 

The form of i     (f)  is given by (11-15) 

*wtf> = °2 ü 7772 <IV-44> 
i + (^) 

Note that the v subscript of L and a has been suppressed. 
This form differs from that of  (IV-30) only in the constant j   . 

The lateral power spectrum will therefore be produced by filters 
having the transfer functions 

v U V l 4n. V__y__T_ 

2L 
V 

VS) =   V  2L s P (IV-45) 
1 + U 

Hq(s) =  2L-7 <IV-46) 
1 + 

Ü 

An analog circuit employing these filters to produce the lateral 
gust power spectrum is shown in Figure (6). 
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D.  Generation of the w - v Cospectrum 

To this point in the development, the three gust components 
have been assumed independent. Now, in accordance with the fifth 
point listed at the beginning of this section, a low-frequency 
negative cospectrum is to be generated relating the longitudinal 
and vertical gust components. The analog circuits of Figures (4) 
and (5) cannot be modified without changing the spectral shapes 
produced through the white noise sources. Since an analytical 
expression is not available for the cospectrum, the following 
development will demonstrate a general technique which can be 
applied to any form suggested by future work.  In fact, the more 
general problem of producing a cross spectrum rather than simply 
the cospectrum will be discussed (the cospectrum is the real 
part of the cross spectrum). 

Assume a filter array of the form shown in Figure (7)-  The 
■p's of that figure represent independent Gaussian white noise 
generators which produce signals having zero mean values.  The 
signals are passed through the eight linear filters indicated by 
the transfer functions Hi  through Ho . These transfer functions 
are related in such a way that the indicated summing points produce 
white noise as shown (see Section E of appendix).   Since Gaussian 
processes remain Gaussian when linearly filtered and the sum of two 
independent Gaussian processes is itself a Gaussian process, the 
reconstructed white noise signals are Gaussian.  If the filters 
denoted by H^ through Hj) are those which produce the vertical 
and longitudinal gust simulations, then w(t)  and u(t)  will be 
the desired simulated gusts.  The four white noise generators of 
Figures (4) and (5) have been replaced by four summing junctions 
which produce *)&  >   n.ß  >  ^Q  >   and ^ • 

The apoendix considers the reouired relationshio betwepn two 
filters such that the sum of their responses to white noise input 
will be white noise.  The result is stated in Equation (A-34). 
When applied to the filters H^ and H2 of Figure (7), (A-34) 
becomes 

K  =K  [H, (i2TTf)|  + K  |H9(i2nf)! (IV-47) 

A similar relationship must hold between the filter pairs H^ - H. 
H5 - K6 , and H7 - Hg . J   4 

Note that Tii and "^3    contribute to both w(t)  and u(t) . 
A portion of w(t)  is thus added to u(t) , and because of this 
w(t)  and u(t)  will have a non-zero cross spectrum. 
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This cross spectrum will now be expressed in terms of the 
filter transfer functions appearing in Figure (7).  A somewhat 
simplified case of this problem is discussed in the appendix, and 
the desired result in the present case follows directly frcm 
Equation (A-28).  The cross correlation of w(t)  and u(t)  pro- 
duced by the circuit of Figure (7) is 

Cwu(T) = E{[[(Tll * V - ^2 * h2)] * Vlt * 

[[(^ * h3) + [r]4 * h4)] * hB|t • 

[[(^ *h5) + (^5 * h6)] *hc]t + T ■ 

[[(TI3 * h7) + (TI6 * h8)] * hjj. + J     (IV_48) 

Since the r, of Equation (IV-48) are independent and have zero 
mean values, 

Cwu(T) = E{(T1l * hl * ^'t^l * h8 * Vt + T
1
 ' 

E{(Ti3 * h3 * hB)t(T13 * h7 * hD)t + T}      (IV-49) 

This form is essentially identical to Equation (A-23) since 
the convolution of two impulse response functions yields the 
impulse response of the two filters in series.  Following the 
appendix from Equation (A-23) to (A-28) will yield the result, with 

i      = K. , i = 1 , 2 ,..., 8 . ni  1 ' 

^(f) = K1K3[H1(-i2TTf)HA(-i2nf)H5(i2nf)Hc(i2TTf)] * 

[H1(-i2nf)H^(-i2nf)HT(i2rrf)Hri(i2nf ]    (IV-5Gi 
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HA  >   HB  >   He  ,   «and    HD    are  the  transfer  functions  of  filters 
required  to produce    w(t)     and    u(t)     from white noise  input.     Frcn 
Part C of  this  section,  with    $       = K.   i  = A  ,...,   D  , 

r], l ,        7        , 

Lw 2 

V^  16
A/C,K 

HA'S) r A 

i  + 
2L  s 

w 
U 

(IV-51) 

HB(s) 

s    /Cl 
2-.VK 

B 

r 2L  S./ 

u   _ 

{IV~52) 

47 

Kc(s) 
u u y c K 

,     2  C 

i + 
u 

Ü 

(IV-53) 

HD(S) 

1   + 
2L  s u 

U 

{IV-54) 

where    Cj    and    C2     are arbitrary positive constants.     Substituting 
(IV-51)   through   (IV-54)   into   (IV-50), 

K1K,32/7f7   ^     L     2  L              ; H, (-i2-s) Hr (i2^s) 1 
*      /f\   ^     13 u w.  w.     _JJ. lx 1_5  : ^ 
wu^   ' yK. K K K       vu'    lU; 4rTL..s 4"L..s 

A"B C D (1   -   i- w 
U ) (1   + i" 

u 
u 

[-i2ns H3{-i2TTS)   H7(i2-s)] 

4-TL  S  2 4-L  s 
(l-i-^)      (l  + i-^)] 

(IV-55) 
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The transfer functions H^  through Hs can now be chosen. 
The only requirement is that Equation (IV-47) must hold for each 
pair Hj - H? , H3 - H4 , H5 - H5 , and H7 - Hg .  Note that H2 
H4 , H^ , and Hg do not appear in the cross spectrum, Equation 

Many filters could be chosen, all of which would satisfy the 
requirement of a low-frequency negative cospectrum.  Let 

Hi(s! =-!-T-r^  'IV-56i 

o     L  2 
s -/— [^   -   (2-^) ] 

V K2        h 

H2(s) - (1 +  as)  {IV~57> 

KD      2L   2 

ir(1+-[rs) 
H.(s) = 5  {IV-58) 

(1 + asp 

H^s) =  2 5     (IV-59) 
(1 + as)^ 

H5(s) =  TT-^  (IV-60) 
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fKc  2    L  2 
• »/Jf" ! a - (2—) j 

H6(s)   -^"^ 1 ^ as  (IV-61) 

^. 
2L 

(1 +~^s) 
H7(3)--^—YT-ST-— ':iv-62) 

V*3 

s V^ - (2^)2] 
H
8(s) =   1 + as   

(IV-63) 

L  2 L 
^(f) = - 32/2auaw(f) (lf)[(1-i2TTaf)

1
(1+i2^f)] * 

 ^  (IV-64) 
(l-i2TTaf) {l+i2rTaf) 

Note that the shape of the cross spectrum is now a function of 
only a . 

The reduction of Equation (IV-64) to algebraic form is rather 
complicated. If the equation is first Fourier transformed, and 
then reduced by carrying out the resulting correlations, the 
inverse Fourier transform will yield the desired result. When 
these steps are followed, the real part of Equation (IV-64) is 
finally shown to be 

- 2/2CT a L 2 L     r, , -. ,     £.2-, x   IfK u w, w.  . u. jl   +   3(TTaf  1 
$c  (f) -      2    (ir) iij)r, x / "2,2        (IV-65) 
wu        a 11 + (^af) ] 
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If Lu is chosen equal to Lw and  a  is set to  3.5 L^/U , the 
cospectral form becomes as shown in Figure 8, which has been plot- 
ted for direct comparison with meteorological data. 

This completes the analog circuit derivation.  The next 
section of this report summarizes the above development, discusses 
the simulation, and presents the final analog diagrams. 
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SECTION V 

REVIEW AND DISCUSSION OF DEVELOPMENT 

This section discusses the non-Gaussian turbulence simulation 
developed in Section IV. Part A summarizes Section IV for those 
who do not wish tc follow the mathematical treatment. Part B 
considers some practical aspects of the simulation and suggests 
possible simplifications. 

A.  Review of Development 

Section III of this report discusses the characteristics of 
various turbulence simulation techniques and finds that the filtered 
white noise model offers both versatility and simplicity. However, 
the probability density produced by the simulation is Gaussian, and 
therefore not representative of rea? turbulence. 

Section IV extends the filtered white noise method to include 
a non-Gaussian probability distribution.  Six desirable features 
which the new simulation should have are listed at the beginning of 
that section. These features are: 

1. An analog network is to produce three simultaneous random 
processes. These three processes are to represent the three 
orthogonal gust components occurring at a point (such as the 
center of gravity of a vehicle). 

2. Each component should have a probability density character- 
ized by the modified Bessel function of order zero, K0   . 

3. The simulated gust time histories are to have the same 
normalized spectra as were chosen in Section II to represent 
atmospheric turbulence.  The scale length of each component 
should be an independent variable. 

4. The rms intensity of each component should be an independent 
variable, 

5. A negative low-frequency correlation should exist between 
the vertical and longitudinal gust components. 

6. The analog circuit should be as uncomplicated as possible, 
using Gaussian white noise generators and linear filters. 

Statement number two requires that the simulation produce time 
histories with modified Bessel function probability densities. 
Section IV shows that this probability density is produced whenever 
two independent Gaus ian processes with zero mean values are multi- 
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pl^ed. Therefore, a fundamental feature of the non-Gaussian simu- 
lation is the multiplication of Gaussian processes.  Each of the 
three simulated gust components is produced in this way.  Once the 
use of multiplication is established as the method of producing 
gust components, the remainder of the simulation technique follows 
directly. 

Statement three above specified the power spectral density of 
each component.  Since no filtering can be applied to a non-Gaussian 
process without changing its probability' density, all filtering 
required to generate the power spectra must take place before the 
multiplication.  If, as suggested in statement six above, Gaussian 
white noise generators are used to drive the simulation, then filter 
transfer functions can be determined. Transfer functions for the 
vertical gust component are: 

L  2  . 

v^  2 V^r 
VSi =  2L-i K ^"^ 1 + ^f- 

s fc 
2" VK 

Hq(s) =  r~^ (V~2) 

The p and q subscripts in these expressions refer to white 
noise sources n  and r\ 

V «I 
The lateral and longitudinal gust spectra differ only in their 

intensity, a  ,   and scale length, L .  Both gust components can be 
produced with the use of filters with the transfer functions 

4a u IT 
UVCK 

Vs) = ~—ZLT (v-3) 
1 + U 
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^ Hq(s)=rriLi (v-4) 

U 

Again p and q refer to white noise sources ^Ip and "nq •  The 
symbols L and a    apply to either the lateral or longitudinal 
gust component as the case may be. Analog circuit diögrams of the 
three gust component simulations are presented in Figures 4,   5f   and 
6. 

Note that these filters account for the rms of each component 
independently. This feature satisfies the requirement of statement 
four at the beginning of this section. 

Independent simulations of the three gust components have 
thus been obtained.  It remains only to introduce the cospectral 
relationship between the vertical and longitudinal gust components. 
The circuit of Figure 7 illustrates a very general method of obtain- 
ing this result. The output signals w(t)  and u(t)  in that 
figure represent the vertical and longitudinal gust components. The 
filters Hft through Hp represent the filter pairs mentioned above 
[Equations (V-l) through (V-4)] which produce these components. 
Since the lateral component is independent, it does not enter into 
the cospectrum problem. The filters H^ through UQ    are chosen 
so that Gaussian white noise is produced at the indicated summing 
junctions.  The white noise generators of Figures 4 and 5 are thus 
replaced by the filter array to the left of these summing points. 
Mote that the white noise sources ^i    and ^3 contribute to both 
w(t)  and u(t) .  These two noise sources introduce the correlation 
between w{t)  and u(t) . 

H,  through Hfi are chosen to be 

Hl(s) = T^i  (v-5) 

Vk.  _   L 2 

H2(S) = j—r^  ^v-6) 
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V'KT 2L       2 

H3(s)   =  ^  (V-.7) 
(1 + as)^ 

v^[V2[a2 - (2^,2] + s\/^ (2^)4> 
H   (s)   =  5 — =  (V-8) 

(1  -5- asp 

v5  
H5{S)   " 1 + as (V-9) 

2L 
(l+^s, 

Vft-2 - ^ 
H6(s)   =  1 + as     <v-10) 

nC 2L r   D    /-.     . U 
K      (1   +-üiis) 

H7(s)   = -^-T^  (V-11) 

s V^[a2 - (^,2] 
H

8<s)   '       '    '6  1  ^ as  (V-12) 

If it is assumed that the scale lengths of the three gust 
components are equal, then the cospectrum produced by the circuit 
of Figure 7 is 
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$    (f) = r^<if) (if)[1 + 3(^fl j (v-i3) 
cwu       a^    U   ü [1 + (naf)2]2 

The magnitude of a in Equation {V-13) can be chosen from a 
range of values.  If the scale lengths are assumed equal and a is 
chosen to equal 3.5 L/U , the cospectral form becomes as plotted in 
Figure 8. 

All of the components of the turbulence simulation have now 
been determined.  Figure 9 and the accompanying table present the 
complete analog circuit.  The diagrams of Reference (35) have been 
used to translate the filter transfer functions listed above into 
the analog circuit of Figure 9. 

B. Discussion of Simulation 

Several aspects of the simulation and its development will now 
be considered. 

1. Simplicity 

Six desirable features of a turbulence simulation are presented 
at the beginning of this section and in Section IV.  The first five 
of these points have been satisfied by the preceding development. 
However, the sixth item has not been considered.  This item states 
that the simulation should be uncomplicated, using Gaussian white 
noise generators and linear filters wherever possible.  Though the 
second half of the statement has been satisfied, the final circuit 
as presented in Figure 9 can hardly be called uncomplicated.  How- 
ever, some simplification is possible. 

For example, Vrj    and tis of Figure 9 are actually unnecessary. 
These two noise generators can be replaced by connections to T^ 
and "512 without affecting the independence of the lateral gust 
component.  Thus, only six white noise generators are essential. 

The use of a less complicated cross correlation technique 
might permit additional noise generators to be deleted from the 
circuit, resulting in a more compact simulation.  It is also possible 
that certain choices of the parameters U , L , and K will allow 
some simplification. 

2. Simulation of the "Patchy" Turbulence Structure 

The multiplication technique used in this report was initially 
suggested by the "patchy" structure of turbulence.  This led to the 
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TABLE 1 

POTENTIOMETER SETTINGS FOR FIGURE 9 

NOTE: Some values may be greater than 1 and therefore require 
scaling 

NUMBER 
(from Figure 9) 

EXPRESSION FOR POTENTIOMETER VALUE 

1. 
2L  /K ' w / A 
aUV Ki 

2. 
l+^ 

3. -<-i 

4. 8„ n ^ / 
2  ' "V u VcA 

5. u 
2Lw 

6. 1 
a 
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TABLE 1 (cont.) 

POTENTIOMETER SETTINGS FOR FIGURE 9 

1  NUMBER 
[(from Figure 9) 

EXPRESSICW FOR POTENTIOMETER VALUE                           1 

1             7- 
,     /K,.     _          2L     2   ' 

8. W    /    B                                                                                                1 
aU Y K3 

9. 
2L                                                                                                     f w 
au 

]             10. 1(ü)2/Cl'1 

I             11- ^*-'-'*''■ 

i    i2. 

1>2-'"W- 
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TABLE 1 (cont.) 

POTENTIOMETER SETTINGS FÜR FIGURE 9 

NUMBER 
(from Figure 9) 

EXPRESSION  FOR POTENTIOMETER VALUE 

13. 
_   a-V2[a    ^  ( u )   3 1 +     r-r—n 2 » 

aV2Ca    +   (
■lf,    ] 

14. 
2L   fKT 

u/   C 
aU^ K1 

15. 
^^ 

16. 1+    "    -1 

^u      a 

17. 
,     /K^     _          2L     2    ' 

18. 20VC2K2 

19. u 
2Lu 
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TABLE 1 (concluded) 

POrarPIOMETER SETTINGS FOR FIGURE 9 

NUMBER 
(from Figure 9) 

EXPRESSION FOR POTENTIOMETER VALUE 

20. aüVK3 

21. u FT 

22. 
, /k,, ,  5L 2 • 

i^0 "(°u, ] 

23. 2''vVc3K7 

24. Ü 
2Lv 

25. 
iF1 

u rs 
2LvVK8 
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ciioicc of a modified Bessel function probability density. Though 
this probability density has been retained, the original conception 
of simulating each gust component by the product of a turbulence 
function and an intensity function-has become somewhat obscure.  It 
is possible that a differen*: method of introducing the cross corre- 
lation would result in a more obvious analog representation. There 
is also some question as to whether or not "patchy" turbulence will 
be realisLically simulated if only the power spectral density and 
probability density are reproduced.  The filter transfer functions 
derived In Section IV of this report are not unique. General forms 
were assumed for the functions and these wore shown to satisfy the 
desired equations. Many of the constants, particularly those speci- 
fying cutoff frequencies were arbitrary.  It does not seem likely 
that satistically identical results would be obtained if these 
constants were changed. For example, it is possible that they in 
some way specify the average patch size of the turbulent field. 
This is a question which should be studied in future work. 

3.  Ideal Circuit Elements 

The preceding development has assumed that all circuit elements 
behave in an ideal manner. This assumption is justified as far as 
the linear analog equipment is concerned, but the multipliers and 
white noise generators may present some difficulties. 

White noise generators are necessarily non-ideal. The power 
spectral density produced by any physically possible noise source 
cannot be simply a constant, as has been assumed in the preceding 
derivations, but must fall to zero at high frequencies.  In other 
words, the power spectrum can be flat over only a finite frequency 
range.  Fortunately, low-pass filtering is used in the simulation. 
Consequently, only frequencies below about 15 cycles per second are 
important. Higher frequencies are not passed by the filter array. 
Therefore, any white noise source which produces a flat spectrum 
below about 15 cycles per second will be acceptable. 

Another important restriction placed upon the noise generators 
is that they produce signals with zero mean values.  If this condition 
is not met, the probability density will no longer be characterized 
by tc0  and the spectrum equations will contain additional terms. 
In other words, the derivations of this report will no longer apply 
in the strict sense.  Of course, a mean value will always be present 
in physically realizable equipment.  Therefore an acceptable mean 
value limit must be determined. Though this problem has not been 
studied in detail, it appears that effects upon the power spectra 
and cospectrum are negligibly small if the largest mean value can 
be held to less than one or two percent of the smallest white noise 
rms value. The effect of non-zero mean values on the probability 
density has proved somewhat more difficult to analyze.  It seems 
probable that the presence of a mean value in the Gaussian noise 
signals will produce a process which is neither Gaussian nor K0 
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but one of a family of probability densitie.3 lying between these 
extremes.  (Perhaps one of these intermediate distributions in 
actually more representative of turbulence than the K0  dis.;:.i- 
bution, a possibility which should be studied in future work.) 
If the largest mean value is held to less than one or two percent 
of the smallest white noise rms value it should not seriously 
change ehe probability density distribution. 

The quality of the analog multipliers is another important 
consideration. Any non-ideal operation of these units will affect 
both the spectral relationships and the probability densities. No 
analysis of this problem has been undertaken; however, it seems 
certain that the accuracy currently available in analog multipliers 
(0.3 - 0.4% of full scale output) is more than sufficient to pro- 
duce good results. 

The complete analog circuit of Figure 9 has been constructed 
and appears to operate as predicted although the lack of high 
quality multipliers and noise generators compromised the results. 
A statistical analysis of the generated signals has not been made. 

4. Extension to Spatial Distribution 

This report has not considered any methods of extending the 
simulation to include the effects of spatially distributed turbu- 
lence.  For example, the simulation described here cannot produce 
a vehicle rolling moment due to the distribution of the vertical 
gust component along the wing span. Although such an extension is 
certainly possible, it is clearly going to be difficult in view of 
the complications already experienced.  In order to introduce a 
minimum amount of additional complication, a careful study of alter- 
natives should be made before a particular method of extension is 
adopted. 

5. Restrictions on Vehicle Flight Path 

It is important to note that the spectral equations used in this 
report are, in general, valid only for flight parallel to the mean 
wind vector.  Although this restriction permits simulation of normal 
"into the wind" take-off and landing as well as hover, it does not 
permit simulation of crosswind flight.  If the direction of flight 
is taken to be across the mean wind, the spectral forms may be some- 
what different (see for example Reference 36). Since there is 
presently little information on such effects, no attempt has been 
made to account for them here. 
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SECTION VI 

SUMMARY 

Section II of this report discusses those statistical prop- 
erties of low altitude atmospheric turbulence which must be con- 
sidered in a piloted flight simulator.  The homogeneity, stationarity, 
probability density, rms intensity, power spectral densities, and 
cross spectral densities are all considered. The unusual feature 
of the chosen representative forms is a non-Gaussian probability 
density, characterized by the modified Bessel function of the second 
type of order zero, iC0 . The choice of this form is based upon 
an argument arising from the "patchy" structure of turbulence and 
upon experimental measurements typified by Figure 1.  Figure 2 
presents a comparison of the Gaussian and K0  distributions. 

Section III of this report considers the characteristics of 
several, turbulence simulation techniques.  The filtered white noise, 
recorded time history, and sum of sine waves methods are discussed. 
The filtered white noise model, which simulates turbulence by lin- 
early filtering the output of a Gaussian white noise generator, is 
found to offer both simplicity and versatility.  Unfortunately, it 
does not reproduce the non-Gaussian nature of turbulence. 

Sections IV and V ext^ ^d the filtered white noise technique to 
include the modified Besse . function probability density.  It is 
found that the product of independent Gaussian processes will yield 
the desired probability density, and that linear filtering can be 
used to obtain the desired power spectral densities.  A very general 
method of introducing cross correlation between the gust components 
is also developed.  The final analog circuit of the simulation is 
presented in Figure 9 and Table 1.  Some possible simplifications 
in the circuit are discussed in Section V. 

The three outputs which appear in Figure 9 represent the three 
orthogonal gust components of low altitude atmospheric turbulence. 
The rms intensity and scale length of each component are independent 
variables.  The probability density, power spectral densities, and 
cross spectral density of the simulation are presented in Figure 
2, 3, and 8 respectively. 
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APPENDIX 

DERIVATION OF GENERAL STATISTICAL RELATIONSHIPS 

Section IV of this report develops a turbulence simulation 
Which employs the multiplication of independent random processes. 
This appendix derives the statistical relations upon which tho 

development of Section IV is based.  Functions derived, in the 
order of their development, are: 

1. Probability density of the product of two independent 
random processes in terms of the probability densities of 
the given processes. 

2. RMS intensity of the product of two independent random 
processes in terms of the rms intensities of the given 
processes. 

3. Power spectral density of the product of two independent 
random processes in terms of the power spectral densities of 
the given processes. 

4. Cross spectrum of two random processes, each the product 
of two linearly filtered, independent, white noise signals. 

5. Reconstruction of white noise from a sum of linearly 
filtered, independent, white noise signals. 

References 31, 32, and 33 may be of some help in understanding 
the following derivations. 

A.  Probability Density of the Product of Two Independent Random 
Processes 

Let r(t) be the product of two continuous, independent 
random processes, p(t)  and q(t) . 

r(t) = p(t)q(t) (A-l) 

Assume that the probability density functions of p(t)  and 
q(t)  are given by Pp(x)  and Pq{x)  respectively. Then the 
probability that p(t)  and q(t)  take on particular values is 

[probability that p = x] = PD(x)dx 
(A-2) 

[probability chat q = y] = Pa{y)dy 

Since p(t)  and q(t)  are independent processes, the proba- 
bility that they take on particular values simultaneously is 
simply the product of the individual probabilities. 
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probability that 

p = x and q = y 

simul taneously 

= Pp(x)Pq(y)dbcdy {A-3) 

Let It (z) be the probability distribution of r(t). Then 
the probability that r(t)  takes on some value less than or equal 
to z is given by 

I»r(z) = JJP (x)P (y)dxdy (A-4) 

Where F denotes that region of the x - y plane in Which the 
relation xy < z is true. Supplying limits for (A-4), 

I,r(z) = I 5      PD(x)Pa(y)dxdy + J   J   P (x)P (y)dxdy 
y=0 x=-«i> F    H y=— x=z/y p    H 

Then P (x)  is obtained by differentiating (A-5) 

(A-5) 

Pr(z)  = I[Pp(xJPqCf)  + Pp(-x)Pq(.f)^ (A-6) 

Equation (A-6) relates the probability densities of two independent 
functions,  p and q , to the probability density of their product, 
r . 

B.  HMS Intensity of the Product of Two Random Processes 

Let r(t) be the product of two independent random processes, 
p(t)  and q(t) , with zero mean values. 

rCt) = p(t)q(t) 

Prom (DEF-14) the rms intensity of r is 

{A~7) 

_ Lim 
ar      T->a. vHr 

(t)2dt (A-8) 
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Substituting (A-7) into (A-8) and introducing the expected value 
notation of (DEF-8) 

nr = E{p(t)
2q(t)2} (A-9) 

Since p(t)  and q(t)  are independent processes, the expected 
value of their product is given by the product of their individual 
expected values: 

oT  = E{p(t)2}E{q(t)2) (A-10) 

or = apaq (A-ll) 

Equation (A-ll) relates the rms values of two independent functions 
to the rms of their product. 

C.  Power  Spectrum of the Product of Two Independent Random 
Processes 

Let r(t) be the product of two independent random processes 
p(t)  and q(t)  with zero mean values. 

r(t) = p(t)q{t) (A-12) 

By (DEF-6) the autocorrelation of r is 

Crr(T) = E{r(t)r(t + T)1 (A-13) 

Substituting (A-12) into (A-13) 

Crr(T) = E{p(t)q(t)p(t + T)q(t + T)1 (A-14) 

Since the expected value of the product of two independent variables 
is equal ±o the product of the individual expected values, (A-14) 
becomes: 

Crr(T) = E{p(t)p(t + T)lE{q(t)q(t + T)1 (A-15) 
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By (DEF-6) 

Crr(T) = CpP(T)Cqq(T) (A"16) 

By (DEF-17) the power spectral density of r is 

*rr^ = I CPP
(T)Cqq{T)e"i2nfTdT (A"17) 

Equation (A-17) states that $rr is given by the Fourier Transform 
of the product CppCqq .  It is well known that the Fourier trans- 
form of a product becomes a convolution in the frequency domain 
(see, for example, Reference 32).  Equation (A--17) thus becomes: 

♦ rr(f) = Ppptf - ß)*qq(ß)
dP (A"18) 

or, by (DEF-1), 

Wf> = *pp * *qq (A-19) 

Equation (A-19) implies that the power spectral density of the 
product of two independent random variables is given by the convo- 
lution of their respective power spectral densities. 

D.  Cross Spectrum of Two Products of Random Processes 

Let r(t)  and q(t) be products of random processes with 
zero mean values 

r(t) = m1(t)n1(t) (A-20) 

q(t) = m2(t)n2(t) (A-21) 

By (DEF-6), their cross correlation is 
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C  (T) = E{in1(t)n1(t)m2{t + T)n2(t + T> 1      (A-22) 

Let ra^Ct) and 102 (t) both be produced by passing a signal 
mit}     through linear filters with impulse-response functions 
h,,, (t)  and h,,, (t)  respectively. Let ni(t)  and n2(t) be 

similarly produced from a signal n(t) , which is independent of 
m{t)   . 

Crq(T> = Ef ^j * ^t^nt, * ^ t * r^f % * n)t(hn2 * 
n,t + T

1 

(A-23) 

Since all functions in (A-23) are physically possible, all integrals 
in that expression must converge uniformly. 

Expanding the convolution notation and changing the order of 
integration then gives 

cialj)  = JJ^m (a)h  (ß)E{m(t - a)m{t + T - ß) }dadp 
"l   "^ 

• t[hn   (a)hn (ß)E{n(t - a)n(t + T - ß)}dadß 
a 

ni    n2 

By (DEF-6), 

Crq(T) ^ :rjf
hm1

(a)hn2
(ß,Cn«(T + a " e)dad3 " 

* LV<*>hn  <ß,Cnn(T + a- ß)dadß 
—00    i 2 

(A-24) 

(A-25) 
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Fourier transforming (A-25) 

lrq(f>  = fJJV^V^  J" C
™n(T + a '  P>e"i2TTfTdTdad^   * ^ -co      i 2 —• 

fJI11«   (a>h«   W J Cnn^ + « " ß)e"i2TTfTdTdadßl 
ii ni      n2      i» nn 

{A-26) 

Introducing the change of variable    Y =  T + a -  ß    in   (A-29)  gives 

♦ ^(f)   =   [♦„,„,(f)H     (-i2TTf)Hn   {i2TTf)]*[fnn(f)Hn   (-i2TTf)Hn   (i21Tf)] rq mm        m, m^ nn n, n^ 

{A-27) 

If m(t)  and n(t)  are white noise signals, then their 
power spectra are merely constants: 

»(f) = K K [H (-i2TTf)H  (i2TTf)]*[Hn (-i2TTf)H  {i2TTf) ]     {A-28) rq      m n ni,v     m^        n,       n- 

Equation (A-28) expresses the cross spectrum of two random processes, 
each the product of two linearly filtered, independent, white noise 
processes in terms of the filter transfer functions. 

E.  Reconstruction of White Noise from a Sum of Linearly Filtered 
White Noise Signals 

The correlation technique to be described in Section IV of this 
report will require knowledge of a method of constructing white 
noise from a sum of non-white noise sources. 

Let r(t) be the sum of two independent signals p(t)  and 
q(t), each with zero mean value: 

r(t) = p(t) + q(t) (A-29) 

By (DEF-6), noting that p(t)  and q(t)  are independent. 
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Crr{T) = E{p(t)p(t + T)1 + E{q(t)q(t -!- T)}      {A-30) 

or 

C  (') = C  (T) + C  (T) {A-31) 
rrx   ' PP      Qq 

Fourier transforming (A-31) gives 

♦rr(f) = *pp(f) + *qq(f) (A-32) 

If r(t)  is a white noise signal, its power spectrum is 
simply a constant K  : 

Kx = *pp(f) + *qq(f) (A-33) 

A case of special importance to this report occurs when p(t) 
and q(t) are produced by passing white noise through linear 
filters with transfer functions Hp and Hq respectively. Then, 
if Kp and Kg are the constants characterizing the power spectral 
densities of the white noise signals, (A-33) becomes 

Kr = Kp|Hp(i2TTf)| 
2 + Kq|Hq(i2TTf)| 

2 (A-34) 

Equation (A-34) expresses the requirements upon two linear 
filters such that they can be used to reconstruct white noise. 
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