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A NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEM
FOR THE KORTEWEG-DE VRIES EQUATION

IN A QUARTER PLANE

JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

Abstract. The Korteweg-de Vries equation was first derived by Boussinesq
and Korteweg and de Vries as a model for long-crested small-amplitude long
waves propagating on the surface of water. The same partial differential equa-
tion has since arisen as a model for unidirectional propagation of waves in
a variety of physical systems. In mathematical studies, consideration has
been given principally to pure initial-value problems where the wave profile
is imagined to be determined everywhere at a given instant of time and the
corresponding solution models the further wave motion. The practical, quan-
titative use of the Korteweg-de Vries equation and its relatives does not always
involve the pure initial-value problem. Instead, initial-boundary-value prob-
lems often come to the fore. A natural example arises when modeling the effect
in a channel of a wave maker mounted at one end, or in modeling near-shore
zone motions generated by waves propagating from deep water. Indeed, the
initial-boundary-value problem

(0.1)


ηt + ηx + ηηx + ηxxx = 0, for x, t ≥ 0,

η(x, 0) = φ(x), η(0, t) = h(t),

studied here arises naturally as a model whenever waves determined at an
entry point propagate into a patch of a medium for which disturbances are
governed approximately by the Korteweg-de Vries equation. The present essay
improves upon earlier work on (0.1) by making use of modern methods for the
study of nonlinear dispersive wave equations. Speaking technically, local well-
posedness is obtained for initial data φ in the class Hs(R+) for s > 3

4
and

boundary data h in H
(1+s)/3
loc (R+), whereas global well-posedness is shown

to hold for φ ∈ Hs(R+), h ∈ H
7+3s

12
loc (R+) when 1 ≤ s ≤ 3, and for φ ∈

Hs(R+), h ∈ H(s+1)/3
loc (R+) when s ≥ 3. In addition, it is shown that the

correspondence that associates to initial data φ and boundary data h the
unique solution u of (0.1) is analytic. This implies, for example, that solutions
may be approximated arbitrarily well by solving a finite number of linear
problems.
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1. Introduction

This paper is concerned with the wave maker problem for the classical Korteweg-
de Vries equation. In this conception, it is imagined that water at rest in a channel is
set in motion by a wave maker mounted at one end of the channel. If the frequency
and amplitude of the wave maker oscillations are appropriately restricted, this will
generate small-amplitude long waves that propagate down the channel, and thus
will be brought into being motion that corresponds more or less exactly to the
Korteweg-de Vries regime. Indeed, the amplitude of the wave maker is related to
the amplitude of the generated waves, while the frequency of the wave maker is
related inversely to the wavelength. In this situation, the most convenient and
accurate measurements that can be made are to monitor the free surface at fixed
points down the channel from the wave maker. This scheme has been followed
in a number of experimental works (cf. Zabusky and Galvin [62], Hammack [32],
Hammack and Segur [33] and Bona, Pritchard and Scott [7]). Such a physical
configuration is naturally modeled by the initial-boundary-value problem

ηt + ηx + ηηx + ηxxx = 0, for x, t ≥ 0,

η(x, 0) = 0, η(0, t) = h(t),
(1.1)

where x is proportional to distance along the channel with x = 0 corresponding to
the point closest to the wave maker where measurements are taken, t is proportional
to elapsed time with t = 0 being the initial time when the water surface is quiescent
and the wave maker is activated, and η(x, t) is proportional to the deviation of the
free surface at the point x down the channel at time t (see [7, 10] for more detailed
commentary on this modeling stance). For each relevant time t, the value h(t) is
the measured deviation of the free surface from its rest position at the point x = 0
at time t. The function h acts as the driving force for the mathematical problem
(1.1).

Several points are worth noting about the modeling inherent in (1.1). First, the
perfect fluid assumption that leads to the Korteweg-de Vries equation has not been
relaxed. Dissipative effects need to be taken into account in any practical use of
this model, but they are ignored in the present analysis. Second, the channel has
been assumed to extend infinitely away from the wave maker. This corresponds to
ignoring wave reflection from the end of the channel or from a beach. In practice,
this will mean either that the beach is very gently sloping so that little energy does
in fact come back, or, in a channel, the experiment takes place over a time scale such
that the wave motion does not reach the end of the channel. In any event, if there is
significant reflected wave motion moving back toward the wave maker, this model is
inappropriate, as one of its hallmarks is unidirectionality of propagation. (To take
account of two-way propagation at the KdV level of approximation, a Boussinesq
system of equations would be needed as in [3, 4] for example.) Furthermore, notice
that the usual caveat where one removes the term ηx from the equation by changing
to traveling coordinates is not available without a real price in the quarter-plane
problem. A change of variables where one lets v(x, t) = η(x + t, t) does indeed
dispense with the offending term in the evolution equation, but the boundary con-
dition must now be applied in the form v(−t, t) = h(t) for t ≥ 0. Thus the boundary
condition is applied at a changing spatial point and the problem is posed in the
peculiar domain {(x, t) : t ≥ 0, x + t ≥ 0}, rather than a quarter plane. The gain
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in simplicity of the equation does not appear to justify the difficulty caused by
the application of a boundary condition at a moving point, and therefore we have
elected to stay in laboratory coordinates as expressed in (1.1). If one drops the
term ηx arbitrarily, the resulting initial-boundary-value problem may be treated by
a considerably simplified version of the analysis that is developed here for (1.1).

Analogous considerations apply to other physical situations modeled approxi-
mately by the Korteweg-de Vries equation, and lead also to the problem (1.1).

The problem (1.1) has received attention in the past, and a satisfactory theory
exists corresponding to physically relevant smoothness assumptions on the initial
and boundary data (cf. [6, 10, 11, 22, 23]). In fact, the problem is usually posed
with allowance made for a more general initial configuration, thus in the form ηt + ηx + ηηx + ηxxx = 0, for x, t ≥ 0,

η(x, 0) = φ(x), η(0, t) = h(t).
(1.2)

Naturally, the consistency condition φ(0) = h(0) is imposed on the auxiliary data.
Global well-posedness results for strong solutions up to the boundary were estab-
lished in [10, 11] for suitably smooth φ and h that satisfy certain compatibility
conditions. Included in the theory is the continuity of the mapping that associates
to given initial- and boundary-data the corresponding solution of (1.2). Faminskii,
in a wide-ranging paper [23], deals with the initial-boundary-value problem (1.2)
for a generalization of the KdV equation somewhat like that appearing later in
Craig, Kappeler and Strauss [20]. He puts forward a theory of well-posedness for
generalized solutions set in weighted H1-Sobolev classes. Moreover, he obtains ex-
tra interior regularity in case the initial data decays suitably rapidly at +∞. The
program of Fokas, Its and Pelloni [24, 25, 26, 27] whereby the inverse-scattering
transform on R is adapted to R+ also deserves notice. This method yields very
interesting and helpful formal long-time asymptotics, and it seems likely it will also
be useful in further, detailed studies of the nonlinear problem. We also point to
related work on the periodic- and two-point-boundary-value problem for the KdV
equation posed on a finite interval (see [15], [49], [56], [63], [18]).

By contrast, the mathematical theory pertaining to the pure initial-value prob-
lem for the KdV equation posed on the whole real line R or on a finite interval
with periodic boundary conditions is considerably more advanced. Before recent
developments, the problem

ηt + ηηx + ηxxx = 0, η(x, 0) = φ(x),(1.3)

posed for x ∈ R or over a finite interval with periodic boundary conditions, was
known to be locally well-posed in the space Hs(R) of square-integrable functions
whose first s derivatives are also square integrable, for s > 3/2 and globally well-
posed in the same space if s ≥ 2 (see [9, 35, 36, 37, 38]). Various types of weak
solutions were also known to exist. These results were obtained by studying a
corresponding regularized equation, by applying general abstract semigroup theory
and by other methods of nonlinear functional analysis [9, 21, 34, 35, 51, 53, 58]. As
remarked already by Saut and Temam [52], solving the initial-value problem (1.3)
cannot result in the solution being more regular in the Hs-spaces than it is initially,
because the equation is time reversible. Thus, there is no smoothing associated with
solving the initial-value problem (1.3) of the sort that obtains when one solves the
linear heat equation or Burger’s equation, for example.
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There is, however, more subtle smoothing associated with the initial-value prob-
lem (1.3). One of the early expressions of this fact appears in the papers of Cohen
[16, 17] and, later, Sachs [50]. These works made use of the inverse-scattering rep-
resentation of solutions. The outcome is a set of results showing that decay of
initial data at +∞ translates into a local smoothing of the solution beyond that
which it has initially. Starting late in the 1970’s, those smoothing properties were
investigated by techniques other than the inverse-scattering representation of solu-
tions. Kato [37, 38] and independently, Kruzhkov and Faminskii [45, 46] realized
among other things that solutions of (1.3) whose initial data lies in Hs(R) not only
lie in C(0, T ;Hs(R)), but also in L2(0, T ;Hs+1

loc (R)). This property, now known as
Kato-smoothing, stimulated an extensive investigation of various smoothing prop-
erties of the KdV-equation and other dispersive wave equations (see, for example,
[13, 14, 19, 20, 30, 39, 40, 41, 42, 43, 44, 54, 59, 61] and the references therein). In
particular, various Strichartz-type Lpt −Lqx estimates were established for the linear
problem

ηt + ηxxx = 0, η(x, 0) = φ(x),(1.4)

associated to (1.3) in the work of Kenig-Ponce-Vega [39]-[44] and Bourgain [13, 14].
Those linear estimates made it possible to apply the contraction-mapping principle
to establish directly the well-posedness of the pure initial-value problem (1.3) for
functions φ defined on R which either decay to zero at infinity or which are periodic.
Indeed, the problem (1.3) posed on the whole line R was shown to be well-posed in
the space Hs(R) for s > 3

4 by Kenig, Ponce and Vega [41], and in larger spaces by
Bourgain [14] and Kenig, Ponce and Vega [43, 44], culminating in a well-posedness
result set in Hs(R) for any s > − 3

4 . As for the initial-value problem (1.3) posed
on a periodic domain S, it was proved to be well-posed in Hs(S) for s ≥ 0 by
Bourgain [14] and for s > −1/2 by Kenig, Ponce and Vega [44]. (Henceforth, the
abbreviation “IVP” will stand for the often-used phrase “initial-value problem”
while the mnemonic “IBVP” stands for “initial-boundary-value problem”.)

Because of well-posedness, the IVP (1.3) defines a nonlinear map KH from the
space Hs to C([0, T ];Hs) (Hs stands for Hs(R) or Hs(S) depending on whether
(1.3) is considered on R or on S). This map was shown to be continuous from
Hs to C([0, T ];Hs) by Bona and Smith [9] and Kato [36], and Hölder continuous
with exponent 1/2 from the space Hs+1/2 to the space L∞(0, T ;Hs) by Saut and
Temam [52]. Much stronger regularity can be established by taking advantage of the
smoothing properties of the equation. Simply as a by-product of their contraction-
principle approach to the IVP (1.3), Kenig, Ponce and Vega [42] obtained that
the map KH is Lipschitz continuous from the space Hs to the space C([0, T ];Hs).
Later, based on the previously mentioned works of Kenig, Ponce, Vega, and Bour-
gain, Zhang [64, 65, 66] proved that the map KH is infinitely Fréchet differentiable
from the space Hs to the space C([0, T ];Hs) and that for δ > 0 sufficiently small,
the formal Taylor series expansion

KH(φ+ ψ) =
∞∑
n=0

K
(n)
H (φ)[ψn]

n!
(1.5)

converges in C([0, T ];Hs) uniformly for ‖ψ‖s ≤ δ, which is the same as saying
that the map KH is analytic from the space Hs to the space C([0, T ];Hs). Here,
K

(n)
H (φ) is the n-th derivative of KH at φ, an n-multilinear map from the n-fold
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product of Hs with itself to C([0, T ];Hs). Consequently, the solution of the IVP
(1.3) may be approximated arbitrarily well on a finite time interval by solving a
finite number of linear problems.

Our purpose in this paper is to bring the theory for the quarter-plane problem
(1.2) at least partly into line with the modern theory for the pure initial-value
problem (1.3) posed on R. The following results will be established in this paper.

The initial-boundary-value problem (1.2) is locally well-posed for initial data φ in
the space Hs(R+) and boundary data h in the space H(s+1)/3

loc (R+) satisfying certain
compatibility conditions (see Section 4 ) for s > 3/4, whereas global well-posedness
holds for φ ∈ Hs(R+), h ∈ H

7+3s
12 (R+) when 1 ≤ s ≤ 3 and for φ ∈ Hs(R+),

h ∈ H
(s+1)/3
loc (R+) when s ≥ 3. Furthermore, the corresponding solution map is

an analytic correspondence between the space of initial- and boundary-data and the
solution space.

The crux of the modern analysis of nonlinear, dispersive evolution equations is
the linear estimates to which reference was made above. For the IBVP (1.2) under
consideration here, the associated linear problem ηt + ηx + ηxxx = 0, for x, t ≥ 0,

η(x, 0) = φ(x), η(0, t) = h(t),
(1.6)

plays the same central role that the linearized IVP

ηt + ηxxx = 0, η(x, 0) = φ(x),(1.7)

does in the study of (1.3). Since (1.6) is posed in a quarter plane, the Fourier
transform does not possess the same power it has when the problem is presented on
all of R2. As a potential global solution of (1.6) is defined on a half-line R+ in each
of the two independent variables x and t, it is not unnatural to think of replacing
the use of the Fourier transform that comes to the fore in the analysis of (1.7) with
the Laplace transform. By taking the Laplace transform with respect to t of both
sides of the equation in (1.6), the IBVP is converted to a one-parameter family of
third-order, boundary-value problems

λη̂(x, λ) + η̂x(x, λ) + η̂xxx(x, λ) = φ(x),

η̂(0, λ) = ĥ(λ), η̂(+∞, λ) = 0, η̂x(+∞, λ) = 0,
(1.8)

where η̂ = η̂(x, λ) denotes the Laplace transform of η = η(x, t) with respect to t
and λ > 0 is the dual variable. The solution of (1.8) is given by

η̂(x, λ) =
∫ +∞

0

G(x, x0;λ)φ(x0)dx0 + er(λ)xĥ(λ)

where G(x, x0;λ) is the Green’s function associated with (1.8) in the special case
wherein ĥ ≡ 0 and r(λ) is the solution of

λ+ r + r3 = 0

for which Re r(λ) < 0. The solution η of (1.6) is then given formally by

η(x, t) =
1

2πi

∫ +∞+iγ

−∞+iγ

eλt
(∫ +∞

0

G(x, x0;λ)φ(x0)dx0 + er(λ)xĥ(λ)
)
dλ(1.9)
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for x, t ≥ 0, where γ is a fixed, but arbitrary positive constant. At first sight, a
solution formula like this does not appear well suited to analysis by Fourier tech-
niques. However, by carefully choosing the contour over which the outer integral is
computed, we are able to rewrite the representation in (1.9) to obtain the following,
remarkable explicit formula. Define H = H(x, t) by

H(x, t) =
1

2π

∫ ∞
1

eiµ
3t−iµt

∫ ∞
0

eiµ(x−ξ)φ(ξ)dξdµ

+
1

2π

∫ ∞
1

eiµ
3t−iµte−

iµ+
√

3µ2−4
2 x

∫ ∞
0

e−iµξφ(ξ)dξdµ

+
1

2πi

∫ ∞
0

e−µ
3t−µte−

µ−i
√

4+3µ2
2 x

∫ ∞
0

e−µξφ(ξ)dξdµ

+
1

2π

∫ ∞
1

eiµ
3t−iµte−

√
3µ2−4+iµ

2 x(3µ2 − 1)
∫ ∞

0

e−iµ
3ξ+iµξh(ξ)dξdµ.

(1.10)

In terms of H , the solution η of (1.6) is, for x, t ≥ 0,

η(x, t) = H(x, t) +H(x, t).(1.11)

A cursory examination of (1.10)-(1.11) reveals that there are two types of smooth-
ing properties associated with the linear problem (1.6); the smoothing effected upon
η with respect to its initial data φ and with regard to its boundary data h. As in
the work on the IVP (1.3), these aspects are the heart of the theory to be developed
here. It will be shown that for h ≡ 0, the solution η of (1.6) satisfies the following
estimates: For φ ∈ L2(R+),

sup
0≤x<+∞

∫ ∞
0

|∂xη(x, t)|2dt ≤ C‖φ‖L2(R+),(1.12)

sup
0≤x<∞

‖η(x, ·)‖
H

1/3
t (R+)

≤ C‖φ‖L2(R+),(1.13)

for φ ∈ H1/2(R+),(∫ +∞

0

sup
0≤x<∞

|∂xη(x, t)|4dt
)1/4

≤ C‖φ‖H1/2(R+)(1.14)

whereas, for s > 3
4 and φ ∈ Hs

0(R+),(∫ +∞

0

sup
0≤t≤T

|η(x, t)|2dx
)1/2

≤ C(1 + T )‖φ‖Hs(R+).(1.15)

On the other hand, if φ ≡ 0 and h ∈ H1/3(R+), the solution η of (1.6) will be
shown to satisfy the following inequalities:

sup
0≤t<∞

‖η(·, t)‖L2(R+) ≤ C‖h‖H1/3(R+),(1.16) (∫ +∞

0

sup
0≤t<∞

|η(x, t)|2dx
)
≤ C‖h‖H1/3(R+),(1.17)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE KDV EQUATION IN A QUARTER PLANE 433

sup
0≤x<∞

(∫ +∞

0

|∂xη(x, t)|2dt
)1/2

≤ C‖h‖H1/3(R+),(1.18)

sup
0≤x<∞

‖η(x, ·)‖
H

1/3
t (R+)

≤ C‖h‖H1/3(R+),(1.19)

and if h ∈ H1/2(R+), then(∫ +∞

0

sup
0≤x<∞

|∂xη(x, t)|dt
)1/4

≤ C‖h‖H1/2(R+).(1.20)

The estimates (1.12) and (1.18) are sharp versions of the local smoothing effect
of Kato-type. The estimates (1.14) and (1.20) reveal global smoothing effects of
Strichartz-type for the linear problem (1.6). The estimates (1.15) and (1.17) are
half-line versions of Corollary 2.9 in [41]. The estimates (1.13) and (1.19) comprise
sharp trace results.

Armed with these linear estimates, we are able to obtain local well-posedness
results for the IBVP (1.2) via the contraction-mapping principle. In our initial
foray, we approached the linear estimates directly by way of the representation
(1.10)-(1.11). One of the referees remarked that the estimates pertaining to the
solution η of (1.6) with h ≡ 0 can be reduced to the problem where φ ≡ 0 together
with the known results for the initial-value problem

ut + ux + uxxx = 0, u(x, 0) = φ∗(x),

for x ∈ R, t ≥ 0, where φ∗(x) is a suitable extension of the initial data φ defined on
the half-line R+ to the entire real axis. Indeed, by letting v(x, t) = u(x, t)− η(x, t),
one obtains a function defined on R+×R+ satisfying the linear KdV equation and
with v(0, t) = u(0, t) and v(x, 0) ≡ 0. In our development, we have taken advantage
of this suggestion, thereby saving quite a few pages of detailed inequalities. On the
other hand, we have kept the derivation of the exact solution (1.10)-(1.11) despite
the fact that we need only a portion of this formula. Exact formulas are often useful
when more detailed aspects of solutions are examined.

Global well-posedness follows from the local theory as soon as corresponding
global a priori estimates are established. In contrast to the pure initial-value prob-
lem (1.3), where the needed global estimates are provided with little effort by the
infinitely many conservation laws possessed by the IVP for the KdV equation,
more protracted analysis is demanded in establishing global a priori estimates for
the IBVP (1.2) because these conservation laws no longer hold.

In [10], using energy estimates, Bona and Winther showed that for any solution
of (1.6) that is appropriately smooth up to the boundary, the following bounds
hold:

sup
0≤t≤T

‖η(·, t)‖H1(R+) ≤ α1(‖φ‖H1(R+) + ‖h‖H2(0,T ))

and

sup
0≤t≤T

‖η(·, t)‖Hs(R+) ≤ αs(‖φ‖Hs(R+) + ‖h‖H1+[s/3](0,T )),

for s = 3k or 3k + 1, k = 1, 2, · · · . The functions αj : R+ → R+ are continuous
and nondecreasing. It is worth pointing out that in the above estimates, more
regularity of h is required than that needed for the local well-posedness results
indicated above and proved in Theorem 4.9. Moreover, missing from these results
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are direct bounds in H2(R+), H5(R+), · · · , as well as in Hs(R+) for non-integer
s. An appraisal of the proof in Section 3 of [10] of these inequalities holds out little
hope that such bounds will be forthcoming via direct energy estimates. Compared
with the relative ease with which one obtains a priori estimates for the pure initial-
value problem, the IBVP (1.2) is more difficult because of the non-homogeneous
boundary conditions and, at a more delicate level, the loss of regularity experienced
when one takes the trace of a solution at x = 0.

In this paper we will provide the following global a priori estimates for the IBVP
(1.2): For any T > 0,

sup
0≤t≤T

‖u(·, t)‖Hs(R+) ≤ αs
(
‖φ‖Hs(R+) + ‖h‖

H
7+3s

12 (0,T )

)
for 1 ≤ s ≤ 3 and

sup
0≤t≤T

‖u(·, t)‖Hs(R+) ≤ αs
(
‖φ‖Hs(R+) + ‖h‖

H
s+1

3 (0,T )

)
for s ≥ 3. The various smoothing properties of (1.5) described earlier will play a
central role in establishing these estimates. Another key tool is nonlinear interpo-
lation theory as expounded in Tartar [57], and Bona and Scott [8].

Special arguments are also needed in discussing analyticity of the solution map
KI associated to the IBVP (1.2) from the space Hs(R+)×Hs/3(0, T ) to the space
C([0, T ];Hs(R+)). Because of the compatibility conditions that the initial data φ
and the boundary data h have to satisfy, the domain of the solution map KI is
a linear subspace of Hs(R+) ×Hs/3(0, T ) only if s ≤ 7/2. Thus the Taylor series
expansion does not hold in the form depicted in (1.5) when s > 7/2 and more subtle
considerations are needed. In fact, it turns out to be convenient to generalize the
setting to systems of m equations that include the IBVP (1.2) as a special case. In
this setting, an appropriate analyticity theory is formulated and proved, and the
result then interpreted in the KdV setting to achieve an analyticity result for all
s > 3/4.

Finally, we point out that a linear problem related to (1.6), has been studied by
Fokas and Pelloni [24], namely qt + qxxx = 0, x ≥ 0, t > 0,

q(x, 0) = q1(x), q(0, t) = q2(t).
(1.21)

They obtained the explicit solution

q(x, t) =
1

2π

∫ +∞

−∞
e−ikx−ik

3t

∫ ∞
0

eikyq1(y)dydk +
∫
L1

e−ikx−ik
3tν(k)dk,(1.22)

where the contour L1 consists of the directed rays arg(k) = 4
3π and arg(k) = 5

3π,

ν(k) = 3k2

∫ ∞
0

eik
3sq2(s)ds− ωq̂1(ωk)− ω2q̂1(ω2k), for k ∈ L1,

with ω = e−2πi/3 and

q̂1(k) =
∫ ∞

0

eikyq1(y)dy.
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Of course, the term qx is missed from the equation in (1.21). To account for this,
Fokas and Pelloni also considered the linear problem

qt + qxxx = 0, x ≥ ct, t > 0,

q(x, 0) = q1(x), x ≥ 0,

q(ct, t) = q2(t), t ≥ 0.

(1.23)

Under the Galilean transformation x = ξ + cτ, t = τ mentioned in [24], (1.23) is
equivalent to 

qt − cqx + qxxx = 0, x ≥ 0, t > 0,

q(x, 0) = q1(x), x ≥ t,

q(0, t) = q2(t), t ≥ 0.

(1.24)

The explicit solution

q(x, t) =
1

2π

∫ +∞

−∞
e−ikx−ik

3t

∫ ∞
0

eikyq1(y)dydk +
∫
L

e−ikx−ik
3tν(k)dk,(1.25)

for the linear problem (1.23) is presented in [24], where the contour L is the lower
branch of hyperbola 3k2

R − k2
I + c = 0, k = kR + ikI , in the complex k-plane and

ν(k) is defined by ν(k) = G(k) + C(k) with

G(k) = (3k2 + c)
∫ ∞

0

ei(k
3+ck)sq2(s)ds

and

C(k) =
3k2 + 2c+ 3kk̄

(3k2 + 2c)(3k2 + 4)

∫ ∞
0

e−i(k+k̄)yq1(y)dy

+
3k2 + 2c+ 3k(k + k̄)
(3k2 + 2c)(3k2 + 4)

∫ ∞
0

e−ik̄yq1(y)dy.

Notice that one cannot take c = −1 in the latter formula, and hence this analysis
does not provide a solution of the standard linear wave maker problem (1.6) as
formulated above.

The plan of the present paper is as follows. Section 2 is devoted to the derivation
of formal solution formulas for linear problems that lead to the results in (1.10)-
(1.11). This is somewhat tedious, but crucial in Section 3 to obtaining the linear
estimates just described. Armed with these linear estimates, local well-posedness
results are set down for auxiliary data in Hs(R+) × H(s+1)/3

loc provided only that
s > 3

4 . At this stage of the development in Section 4, an interesting issue arises
for larger values of s, which was already apparent in the work of Bona, Luo and
Winther [6, 10, 11]. If s is large enough, one needs more than the most obvious
compatibility condition φ(0) = h(0) to infer existence of appropriately smooth
solutions. Section 5 uses the local well-posedness theory, some a priori estimates,
and nonlinear interpolation to attack global well-posedness in case s ≥ 1. The
last major section provides a theory pertaining to the analyticity of the solution
mapping.
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2. Solution formulas for linear problems

In this section, explicit representation formulas are derived for solutions of initial-
boundary-value problems for the linear KdV equation.

Consideration is first directed to the homogeneous linear problem
ut + ux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = 0.
(2.1)

By semigroup theory, its solution may be obtained in the form

u(t) = Wc(t)φ,

where the spatial variable is suppressed and Wc(t) is the C0-semigroup in the space
L2(R+) generated by the operator

Af = −f ′′′ − f ′

with the domain

D(A) = {f ∈ H3(R+)| f(0) = 0}.
By d’Alembert’s formula, one may use the semigroup Wc(t) to formally write the
solution of the inhomogeneous linear problem

ut + ux + uxxx = f, for x, t ≥ 0,

u(x, 0) = 0, u(0, t) = 0,
(2.2)

in the form

u(t) =
∫ t

0

Wc(t− τ)f(·, τ)dτ.(2.3)

The following proposition provides an explicit formula for Wc(t)φ.

Proposition 2.1. For any φ ∈ L2(R+), define

U+
0 (t)φ(x) =

1
2π

∫ ∞
1

eiµ
3t−iµt

∫ ∞
0

eiµ(x−ξ)φ(ξ)dξdµ,

U+
1 (t)φ(x) = − 1

2π

∫ ∞
1

eiµ
3t−iµte

−
(
iµ+
√

3µ2−4
2

)
x
∫ ∞

0

e−iµξφ(ξ)dξdµ

and

U+
2 (t)φ(x) =

1
2πi

∫ ∞
0

e−µ
3t−µte

−
(
µ−i
√

3µ2+4
2

)
x
∫ ∞

0

e−µξφ(ξ)dξdµ.

Then it follows that

Wc(t)φ(x) =
2∑
j=0

(
U+
j (t)φ(x) + U+

j (t)φ(x)
)
.

Proof. Using the Laplace transform as described earlier, there obtains the formula

u(x, t) =
1

2πi

∫ r+i∞

r−i∞
eλtR(λ,A)φ(x)dλ,
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where r > 0 is a given constant and R(λ,A) is the resolvent operator of A. If the
function v is defined by v = R(λ,A)φ, then v is a solution of λv(x) + v′(x) + v′′′(x) = φ(x), 0 ≤ x < +∞,

v(0) = 0, v(x), v′(x)→ 0 as x→ +∞.
(2.4)

In consequence, the function v has the representation

v(x) = R(λ,A)φ(x) =
∫ ∞

0

G(x, s, λ)φ(s)ds,

where G = G(x, s, λ) is the associated Green’s function for (2.4). If we let γ1, γ2, γ3

be the three roots of the characteristic equation

λ+ γ + γ3 = 0, for Reλ > 0,(2.5)

ordered so that

Re γ1 < 0, Re γ2 > 0, Re γ3 > 0,

then G is given explicitly by

G(x, s, λ) =
1

∆(λ)

{
(γ3 − γ1)eγ1x−γ2s + (γ1 − γ2)eγ1x−γ3s

+Y (x, s)(γ2 − γ3)eγ1(x−s)

+ (1− Y (x, s))
(

(γ1 − γ3)eγ2(x−s) + (γ2 − γ1)eγ3(x−s)
)}

,

where

∆(λ) = (γ1 − γ2)(γ1 − γ3)(γ2 − γ3)

and

Y (x, s) =

 1 if 0 ≤ s ≤ x,

0 otherwise.

Combining these formulas gives the representation

Wc(t)φ(x) =
1

2πi

∫ r+i∞

r−i∞
eλt
∫ ∞

0

G(x, s, λ)φ(s)dsdλ,(2.6)

valid for any fixed r > 0. Note that, for fixed values of x and s, G(x, s, λ) is analytic
in the right-half plane Reλ > 0 and continuous for Reλ ≥ 0 except at

λ = ν± ≡ ±
2i

3
√

3
.

But, as λ→ ν±, a little analysis shows that

G(x, s, λ) ∼ O
(
|λ− ν±|−1/2

)
,

uniformly for x, s ≥ 0. As this singularity is integrable, we may let r → 0 in (2.6),
thereby obtaining

Wc(t)φ(x) =
1

2πi

∫ i∞

−i∞
eλt
∫ ∞

0

G(x, s, λ)φ(s)dsdλ

≡ I + II,
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with

I =
1

2πi

∫ i∞

0

eλt
∫ ∞

0

G(x, s, λ)φ(s)dsdλ

and

II =
1

2πi

∫ 0

−i∞
eλt
∫ ∞

0

G(x, s, λ)φ(s)dsdλ.

Introduce the notation

A(x, λ) = A1(x, λ) +A2(x, λ),

B(x, λ) =
∫ x

0

(γ2 − γ3)eγ1(x−ξ)φ(ξ)dξ

and

C(x, λ) = C1(x, λ) + C2(x, λ),

with

A1(x, λ) =
∫ ∞

0

(γ3 − γ1)eγ1x−γ2ξφ(ξ)dξ,

A2(x, λ) =
∫ ∞

0

(γ1 − γ2)eγ1x−γ3ξφ(ξ)dξ,

C1(x, λ) =
∫ ∞
x

(γ1 − γ3)eγ2(x−ξ)φ(ξ)dξ

and

C2(x, λ) =
∫ ∞
x

(γ2 − γ1)eγ3(x−ξ)φ(ξ)dξ.

Then the quantities I and II may be written in the form

I =
1

2πi

∫ ∞i
0

eλt

∆(λ)
[A(x, λ) +B(x, λ) + C(x, λ)]dλ

and

II =
1

2πi

∫ 0

−∞i

eλt

∆(λ)
[A(x, λ) +B(x, λ) + C(x, λ)] dλ.

Consider first the integral I. It is convenient to make the change of variables

λ = iµ3 − iµ, with 1 ≤ µ < +∞,
in the equation

γ3 + γ + λ = 0.

In terms of µ, the three solutions of the characteristic equation (2.5) are

γ+
1 =

−
√

3µ2 − 4− iµ
2

, γ+
2 =

√
3µ2 − 4− iµ

2
, γ+

3 = iµ.

Notice that

γ+
1 (1) = −i and γ+

2 (1) = 0.
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In terms of the variable µ, the integral I may be rewritten as

I =
1

2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)

(
A+(x, µ) +B+(x, µ) + C+(x, µ)

)
dµ,

where ∆+(µ), A+(x, µ), B+(x, µ) and C+(x, µ) are obtained from ∆(x, λ), A(x, λ),
B(x, λ) and C(x, λ), respectively, by replacing λ with iµ3 − iµ and γ1, γ2 and γ3

by γ+
1 , γ

+
2 and γ+

3 , respectively.
Similarly, in the analysis of the integral II, make the change of variables

λ = iµ3 − iµ = −iµ3 + iµ, where µ ≥ 1,

in the equation

γ3 + γ + λ = 0.

The three roots of this characteristic equation are given by

γ−1 (µ) = γ+
1 (µ), γ−2 (µ) = γ+

2 (µ), γ−3 (µ) = γ+
3 (µ),

in this case. Thus, it transpires that

II =
1

2πi

∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)

(
A−(x, µ) +B−(x, µ) + C−(x, µ)

)
dµ,

where

∆−(µ) = ∆+(µ), A−(x, µ) = A+(x, µ),

B−(x, µ) = B+(x, µ), C−(x, µ) = C+(x, µ).

It is now proposed that

U+
0 (t)φ(x) =

1
2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)B+(x, µ)dµ

+
1

2πi

∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)C−2 (x, µ)dµ,(2.7)

from which it transpires that

U+
0 (t)φ(x) =

1
2πi

∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)B−(x, µ)dµ

+
1

2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)C+

2 (x, µ)dµ.(2.8)

To see the validity of (2.7), let

Γ+
3 =

{
z : z = γ+

3 (µ), 1 ≤ µ < +∞
}

and

Γ−1 =
{
z : z = γ−1 (µ), 1 ≤ µ < +∞

}
.

Both Γ−1 and Γ+
3 are oriented curves in the complex z-plane starting at the same

point z = i. Let Ω1 denote the region enclosed by Γ−1 and Γ+
3 that includes a
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neighborhood of the imaginary axis from i to i∞ with negative real part. By a
simple change of variables,

1
2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)B+(x, µ)dµ =

1
2πi

∫
Γ+

3

F+
1 (x, t, z)dz

with

F+
1 (x, t, z) = e−(z3+z)tB̃+(x, z)(−3z2 − 1)/∆̃+(z),

where

B̃+(x, z) =
∫ x

0

(
γ̃+

2 (z)− γ̃+
3 (z)

)
eγ̃

+
1 (z)(x−ξ)φ(ξ)dξ,

∆̃+(z) =
(
γ̃+

1 (z)− γ̃+
2 (z)

) (
γ̃+

1 (z)− γ̃+
3 (z)

) (
γ̃+

2 (z)− γ̃+
3 (z)

)
,

and

γ̃+
1 (z) =

−
√
−3z2 − 4− z

2
, γ̃+

2 (z) =
√
−3z2 − 4− z

2
, γ̃+

3 = z.

The function F+
1 (x, t, z) is analytic in the region Ω1 and is continuous on the closure

of Ω1. In addition, F+
1 (x, t, z) tends to zero as z → ∞ in Ω1, uniformly in x and

t. Hence, we are allowed to change the contour on the basis of Cauchy’s Theorem
and thereby determine that

1
2πi

∫
Γ+

3

F+
1 (x, t, z)dz =

1
2πi

∫
Γ−1

F+
1 (x, t, z)dz.

But, on Γ−1 , we see that

z3 + z = (γ−1 (µ))3 + γ−1 (µ) = iµ3 − iµ,

(3z2 + 1)dz = d(z3 + z) = i(3µ2 − 1)dµ,

γ̃+
1 (z) = γ−3 (µ), γ̃+

2 (z) = γ−2 (µ), γ̃+
3 (z) = γ−1 (µ),

∆̃+(z) =
(
γ−3 (µ)− γ−2 (µ)

) (
γ−3 (µ)− γ−1 (µ)

) (
γ−2 (µ)− γ−1 (µ)

)
= (1− 3µ2)

√
3µ2 − 4,

and

B̃+(x, z) =
∫ x

0

√
3µ2 − 4 e−iµ(x−ξ)φ(ξ)dξ.

In consequence, it follows that
1

2πi

∫
Γ+

3

F+
1 (x, t, z)dz =

1
2π

∫ ∞
1

e−iµ
3t+iµt

∫ x

0

e−iµ(x−ξ)φ(ξ)dξdµ.

A direct computation reveals that

1
2πi

∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)C−2 (x, µ)dµ

=
1

2π

∫ ∞
1

e−iµ
3t+iµt

∫ +∞

x

e−iµ(x−ξ)φ(ξ)dξdµ,

whence (2.7) holds.
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Next, it is established that

1
2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)C+

1 (x, µ)dµ

+
1

2πi

∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)C−1 (x, µ)dµ = 0.

To prove this formula, let λ = −µ3 − µ in the equation

γ3 + γ + λ = 0,

where µ ≥ 0. Write the three solutions of the characteristic equation as

γ∗1(µ) =
−µ+ i

√
4 + 3µ2

2
, γ∗2 (µ) =

−µ− i
√

4 + 3µ2

2
, γ∗3 (µ) = µ.

We have that γ∗1 (0) = i = γ+
3 (1). Let

Γ∗1 = {z = γ∗1 (µ) : 0 ≤ µ < +∞}

and let Ω∗1 be the open region enclosed by Γ∗1 and Γ+
3 . We may write

1
2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)C+

1 (x, µ)dµ =
1

2πi

∫
Γ+

3

F+
2 (x, t, z)dz

with

F+
2 (x, t, z) = e−(z3+z)t−(3z2 + 1)

∆̃+(z)

∫ ∞
x

(γ̃+
1 (z)− γ̃+

3 (z))eγ̃
+
2 (z)(x−ξ)φ(ξ)dξ.

Since F+
2 (x, t, z) is analytic in Ω∗1 and is continuous on Ω∗1 and tends to zero as

z →∞ in Ω∗1, we can change the contour of integration and conclude

1
2πi

∫
Γ+

3

F+
2 (x, t, z)dz =

1
2πi

∫
Γ∗1

F+
2 (x, t, z)dz.

On Γ∗1, for 0 ≤ µ < +∞,

z3 + z = µ3 + µ, (3z2 + 1)dz = (3µ2 + 1)dµ,

γ̃+
1 (z) = γ∗2 (µ), γ̃+

2 (z) = γ∗3 (µ), γ̃+
3 (z) = γ∗1(µ),

∆̃+(z) = (γ∗2 (µ)− γ∗3 (µ))(γ∗2 (µ)− γ∗1(µ))(γ∗3 (µ)− γ∗1 (µ))

= i(1 + 3µ2)
√

3µ2 + 4,

and

γ̃+
1 (z)− γ̃+

3 (z) = −i
√

3µ2 + 4.

Consequently,

1
2πi

∫
Γ+

3

F+
2 (x, t, z)dz =

1
2πi

∫ +∞

0

e−(µ3+µ)t

∫ ∞
x

eµ(x−ξ)φ(ξ)dξdµ.
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In addition,∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)C−1 (x, µ)dµ = −

∫ ∞
1

eiµ3t−iµt

∆+(µ)
i(3µ2 − 1)C+

1 (x, µ)dµ

= −
∫ +∞

0

e−(µ3+µ)t

∫ ∞
x

eµ(x−ξ)φ(ξ)dξdµ.

The proposition in view is thus established.
Similarly, by appropriate changes of the contour of integration, it is inferred that

1
2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)A+

1 (x, µ)dµ = −U+
2 (t)φ(x)

and

1
2πi

∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)A−1 (x, µ)dµ = U+

2 (t)φ(x).

Finally, a direct computation shows that

1
2πi

∫ ∞
1

eiµ
3t−iµt

∆+(µ)
i(3µ2 − 1)A+

2 (x, µ)dµ = U+
1 (t)φ(x)

and

1
2πi

∫ 1

+∞

e−iµ
3t+iµt

∆−(µ)
i(1− 3µ2)A−2 (x, µ)dµ = U−1 (t)φ(x).

The proof is complete.

Next, consideration is given to the non-homogeneous boundary-value problem
ut + ux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = 0, u(0, t) = h(t).
(2.9)

Proposition 2.2. The solution of (2.9) may be written as

u(x, t) = [Wb(t)h] (x) = [Ub(t)h] (x) + [Ub(t)h] (x)(2.10)

where, for x, t ≥ 0,

[Ub(t)h] (x) =
1

2π

∫ ∞
1

eiµ
3t−iµte

−
(√

3µ2−4+iµ
2

)
x
(3µ2 − 1)

∫ ∞
0

e−(µ3i−iµ)ξh(ξ)dξdµ.

Proof. Let ũ and h̃ denote the Laplace transform of u and h with respect to t,
respectively. By applying the Laplace transform to both sides of the equation in
(2.9), one obtains

λũ(x, λ) + ũx(x, λ) + ũxxx(x, λ) = 0, ũ(0, λ) = h̃(λ).

As both ũ(x, λ) and ũx(x, λ) tend to zero as x→∞, it is concluded that for any λ
with Reλ > 0,

ũ(x, λ) = h̃(λ)er1(λ)x

where r1(λ) is the unique solution of

λ+ r3 + r = 0
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satisfying Re r1(λ) < 0. Thus, for any fixed γ > 0, one has the representation

u(x, t) =
1

2πi

∫ i∞+γ

−i∞+γ

eλth̃(λ)er1(λ)xdλ.

Arguing as in Proposition 2.1 and using the fact that the right-hand side of this
relation is continuous in γ up to γ = 0, there obtains

u(x, t) =
1

2πi

∫ i∞

0

eλth̃(λ)er1(λ)xdλ+
1

2πi

∫ 0

−i∞
eλth̃(λ)er1(λ)xdλ.

On the positive imaginary axis, take λ in the form λ = iµ3− iµ for a unique µ with
1 ≤ µ < +∞. In terms of µ, the quantity r1(λ) has the value

r1(λ) = −
√

3µ2 − 4 + iµ

2
,

as before. By direct computation, it follows that for x, t ≥ 0,

1
2πi

∫ i∞

0

eλth̃(λ)er1(λ)xdλ = [Ub(t)h] (x).

Similar reasoning shows that

1
2πi

∫ 0

−i∞
eλth̃(λ)er1(λ)xdλ = [Ub(t)h] (x),

thus completing the proof.

Finally, attention is turned to the inhomogeneous initial-boundary-value problem ut + ux + uxxx = f, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t),
(2.11)

where φ and h are assumed to satisfy the compatibility condition h(0) = φ(0). Let
u(x, t) = z(x, t) + e−x−th(0). It is easy to see that if u solves (2.11), then z(x, t)
solves 

zt + zx + zxxx = f + 2e−x−th(0), for x, t ≥ 0,

z(x, 0) = φ(x) − e−xφ(0), z(0, t) = h(t)− e−th(0).

Decompose z in the form z = w + v + y with wt + wx + wxxx = f + 2e−x−th(0), for x, t ≥ 0,

w(x, 0) = 0, w(0, t) = 0, vt + vx + vxxx = 0, for x, t ≥ 0,

v(x, 0) = φ(x) − e−xφ(0), v(0, t) = 0,

and 
yt + yx + yxxx = 0, for x, t ≥ 0,

y(x, 0) = 0, y(0, t) = h(t)− e−th(0).

The following representation for the solution of (2.11) emerges from this decompo-
sition together with the results of Lemmas 2.1 and 2.2 and Duhamel’s principle.
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Proposition 2.3. The solution u(x, t) of (2.11) is

u(x, t) = Wc(t)
(
φ(x) − e−xφ(0)

)
+
∫ t

0

Wc(t− τ)
(
f(x, τ) + 2e−x−τh(0)

)
dτ

+
[
Wb(t)

(
h(t)− e−th(0)

)]
(x) + e−x−th(0).(2.12)

3. Linear estimates

In this section, estimates for the semigroups Wc(t) and Wb(t) are obtained.
These estimates, analogous to those obtained by Kenig et al. [41, 42] for the linear
KdV equation posed on the whole line R, reveal various smoothing properties of
the semigroups Wc(t) and Wb(t) and will play an important role in establishing
well-posedness results for the nonlinear problem in Sections 4 and 5.

We start by laying out notation for the fractional-order Sobolev classes defined
on R+. For s ≥ 0, write s = m+θ where 0 ≤ θ < 1 and m is a non-negative integer.
Thus m = [s], the greatest integer in s. For f ∈ C∞(R+) ∩Hm(R+), define a new
function Jsxf by

Jsxf(x) =


|f (m)(x)| if θ = 0,

(∫ ∞
0

τ−(2θ+1)|f (m)(x+ τ)− f (m)(x)|2dτ
)1/2

, if θ > 0,

for any x ∈ R+. Because f (m) is smooth and an L2(R+)-function and θ < 1, Jsxf(x)
is finite for all x. The quantity

‖f‖2Hs(R+) = ‖f‖2L2(R+) + ‖Jsxf‖2L2(R+)(3.1)

defines a norm on C∞(R+)∩Hm(R+) and the completion of this space in the norm
(3.1) is denoted by Hs(R+). The space Hs

0(R+) is the completion of C∞0 (R+) in
the norm defined in (3.1). Clearly Hs

0(R+) is a closed linear subspace of Hs(R+)
and

Hs
0(R+) = Hs(R+)

if 0 ≤ s ≤ 1/2. A good reference for this material is Lions and Magenes [47].
Next we present two technical lemmas that will find frequent use in this section.

They play the same role in dealing with the half-line problem as does Plancherel’s
Theorem for the KdV equation posed on the entire real line.

Lemma 3.1. For any f ∈ L2(a,+∞), let Kf be the function defined by

Kf(x) =
∫ +∞

a

eγ(µ)xf(µ)dµ,

where a ∈ R and γ(µ) is a continuous complex-valued function defined on (a,∞)
satisfying the following three conditions:

(i) Re γ(µ) < 0, for µ > a;
(ii) there exist δ > 0 and b > 0 such that

sup
a<µ<a+δ

|Re γ(µ)|
µ− a ≥ b;
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(iii) there exists a complex number α+ iβ with α < 0 such that

lim
µ→+∞

γ(µ)
µ

= α+ iβ.

Then there exists a constant C such that for all f ∈ L2(a,∞),

‖Kf‖L2(R+) ≤ C‖f‖L2(a,∞).

Proof. By a translation of the coordinate system, we may assume a = 0. In this
frame of reference, our assumptions imply that there is a positive constant d such
that

−Re (γ(r)) ≥ dr(3.2)

for all r ≥ 0. Next, observe that

‖Kf‖2L2(R+) ≤
∫ +∞

0

{∫ +∞

0

eRe(γ(s)x)|f(s)|ds
∫ +∞

0

eRe(γ(t)x)|f(t)|dt
}
dx

=
∫ +∞

0

∫ +∞

0

∫ +∞

0

eRe(γ(s)+γ(t))x|f(s)||f(t)|dx ds dt

=
∫ +∞

0

∫ +∞

0

|f(s)f(t)|
|Re (γ(s) + γ(t)) |ds dt

≤
∥∥∥∥∫ +∞

0

|f(s)|ds
|Re (γ(s) + γ(t)) |

∥∥∥∥
L2
t (R

+)

‖f‖L2(R+),

by the Cauchy-Schwarz inequality. Changing variables and using the integral ver-
sion of Minkowski’s inequality yields∥∥∥∥∫ +∞

0

|f(s)|ds
|Re (γ(s) + γ(t)) |

∥∥∥∥
L2
t (R

+)

=
∥∥∥∥∫ +∞

0

|f(µt)t|dµ
|Re (γ(µt) + γ(t)) |

∥∥∥∥
L2
t (R

+)

≤
∫ +∞

0

∥∥∥∥ f(µt)t
Re (γ(µt) + γ(t))

∥∥∥∥
L2
t (R

+)

dµ

≤ C
∫ ∞

0

1
√
µ(1 + µ)

dµ‖f‖L2(R+)

≤ C‖f‖L2(R+)

since

‖f(µt)‖L2
t(R

+) = µ−1/2‖f‖L2(R+)

and, because of (3.2),
t

|Re (γ(µt) + γ(t))| ≤
1

d(µ+ 1)

for any t ∈ (0,+∞). The proof is complete.

Lemma 3.2. Let a > 0 be given. For any f ∈ L2(0, a), let Gf be the function
defined by

Gf(x) =
∫ a

0

eiξ(µ)xf(µ)dµ
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where ξ(µ) is a continuous real-valued function defined on the interval [0, a] which
is C1 on the open interval (0, a) and satisfies the two conditions:

(i) ξ′(µ) 6= 0 for any µ ∈ (0, a) and
(ii) there is a constant C1 such that 1

|ξ′(µ)| ≤ C1 for 0 < µ < a.

Then there exists a constant C such that for all f ∈ L2(0, a),

‖Gf‖L2(R+) ≤ C‖f‖L2(0,a).

Proof. Let ω = ξ(µ). Then µ = ξ−1(ω) and dω = ξ′(µ)dµ since ξ(µ) is invertible.
In terms of the variable ω,

Gf(x) =
∫ ξ(a)

ξ(0)

eiωxf(ξ−1(ω))
1

ξ′(ξ−1(ω))
dω.

It follows from Plancherel’s Theorem that

‖Gf‖2L2(R+) =
1

2π

∫ ξ(a)

ξ(0)

f(ξ−1(ω))2

(
1

ξ′(ξ−1(ω))

)2

dω

=
1

2π

∫ a

0

|f(µ)|2 1
|ξ′(µ)|dµ

≤ C1

2π

∫ a

0

|f(µ)|2dµ.

The proof is complete.

The next step is to obtain estimates for the operators Wb(t) and U±b (t) defined
in Proposition 2.2. The first one is a standard energy inequality.

Lemma 3.3. Given s ≥ 0, there exists a constant C = Cs such that

sup
t≥0
‖[Wb(t)h] (·)‖Hsx(R+) ≤ C‖h‖H s+1

3 (R+)

for all h ∈ H
s+1

3
0 (R+).

Proof. It suffices to establish the estimate for Ub(t) and to consider only the cases
where s = n is an integer. The analogous result for non-integer values of s may be
obtained by standard interpolation theory. First, notice that

Dn
x [Ub(t)h] (x) =

1
2π

∫ ∞
1

ei(µ
3−µ)teω(µ)xωn(µ)(3µ2 − 1)

×
∫ ∞

0

e−(µ3−µ)ζih(ζ)dζdµ

= II1(x, t) + II2(x, t)

with

II1(x, t) =
1

2π

∫ +∞

2/
√

3

ei(µ
3−µ)teω(µ)xωn(µ)(3µ2 − 1)

∫ ∞
0

e−(µ3−µ)ζih(ζ)dζdµ(3.3)

and

II2(x, t) =
1

2π

∫ 2/
√

3

1

ei(µ
3−µ)teω(µ)xωn(µ)(3µ2 − 1)

∫ ∞
0

e−(µ3−µ)ζih(ζ)dζdµ ,

(3.4)
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where ω(µ) = − iµ+
√

3µ2−4

2 . Because of the obvious inequality

|II1(x, t)| ≤ C
∫ +∞

2/
√

3

e−
√

3µ2−4
2 x|ω(µ)|n(3µ2 − 1)

∣∣∣∣∫ ∞
0

e−(µ3−µ)ζih(ζ)dζ
∣∣∣∣ dµ,(3.5)

it follows by Lemma 3.1 that

sup
t≥0
‖II1(·, t)‖L2

x(R+) ≤ C
∥∥∥∥∫ +∞

2/
√

3

e−
√

3µ2−4
2 x(1 + µ)2+n

×
∣∣∣∣∫ ∞

0

e−(µ3−µ)ζih(ζ)dζ
∣∣∣∣ dµ∥∥∥∥

L2
x(R+)

≤ C
(∫ ∞

1

(1 + µ)4+2n

∣∣∣∣∫ ∞
0

e−(µ3−µ)ζih(ζ)dζ
∣∣∣∣2 dµ

)1/2

≤ C
(∫ ∞

0

(1 + η)2(n+1)/3

∣∣∣∣∫ ∞
0

e−ηζih(ζ)dζ
∣∣∣∣2 dη

)1/2

≤ C‖h‖H(n+1)/3(R+).

As for II2(x, t), note that ω(µ)/i is real when 1 ≤ µ ≤ 2/
√

3. Applying Lemma 3.2
directly to II2(x, t) yields that

sup
t≥0
‖II2(·, t)‖L2

x(R+) ≤ C
(∫ 2/

√
3

1

(1 + µ)4+2n

∣∣∣∣∫ ∞
0

e−(µ3−µ)ζih(ζ)dζ
∣∣∣∣2 dµ

)1/2

≤ Cn

(∫ ∞
0

∣∣∣∣∫ ∞
0

e−ηζih(ζ)dζ
∣∣∣∣2 dη

)1/2

≤ Cn‖h‖L2(R+).

Consequently

sup
t≥0
‖[Ub(t)h] (·)‖Hnx (R+) ≤ Cn‖h‖H n+1

3 (R+)
.

The proof is complete.

The following inequality comprises a sharp version of the Kato smoothing prop-
erty (see Kato [37, 38], Kruzhkov and Faminskii [45, 46]) for the semigroup Wb(t).

Lemma 3.4. For any s ≥ 0, there exists a constant C = Cs such that

sup
x∈R+

(∫ ∞
0

(
Js+1
x [Wb(t)h] (x)

)2
dt

)1/2

≤ C‖h‖
H
s+1

3 (R+)

for all h ∈ H
s+1

3
0 (R+).

Proof. We prove the estimate for 0 ≤ s < 1. The proof for other values of s is
similar. Consider first Ub(t)h. Let η = µ3−µ for µ ≥ 1 and, for η ≥ 0, let µ = δ(η)
be the unique real solution of

η = µ3 − µ.
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Note that

Dx [Ub(t)h] (x) =
1

2π

∫ ∞
1

ω(µ)eiµ
3t−iµteω(µ)x(3µ2 − 1)

∫ ∞
0

e−(µ3−µ)ξih(ξ)dξdµ

=
1

2π

∫ ∞
0

ω(δ(η))eiηteω(δ(η))x

∫ ∞
0

e−ηξih(ξ)dξdη.

Using the Plancherel Theorem with respect to t in the above representation of
Dx(Ub(t)h), one sees that∫ ∞

0

|Dx [Ub(t)h] (x)|2 dt ≤ C
∫ ∞

0

(1 + η)2/3

∣∣∣∣∫ ∞
0

e−ηξih(ξ)dξ
∣∣∣∣2 dη

for any x ∈ R+. Thus the lemma holds for s = 0. For 0 < s < 1, since

|J1+s
x [Ub(t)h] (x)|2 =

1
2π

∣∣∣∣Jsx ∫ ∞
1

ω(µ)eiµ
3t−iµteω(µ)x(3µ2 − 1)

×
∫ ∞

0

e−i(µ
3−µ)ξh(ξ)dξdµ

∣∣∣∣2
=

1
2π

∫ ∞
0

τ−(2s+1)

∣∣∣∣ ∫ ∞
1

ω(µ)eiµ
3t−iµteω(µ)x

(
eω(µ)τ − 1

)
×(3µ2 − 1)

∫ ∞
0

e−i(µ
3−µ)ξh(ξ)dξdµ

∣∣∣∣2dτ
=

1
2π

∫ ∞
0

τ−(2s+1)

∣∣∣∣ ∫ ∞
1

ω(δ(η))eiηteω(δ(η))x
(
eω(δ(η))τ − 1

)
×
∫ ∞

0

e−iηξh(ξ)dξdµ
∣∣∣∣2dτ,

the Plancherel Theorem may be used as before to adduce∫ ∞
0

∣∣J1+s
x [Ub(t)h] (x)

∣∣2 dt
≤ C

∫ ∞
0

τ−(2s+1)

∫ ∞
0

∣∣∣eω(δ(η))τ − 1
∣∣∣2 ∣∣∣∣ω(δ(η))

∫ ∞
0

e−iηξh(ξ)dξ
∣∣∣∣2 dηdτ

≤ C
∫ ∞

0

∫ ∞
0

τ−(2s+1)
∣∣∣eω(δ(η))τ − 1

∣∣∣2 dτ ∣∣∣∣ω(δ(η))
∫ ∞

0

e−iηξh(ξ)dξ
∣∣∣∣2 dη

≤ C
∫ ∞

0

y−(2s+1)
∣∣e−y − 1

∣∣2 dy ∫ ∞
0

|ω(δ(η))|2(s+1)

∣∣∣∣∫ ∞
0

e−iηξh(ξ)dξ
∣∣∣∣2 dη

≤ C
∫ ∞

0

(1 + η)2(s+1)/3

∣∣∣∣∫ ∞
0

e−iηξh(ξ)dξ
∣∣∣∣2 dη ≤ C‖h‖H(1+s)/3(R+).

It is thus proved that the lemma is true for 0 ≤ s < 1.

Solutions of the linear KdV equation

ut + ux + uxxx = 0,
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have the formal property that temporal derivatives are balanced by three times as
many spatial derivatives, viz.,

Ds
t ∼ D3s

x

for s > 0. The following lemma gives precision to this observation.

Lemma 3.5. For any s ≥ 0, there exists a constant C = Cs such that

sup
x∈R+

∥∥Dk
x [Wb(·)h] (x)

∥∥
H
s−k+1

3
t (R+)

≤ C‖h‖
H
s+1

3 (R+)
(3.6)

for k = 0, 1, · · · , [s] and all h ∈ H
s+1

3
0 (R+).

Proof. It suffices to show that (3.6) holds for [Ub(t)h] (x). A change of variables as
in Lemma 3.4 gives

Dk
x [Ub(t)h] (x) =

1
2π

∫ ∞
1

ei(µ
3−µ)tωk(µ)eω(µ)x(3µ2 − 1)

×
∫ ∞

0

e−i(µ
3−µ)ξh(ξ)dξdµ

=
1

2π

∫ ∞
0

eiηtωk(δ(η))eω(δ(η))x

∫ ∞
0

e−iηξh(ξ)dξdη,

where δ(η) is specified in the last proof. It follows from arguments, by now familiar,
that for any x ≥ 0,∥∥Dk

x [Ub(·)h] (x)
∥∥2

H
s−k+1

3
t (R+)

≤ C
∫ ∞

0

(1 + η)
2(s−k+1)

3 |ω(δ(η))|2k
∣∣∣∣∫ ∞

0

e−iηξh(ξ)dξ
∣∣∣∣2 dη

≤ C
∫ ∞

0

(1 + η)
2(s+1)

3

∣∣∣∣∫ ∞
0

e−iηξh(ξ)dξ
∣∣∣∣2 dη = C‖h‖

H
s+1

3 (R+)
.

Here we note that we can take t-derivatives of Ub(t)h of any fractional order directly
using Fourier transforms and cutoff functions. The proof is completed.

Lemma 3.6. For any non-negative integer n, there exists a constant Cn such that(∫ ∞
0

sup
t≥0
|Dn

x [Wb(t)h] (x)|2 dx
)1/2

≤ Cn‖h‖H(n+1)/3(R+)

for all h ∈ H(n+1)/3
0 (R+).

Proof. The proof is given in detail for Ub(t)h. As in the proof of Lemma 3.3,

Dn
x [Ub(t)h] (x) = II1(x, t) + II2(x, t)
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where II1(x, t) and II2(x, t) are defined in (3.3) and (3.4), respectively. By the
inequality (3.5), it follows from Lemma 3.1 that(∫ ∞

0

sup
t≥0
|II1(x, t)|2dx

)1/2

≤ C
(∫ ∞

0

|ω(µ)|2n(3µ2 − 1)2

∣∣∣∣∫ ∞
0

e−(µ3−µ)ζih(ζ)dζ
∣∣∣∣2 dµ

)1/2

≤ C
(∫ ∞

0

(1 + η)2(n+1)/3

∣∣∣∣∫ ∞
0

e−ηζih(ζ)dζ
∣∣∣∣2 dη

)1/2

= C‖h‖H(n+1)/3(R+).

As for II2(x, t), recall ω(µ) is purely imaginary for 1 ≤ µ ≤ 2/
√

3. If we make the
change of variables from µ to y, where

y = ω(µ)/i = −µ+
√

4− 3µ2

2
,(3.7)

in the representation of II2(x, t), there appears the formula

II2(x, t) =
1

2π

∫ 2/
√

3

1

eiµ
3t−iµteω(µ)x(3µ2 − 1)

∫ ∞
0

e−i(µ
3−µ)ξh(ξ)dξdµ

=
1

2π

∫ −1/
√

3

−1

eiy
3t−iyteiyx(3y2 − 1)

∫ ∞
0

e−iη(y)ξh(ξ)dξdy

=
1

2π

∫ +∞

−∞
eiy

3t−iyteiyxĝ(y)dy

where µ = η(y) is the unique real solution of the equation (3.7) in the range
[1, 2/

√
3], g is the inverse Fourier transform of the function

q(y) = χ(y)
3y2 − 1

3η2(y)− 1

∫ ∞
0

e−iη(y)ξψ(ξ)dξ,

and χ is the characteristic function of the interval (−1,−1/
√

3). Applying Corollary
2.9 of [41] yields that, for a given s > 3/4, there exists a constant C = Cs such that(∫ ∞

0

sup
t≥0
|II2(x, t)|2dx

)1/2

≤ C‖g‖Hs(R).

Since

‖g‖2Hs(R) =
∫ +∞

−∞
(1 + y2)s

∣∣∣∣χ(y)inyn(3y2 − 1)
∫ ∞

0

e(y3−y)ξih(ξ)dξ
∣∣∣∣2 dy

=
∫ − 1√

3

−1

(1 + y2)sy2n(3y2 − 1)2

∣∣∣∣∫ ∞
0

e(y3−y)ξih(ξ)dξ
∣∣∣∣2 dy

≤ Cn‖h‖L2(R+),
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one obtains (∫ ∞
0

sup
t≥0
|II2(x, t)|2dx

)1/2

≤ Cn‖h‖L2(R+).

The estimate for Ub(t)h is thus established. The proof is complete.

Next is presented a half-line version of Theorem 2.4 in [41] which reveals a global
smoothing effect of Strichartz type for the semigroup Wb(t). We first consider the
operator U(t) defined by

U(t)ψ(x) =
1

2π

∫ +∞

1

eiµ
3t−iµteω(µ)x

∫ ∞
−∞

e−iµξψ(ξ)dξdµ

for any ψ ∈ L2(R).

Lemma 3.7. For any (θ, β) ∈ [0, 1]×[0, 1/2] and any T > 0, there exists a constant
CT such that (∫ T

0

‖Dθβ/2U(t)ψ‖qLp(R+)dt

)1/q

≤ CT ‖ψ‖L2(R)(3.8)

for any ψ ∈ L2(R) where

(q, p) =
(

6
θ(β + 1)

,
2

1− θ

)
.

Here, by definition, for r ≥ 0,

DrU(t)ψ(x) =
1

2π

∫ ∞
1

µreiµ
3t−iµteω(µ)x

∫ ∞
−∞

e−iµξψ(ξ)dξdµ .

Proof. Rewrite U(t)ψ as U+(t)ψ + U−(t)ψ with

U+(t)ψ(x) =
1

2π

∫ +∞

1

eiµ
3t−iµteω(µ)x

∫ ∞
0

e−iµξψ(ξ)dξdµ

and

U−(t)ψ(x) =
1

2π

∫ +∞

1

eiµ
3t−iµteω(µ)x

∫ 0

−∞
e−iµξψ(ξ)dξdµ.

The estimate (3.8) for U+(t)ψ is established in detail. The proof for U−(t)ψ is
similar. Write U+(t)ψ(x) as

U+(t)ψ(x) = U1(t)ψ(x) + U2(t)ψ(x) + U3(t)ψ(x)

with

U1(t)ψ(x) =
1

2π

∫ 2/
√

3

1

eiµ
3t−iµteω(µ)x

∫ ∞
0

e−iµξψ(ξ)dξdµ,

U2(t)ψ(x) =
1

2π

∫ 2

2/
√

3

eiµ
3t−iµteω(µ)x

∫ ∞
0

e−iµξψ(ξ)dξdµ

and

U3(t)ψ(x) =
1

2π

∫ +∞

2

eiµ
3t−iµteω(µ)x

∫ ∞
0

e−iµξψ(ξ)dξdµ.
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To prove estimate (3.8) it suffices to show that(∫ T

0

‖Dθβ/2Uj(t)ψ‖qLp(R+)dt

)1/q

≤ CT ‖ψ‖L2(R+)(3.9)

for j = 1, 2, 3.
For U1(t)ψ, the argument appearing in the proof of Lemma 3.6 shows this quan-

tity can be written in the form

U1(t)ψ(x) =
1

2π

∫ 2/
√

3

1

eiµ
3t−iµteω(µ)x

∫ ∞
0

e−iµξψ(ξ)dξdµ

=
1

2π

∫ −1/
√

3

−1

eiy
3t−iyteiyx

3y2 − 1
3η2(y)− 1

∫ ∞
0

e−iη(y)ξψ(ξ)dξdy

=
1

2π

∫ +∞

−∞
eiy

3t−iyteiyxĝ(y)dy

where g is the inverse Fourier transform of the function

q(y) = χ(y)
3y2 − 1

3η2(y)− 1

∫ ∞
0

e−iη(y)ξψ(ξ)dξ

and χ is the characteristic function of the interval (−1,−1/
√

3). Applying Theorem
2.4 of [41] yields(∫ ∞

0

‖D
θβ
2 U1(t)ψ‖q

Lpx(R+)
dt

)1/q

≤ C‖g‖L2(R) ≤ C‖ψ‖L2(R+).

For U2(t)ψ, we have

‖D
θβ
2 U2(t)ψ‖L2

x(R+) ≤ C
∫ 2

2√
3

1

(µ− 2√
3
)

1
2p

∣∣∣∣∫ ∞
0

e−iµξψ(ξ)dξ
∣∣∣∣ dµ

≤ C

∫ 2

2√
3

1

(µ− 2√
3
)

1
p

dµ

1/2(∫ 2

2√
3

∣∣∣∣∫ ∞
0

e−iµξψ(ξ)dξ
∣∣∣∣2 dµ

)1/2

≤ C‖φ‖L2(R+)

for any t ≥ 0. Thus we arrive at(∫ T

0

‖D
θβ
2 U2(t)ψ‖q

Lpx(R+)
dt

)1/q

≤ CT ‖ψ‖L2(R+).

On the other hand, the inequality in (3.9) with j = 3 is equivalent by duality to
the inequality∥∥∥∥∫ ∞

0

Dθβ/2U3(t)f(·, t)dt
∥∥∥∥
L2(R+)

≤ C
(∫ ∞

0

‖f(·, t)‖q
′

Lp′
dt

) 1
q′

,

where
1
p

+
1
p′

=
1
q

+
1
q′

= 1.
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Observe that ∥∥∥∥∫ ∞
0

Dθβ/2U3(t)f(·, t)dt
∥∥∥∥2

L2(R+)

=
∫ ∞

0

∫ ∞
0

f(ζ1, t)
∫ ∞

0

∫ ∞
0

f(ζ2, τ)H(ζ1, ζ2, t, τ)dζ2dτdζ1dt

with

H(ζ1, ζ2, t, τ)

=
∫ +∞

2

∫ +∞

2

eiµ
3
1t−iµ1t−iµ3

2τ+iµ2τe−µ1ζ1i+µ2ζ2i(µ1µ2)θβ/2

×
∫ ∞

0

e(ω(µ1)+ω(µ2))xdxdµ1dµ2

=
∫ +∞

2

∫ +∞

2

eiµ
3
1t−iµ1t−iµ3

2τi+iµ2τe−µ1ζ1i+µ2ζ2i (µ1µ2)θβ/2

−ω(µ1)− ω(µ2)
dµ1dµ2

and, as in (3.5),

ω(µ) = − iµ+
√

3µ2 − 4
2

.

Again appealing to duality, it suffices to show that there is a constant C such that∥∥∥∥∥
∫ ∞

0

∥∥∥∥∫ ∞
0

f(ζ2, τ)H(ζ1, ζ2, t, τ)dζ2

∥∥∥∥q
Lpζ1

dτ

∥∥∥∥∥
Lqt

≤ C
(∫ ∞

0

‖f(·, t)‖q
′

Lp′
dt

) 1
q′

.

To this end, first change variables to derive the inequality∣∣∣∣∫ ∞
0

f(ζ2, τ)H(ζ1, ζ2, t, τ)dζ2

∣∣∣∣
=
∣∣∣∣ ∫ ∞

0

f(ζ2, τ)

×
(∫ +∞

2

dµ1

∫ ∞
2/µ1

µθβ1 y
θβ
2 eiµ

3
1(t−y3τ)−iµ1(t−yτ)−iµ1(ζ1−ζ2y)

µ−1
1 ω(µ1) + µ−1

1 ω(µ1y)
dy

)
dζ2

∣∣∣∣
≤ C

∫ ∞
0

y
θβ
2

1 + y

×
∣∣∣∣∣
∫ ∞

2/y

dµ1

∫ ∞
0

µθβ1 eiµ
3
1(t−y3τ)−iµ1(t−yτ)−iµ1(ζ1−ζ2y)f(ζ2, τ)dζ2

∣∣∣∣∣ dy.
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It follows from this that

III1(t, τ) ≡
∥∥∥∥∫ ∞

0

f(ζ2, τ)H(ζ1, ζ2, t, τ)dζ2

∥∥∥∥
Lpζ1

≤ C

∥∥∥∥ ∫ ∞
0

y
θβ
2

1 + y

×
∣∣∣∣∣
∫ ∞

2/y

dµ1

∫ ∞
0

µθβ1 eiµ
3
1(t−y3τ)−iµ1(t−yτ)−iµ1(ζ1−ζ2y)f(ζ2, τ)dζ2

∣∣∣∣∣ dy
∥∥∥∥
Lpζ1

≤ C

∫ ∞
0

y
θβ
2

1 + y

×
∥∥∥∥∥
∫ ∞

2/y

∫ ∞
0

µθβ1 eiµ
3
1(t−y3τ)−iµ1(t−yτ)−iµ1(ζ1−ζ2y)f(ζ2, τ)dζ2dµ1

∥∥∥∥∥
Lpζ1

dy.

If the inequality

∥∥∥∥∥
∫ ∞

2/y

∫ ∞
0

f(z, τ)µθβ1 eiµ
3
1(t−y3τ)−iµ1(t−yτ)−iµ1(ζ1−z)dµ1dz

∥∥∥∥∥
Lpζ1

≤ C
∣∣t− y3τ

∣∣− θ(β+1)
3 ‖f(·, τ)‖Lp′(3.10)

can be proved, then the preceding inequality gives

III1(t, τ) ≤ C
∫ ∞

0

y
θβ
2 −

1
p

1 + y

∣∣t− y3τ
∣∣− θ(β+1)

3 dy‖f(·, τ)‖Lp′ ,

from which it follows that

∥∥∥∥∫ ∞
0

III1(·, τ)dτ
∥∥∥∥
Lqt

≤
∫ ∞

0

y
θβ
2 −

1
p

1 + y

∥∥∥∥∫ ∞
0

∣∣t− y3τ
∣∣− θ(β+1)

3 ‖f(·, τ)‖Lp′dτ
∥∥∥∥
Lqt

dy

= C

∫ ∞
0

y
θβ
2 −

1
p

1 + y
y

3
q−θ(β+1)

×
(∫ ∞

0

(∫ ∞
0

|ξ − τ |−
θ(β+1)

3 ‖f(·, τ)‖Lp′dτ
)q

dξ

)1/q

dy
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provided q is finite. This inequality may be extended using a classical integral
inequality (cf. Hardy, Littlewood and Polya [31], Th. 382, p. 288), viz.∥∥∥∥∫ +∞

0

III1(·, τ)dτ
∥∥∥∥
Lqt

≤ C

∫ ∞
0

y
θβ
2 −

1
p+ 3

q−θ(β+1)

1 + y
dy

(∫ ∞
0

‖f(·, t)‖q
′

Lp′
dt

) 1
q′

= C

∫ ∞
0

1
y1/2(1 + y)

dy

(∫ ∞
0

‖f(·, t)‖q
′

Lp′
dt

) 1
q′

≤ C

(∫ ∞
0

‖f(·, t)‖q
′

Lp′
dt

) 1
q′

.

If q =∞, θ = 0, so p = 2 and the result follows by a separate, but easier argument.
Thus it remains to establish the estimate (3.10) to complete the proof. To

accomplish this it suffices to verify the following claim which yields estimate (3.10)
by simply taking

α = β, T = t− yτ, t = t− y3τ,

and φ = f(z, τ) in the claim.
Claim. For given y > 0, T ∈ R and (θ, α) ∈ [0, 1]× [0, 1/2], define

Sθα(x, t) =
∫ ∞

2/y

µαθeµ
3ite−iµT eiµxdµ

and, for φ ∈ H2/(1+θ),

Lθα(t)φ = Sθα(·, t) ∗ φ.
It follows that for any t > 0,

‖Lθα(t)φ‖2/(1−θ) ≤ Ct−θ(α+1)/3‖φ‖2/(1+θ)(3.11)

where C is independent of t, y and T .
To see if the claim is true, introduce the analytic family of operators

Lα+iβ(t)φ = Sα+iβ(·, t) ∗ φ

=
∫ ∞

2/y

µα+iβeµ
3ite−iµT

∫ ∞
0

e−iµ(x−ζ)φ(ζ)dζdµ

for (α, β) ∈ [0, 1/2]×R. First, it is straightforward to determine that

‖Liβ(t)φ‖L2(R+) ≤ C‖φ‖L2(R+)

for a constant C which is independent of t, T, y and β. Using the argument ap-
pearing in the proof of Lemma 2.1 in [39] yields

|Sα+iβ(x, t)| ≤ C(1 + |β|)t−(α+1)/3

for any x ≥ 0 and t > 0, where the constant C is again independent of t, y and T .
As a result, for α ∈ [0, 1/2], there obtains

‖Lα+iβ(t)φ‖L∞(R+) ≤ Ct−(α+1)/3‖φ‖L1(R+).

Estimate (3.11) is obtained by a straightforward complex interpolation (see [55]
Chapter V, Theorem 41). The proof is complete.

As a corollary to Lemma 3.7, there follows some related inequalities.
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Lemma 3.8. Given s ≥ 0, there exists a constant C = Cs such that(∫ ∞
0

sup
x∈R+

∣∣∣Ds+1/4 [Wb(t)h] (x)
∣∣∣4 dt)1/4

≤ C‖h‖
H
s
3 (R+)

for all h ∈ H
s
3
0 (R+). Here, by definition, for r ≥ 0,

DrWb(t)h = DrUb(t)h+DrUb(t)h
with

[DrUb(t)h] (x) =
1

2π

∫ ∞
1

ei(µ
3−µ)tµreω(µ)x(3µ2 − 1)

∫ ∞
0

e−i(µ
3−µ)ξh(ξ)dξdµ.

In particular, for any integer n ≥ 1, there corresponds a constant C = Cn such that(∫ ∞
0

sup
x∈R+

|Dn
x [Wb(t)h] (x)|4 dt

)1/4

≤ C‖h‖
H

4n−1
12 (R+)

for all h ∈ H
4n−1

12
0 (R+).

Proof. We write DsUb(t)h as

[DsUb(t)h] (x) =
1

2π

∫ ∞
1

eiµ
3t−iµteω(µ)xf̂(µ)dµ = U(t)f(x)(3.12)

where the Fourier transform of f is

f̂(µ) = |µ|s(3µ2 − 1)
∫ ∞

0

e−(µ3−µ)iζh(ζ)dζ.

One easily checks that if h ∈ H
s
3
0 (R+), then f ∈ L2(R). Thus, applying Lemma

3.7 with θ = 1 and β = 1/2 to U(t)f(x) yields(∫ ∞
0

sup
x∈R+

|D1/4
x U(t)f(x)|4dt

)1/4

≤ C‖f‖L2(R) ≤ C‖h‖H s
3 (R+)

which gives the inequality required in the lemma using (3.12). The proof is com-
plete.

Attention is now turned to the semigroup Wc(t) defined in Proposition 2.1. As
mentioned earlier, the corresponding estimates for Wc(t), which are similar to those
in Lemmas 3.3 to 3.8, may be obtained directly from the integral representation
appearing in Proposition 2.1. However, as pointed out by a referee, there is a
short-cut based on the next observation.

Let a function φ be defined on the half line R+ and let φ∗ be an extension of φ
to the whole line R. The mapping φ → φ∗ can be organized so that it defines a
bounded linear operator from Hs(R+) to Hs(R) for all s ≥ 0 (see [47]). Henceforth,
φ∗ will refer to the result of such an extension operator applied to φ ∈ Hs(R+).
Assume that v = v(x, t) is the solution of

vt + vx + vxxx = 0, v(x, 0) = φ∗(x)

for x ∈ R, t ≥ 0. If g(t) = v(0, t), then vg = vg(x, t) = Wb(t)g is the corresponding
solution of the non-homogeneous boundary-value problem (2.9) with boundary con-
dition h(t) = g(t) for t ≥ 0. It is clear that for x > 0 the function v(x, t)− vg(x, t)
solves the IBVP (2.1), and this in turn leads to a representation of the semigroup
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Wc(t) in terms of Wb(t) and WR(t), where WR(t) is the C0-semigroup in the space
L2(R) generated by the operator A∗ defined by

A∗f = −f ′ − f ′′′

with domain D(A∗) = H3(R) and v(x, t) = WR(t)φ∗(x).

Proposition 3.9. For a given s ≥ 0 and any φ ∈ Hs(R+) with φ(0) = 0, if φ∗ is
its extension to R as described above, then Wc(t)φ may be written in the form

Wc(t)φ = WR(t)φ∗ −Wb(t)g

for any x, t > 0, where g is the trace of WR(t)φ∗ at x = 0.

To have appropriate estimates of Wc(t)φ, the following trace result related to
the semigroup WR(t) is needed.

Lemma 3.10. If s ≥ 0 is given, then there exists a constant C depending only on
s such that

sup
x∈R
‖WR(·)ψ(x)‖

H
(s+1)/3
t (R)

≤ C‖ψ‖Hs(R)

for all ψ ∈ Hs(R).

Proof. Observe that

WR(t)ψ(x) =
∫ +∞

−∞
ei(µ

3−µ)teiµxψ̂(µ)dµ

= I1(x, t) + I2(x, t) + I3(x, t)

with

I1(x, t) =
∫ ∞

1√
3

ei(µ
3−µ)teiµxψ̂(µ)dµ, I2(x, t) =

∫ 1√
3

− 1√
3

ei(µ
3−µ)teiµxψ̂(µ)dµ,

and

I3(x, t) =
∫ 1√

3

−∞
ei(µ

3−µ)teiµxψ̂(µ)dµ.

Note that the cubic equation

η = µ3 − µ
has only one real solution µ = δ1(η) when 1/

√
3 ≤ µ <∞. By a change of variables,

we may write

I1(x, t) =
∫ ∞
− 2

3
√

3

eiηteiδ1(η)x
(
3δ2

1(η)− 1
)−1

∫ ∞
−∞

e−δ1(η)ξψ(ξ)dξdη.

Applying the Plancherel Theorem to I1(x, t), there results

‖I1(x, ·)‖2H(s+1)/3(R) ≤ C

∫ +∞

− 2
3
√

3

∣∣3δ2
1(η) − 1

∣∣−2
(1 + |η|)2(s+1)/3

∣∣∣ψ̂(δ1(η))
∣∣∣2 dη

≤ C

∫ +∞

1√
3

(1 + µ)2s|ψ̂(µ)|2dµ = C‖ψ‖2Hs(R)

for all x ∈ R.
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Similar arguments yield the uniform bounds

‖Ij(x, ·)‖H(s+1)/3
t (R)

≤ C‖ψ‖Hs(R)

for j = 2, 3 and x ∈ R.

The following estimates for Wc(t) follow from Proposition 3.9, Lemma 3.10, sim-
ilar estimates of WR(t) obtained in Kenig, Ponce and Vega [41], and the estimates
of Wb(t) established earlier in Lemmas 3.3 to 3.8.

Lemma 3.11. For any given s ∈ [0, 7/2], there exists a constant C such that if
φ ∈ Hs

0(R+) for 0 ≤ s ≤ 1 or φ ∈ H1
0 (R+) ∩Hs(R+) for s > 1, then

sup
0≤t<+∞

‖Wc(t)φ‖Hs(R+) ≤ C‖φ‖Hs(R+),

sup
x∈R+

∫ ∞
0

∣∣Js+1
x Wc(t)φ(x)

∣∣2 dt ≤ C‖φ‖2Hs(R+),

sup
x∈R+

‖Dk
xWc(·)φ(x)‖

H
(s−k+1)/3
t (R+)

≤ C‖φ‖Hs(R+)

for k = 0, 1, and(∫ ∞
0

‖Ds+1/4Wc(t)φ‖4L∞x (R+)dt

)1/4

≤ C‖φ‖Hs(R+).

In addition, if s > 3/4, then(∫ ∞
0

sup
t∈[0,T ]

|Wc(t)φ(x)|2 dx
)1/2

≤ C(1 + T )‖φ‖Hs(R+).

We conclude this section with a technical lemma which is needed to handle the
non-homogeneous boundary condition.

Lemma 3.12. Let 0 ≤ s ≤ 7/2 and T > 0 be given. Let f(x, t) = e−xh(t) where
h ∈ Hs(R+). Then there exists a constant C such that the function u given by

u(x, t) =
∫ t

0

Wc(t− τ)f(·, τ)dτ

obeys the inequalities

sup
0≤t<+∞

‖u(·, t)‖Hs(R+) +
(

sup
x∈R+

∥∥Js+1
x u(x, t)

∥∥2

L2
t (R

+)

)1/2

+
1∑
k=0

sup
x∈R+

‖Dk
xu‖H(s−k+1)/3

t (R+)

+
(∫ ∞

0

‖Ds+1/4u(x, t)‖4L∞x (R+)dt

)1/4

+

(∫ ∞
0

sup
t∈[0,T ]

|u(x, t)|2 dx
)1/2

≤


C‖h‖L2(R+) for 0 ≤ s ≤ 2,

C‖h‖H(s−2)/3(R+) for 2 < s ≤ 7/2.
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Proof. Let ψ(x) be an extension of e−x from R+ to R such that ψ ∈ H6(R). Then
we may write u(x, t) as

u(x, t) =
∫ t

0

[WR(t− τ)ψ(·)h(τ)](x)dτ −
∫ t

0

[Wb(t)g̃(· − τ)](x)dτ

where g̃(t) is the trace of WR(t)ψ(·)h(τ) at x = 0. By switching the order of
application of the linear operatorWb(t) and integration with respect to τ , it appears
that u(x, t) = w(x, t) − [Wb(t)g](x) with

w(x, t) =
∫ t

0

WR(t− τ)ψ(·)h(τ)dτ

and g(t) = w(0, t). Note that w(x, t) solves

wt(x, t) = −wx(x, t)− wxxx(x, t) + ψ(x)h(t), w(x, 0) = 0

for x, t ∈ R. Applying the estimates of the x-derivatives of w(x, t) obtained in [41],
it is straightforward to see that

‖g(t)‖H1(R+) = ‖w(0, ·)‖H1(R+) ≤ C‖h‖L2(R+)

and

‖g(t)‖H2(R+) = ‖w(0, ·)‖H2(R+) ≤ C‖h‖H1(R+).

Standard interpolation theory then implies

‖g(t)‖H1+s(R+) = ‖w(0, ·)‖H1+s(R+) ≤ C‖h‖Hs(R+)(3.13)

for 0 ≤ s ≤ 1. The classical estimates for w obtained in [41] together with Lemmas
3.3 to 3.8 for Wb(t)g yields the inequality in the lemma.

4. Local well-posedness

Considered in this section is the fully nonlinear initial-boundary-value problem
ut + ux + uux + uxxx = 0, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t).
(4.1)

for the KdV equation. Solving (4.1) will be shown to define a continuous mapping
from the product space Hs(R+) × H(s+1)/3(0, T ), from which the auxiliary data
are drawn, to the space C([0, T ];Hs(R+)) where the solution u resides if s > 3/4,
at least for small values of T . This is a result of local well-posedness. While the
arguments leading to our result are a little involved, they follow from the estimates
put forward in Section 3 together with standard modern ideas for dealing with
nonlinear dispersive wave equations.

The development begins with the introduction of several seminorms and some
Banach spaces as in the paper of Kenig, Ponce and Vega [41]. For given s ≥ 0,
T > 0 and any function w ≡ w(x, t) : R+ × [0, T ]→ R, define

ΛT1,s(w) ≡ sup
0≤t≤T

‖w(·, t)‖Hs(R+),

ΛT2,s(w) ≡
(

sup
x∈R+

∫ T

0

|Js+1
x w(x, t)|2dt

)1/2

,
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ΛT3,s(w) ≡ sup
x∈R+

‖w(x, ·)‖
H
s+1

3 (0,T )
+ sup
x∈R+

‖Dxw(x, ·)‖
H
s
3 (0,T )

,

ΛT4 (w) ≡
(∫ T

0

sup
x∈R+

|Dxw(x, t)|4 dt
)1/4

,

ΛT5 (w) =

(∫ ∞
0

sup
t∈[0,T ]

|w(x, t)|2dx
)1/2

.

In addition, let

λT1,s(w) = max{ΛT1,s(w), ΛT2,s(w), ΛT3,s(w)}

and

λT,s(w) = λT1,s(w) + ΛT4 (w) + ΛT5 (w).

It is convenient to summarize the linear estimates established in Section 3 in
terms of these quantities. This reinterpretation is stated as a set of four lemmas.

Lemma 4.1. For a given s ∈ [0, 7/2] and T > 0, there exists a constant C depend-
ing only on s such that

λT1,s (Wc(t)φ) ≤ C‖φ‖Hs(R+)

for φ ∈ Hs
0(R+) if s ≤ 1 or for φ ∈ H1

0 (R+) ∩Hs(R+) if s > 1;

λT1,s (Wb(t)h) ≤ C‖h‖H(s+1)/3(R+)

for h ∈ H(s+1)/3
0 (R+);

λT1,s

(∫ t

0

Wc(t− τ)f(x, τ)dτ
)
≤ C

∫ T

0

‖f(·, τ)‖Hs(R+)dτ

for f ∈ L1(0, T ;Hs
0(R+)) if s ≤ 1 or for f ∈ L1(0, T ;H1

0 (R+) ∩Hs(R+)) if s > 1.

Lemma 4.2. There exists a constant C such that for any T > 0,

ΛT4 (Wc(t)φ) ≤ C‖φ‖H1/2(R+)

for φ ∈ H1/2
0 (R+);

ΛT4 (Wb(t)h) ≤ C‖h‖H1/2(0,T )

for h ∈ H1/2
0 (R+);

ΛT4

(∫ t

0

Wc(t− τ)f(x, τ)dτ
)
≤ C

∫ T

0

‖f(·, τ)‖H1/2(R+)dτ

for f ∈ L1(0, T ;H1/2
0 (R+)).
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Lemma 4.3. For any s > 3/4 and T > 0, there exists a constant C depending
only on s such that

ΛT5 (Wc(t)φ) ≤ C(1 + T )‖φ‖Hs(R+)

for any φ ∈ Hs(R+) with φ(0) = 0;

ΛT5 (Wb(t)h) ≤ C(1 + T )‖h‖H(s+1)/3(R+)

for any h ∈ H(s+1)/3(R+) with h(0) = 0;

ΛT5

(∫ t

0

Wc(t− τ)f(x, τ)dτ
)
≤ C(1 + T )

∫ T

0

‖f(·, τ)‖Hs(R+)dτ

for any f ∈ L1(0, T ;Hs(R+)) with f(0, t) ≡ 0 for 0 ≤ t ≤ T .

Remark 4.1. In the above inequalities, the condition s > 3/4 is sharp in the sense
that the estimate fails if s < 3/4 (cf. [41]).

Lemma 4.4. Let f(x, t) ≡ e−xh(t), and let T > 0 be given. For any s ∈ [0, 7/2]
and ε > 0, there exists a constant C depending only on s such that if 0 ≤ s ≤ 2,
then

λT,s

(∫ t

0

Wc(t− τ)f(x, τ)dτ
)
≤ C(1 + T 1/2)‖h‖L2(0,T )

for any h ∈ L2((0, T ); if 2 < s < 7/2, then

λT,s

(∫ t

0

Wc(t− τ)f(x, τ)dτ
)
≤ C

(
T 1/2‖h‖L2(0,T ) + (1 + T 1/2)‖h‖

H
s−2

3 (0,T )

)
for h ∈ H s−2

3 (0, T ).

Consider the initial-boundary-value problem ut + ux + uxxx = f, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t).
(4.2)

The preceding lemmas imply the following estimates for its solution u.

Proposition 4.5. Let s ≥ 0 and ε > 0 be given. There exists a constant C de-
pending only on s and on ε when it appears, such that for any T > 0,

(i) for 0 ≤ s ≤ 1/2,

λT1,s(u) ≤ C
(
‖φ‖Hs(R+) + ‖h‖H(s+1)/3(R+) +

∫ T

0

‖f(·, t)‖Hs(R+)dt

)
;

(ii) for 1/2 < s ≤ 2 and φ(0) = h(0),

λT1,s(u) ≤ C

(
‖φ‖Hs(R+) + ‖h‖H(s+1)/3(R+) +

∫ T

0

‖f(·, t)‖Hs(R+)dt

)

+ C
(

1 + T 1/2
)
‖f(0, ·)‖L2(0,T );
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(iii) for 2 ≤ s ≤ 3 and φ(0) = h(0),

λT1,s(u) ≤ C
(
‖φ‖Hs(R+) + ‖h‖H(s+1)/3(R+) +

∫ T

0

‖f(·, t)‖Hs(R+)dt

)

+C
(

1 + T 1/2
)
‖f(0, ·)‖

H
s−2

3
t (0,T )

;

(iv) if φ(0) = h(0), then

ΛT4 (u) ≤ C
(
‖φ‖H1/2(R+) + ‖h‖H1/2(R+) +

∫ T

0

‖f(·, t)‖H1/2(R+)dt

)

+ C
(
|φ(0)|+ T 1/4‖f(0, ·)‖L2(0,T )

)
;

(v) if φ(0) = h(0), then

ΛT5 (u) ≤ C

(
‖φ‖

H
3
4 +ε(R+)

+ ‖h‖
H

7
12 +ε(R+)

+
∫ T

0

‖f(·, t)‖
H

3
4 +ε(R+)

dt

)

+ CT 1/2‖f(0, ·)‖L2(0,T ).

Proof. For 0 ≤ s ≤ 1/2, the solution u of (4.2) is given by

u(x, t) = Wc(t)φ(x) + [Wb(t)h] (x) +
∫ t

0

Wc(t− τ)f(x, τ)dτ,(4.3)

whereas for 1/2 < s ≤ 3, by Proposition 2.3, if φ(0) = h(0), then its solution u can
be written as

u(x, t) = Wc(t)φ1(x) +
∫ t

0

Wc(t− τ)
(
f1(x, τ) + e−xf(0, τ) + 2e−x−τh(0)

)
dτ

+ [Wb(t)h1] (x) + e−x−th(0)

with

φ1(x) = φ(x) − e−xφ(0), f1(x, t) = f(x, t)− e−xf(0, t)

and

h1(t) = h(t)− e−th(0).

The advertised estimates then follow by combining the estimates in Lemmas 4.1–
4.4.

For any T > 0 and s in the interval 0 ≤ s ≤ 3, let ZsT be the collection of all
functions u ∈ C([0, T ];Hs(R+)) satisfying

λT1,s(u) <∞ if 0 ≤ s ≤ 1/2;

λT1,s(u) + ΛT4 (u) <∞ if 1/2 < s ≤ 3/4;

λT,s(u) <∞ if 3/4 < s ≤ 3.
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For v ∈ ZsT , define its norm ‖v‖ZsT as

‖v‖ZsT =


λT1,s(v), if 0 ≤ s ≤ 1/2;

λT1,s(v) + ΛT4 (v), if 1/2 < s ≤ 3/4;

λT,s(v), if 3/4 < s ≤ 3.

The space ZsT possesses the following property which is one of the keys to establish-
ing the well-posedness of the initial-boundary-value problem under consideration.

Lemma 4.6. Let 3/4 < s ≤ 3 and T > 0 be given. For any u, v ∈ ZsT , uvx ∈
L2(0, T ;Hs(R+)) and

‖uvx‖L2(0,T ;Hs(R+)) ≤ C‖u‖ZsT ‖v‖ZsT(4.4)

where C depends on s, but is independent of T, u and v.

Proof. We prove (4.4) for 3/4 < s < 1. The proof for other values of s is similar.
Since

‖uvx‖2L2(0,T ;Hs(R+))

=
∫ T

0

‖u(·, t)vx(·, t)‖2L2(R+)dt

+
∫ T

0

‖Jsx(u(·, t)vx(·, t))‖2L2(R+)dt

and it is straightforward to deduce that

∫ T

0

‖u(·, t)vx(·, t)‖2L2(R+)dt ≤ C‖u‖2ZsT ‖v‖
2
ZsT
,

it is only necessary to show that

∫ T

0

‖Jsx(u(·, t)vx(·, t))‖2L2(R+)dt ≤ C‖u‖2ZsT ‖v‖
2
ZsT
.
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To this end, argue as follows:∫ T

0

‖Jsx(u(·, t)vx(·, t))‖2L2(R+)dt

=
∫ T

0

∫ ∞
0

τ−(2s+1)

∫ ∞
0

|u(x+ τ, t)vx(x+ τ, t)− u(x, t)vx(x, t)|2 dxdτdt

≤ 2
∫ T

0

∫ ∞
0

τ−(2s+1)

∫ ∞
0

|u(x+ τ, t)− u(x, t)|2 |vx(x+ τ, t)|2 dxdτdt

+2
∫ T

0

∫ ∞
0

τ−(2s+1)

∫ ∞
0

|vx(x+ τ, t)− vx(x, t)|2 |u(x, t)|2 dxdτdt

≤ 2
∫ ∞

0

∫ T

0

∫ ∞
0

τ−(2s+1) |vx(x+ τ, t)− vx(x, t)|2 |u(x, t)|2 dτdtdx

+2
∫ T

0

‖vx(·, t)‖2L∞(R+)

∫ ∞
0

τ−(2s+1)

∫ ∞
0

|u(x+ τ, t)− u(x, t)|2 dxdτdt

≤ 2
∫ ∞

0

sup
0≤t≤T

|u(x, t)|2
∫ T

0

∫ ∞
0

τ−(2s+1) |vx(x+ τ, t)− vx(x, t)|2 dτdtdx

+2
∫ T

0

‖vx(·, t)‖2L∞(R+)

∫ ∞
0

τ−(2s+1)

∫ ∞
0

|u(x+ τ, t)− u(x, t)|2 dxdτdt

≤ 2
∫ ∞

0

sup
0≤t≤T

|u(x, t)|2 dx sup
x∈R+

∫ T

0

∫ ∞
0

τ−(2s+1) |vx(x+ τ, t)− vx(x, t)|2 dτdt

+2
∫ T

0

‖vx(·, t)‖2L∞(R+)

∫ ∞
0

τ−(2s+1)

∫ ∞
0

|u(x+ τ, t)− u(x, t)|2 dxdτdt

≤ C‖u‖2ZsT ‖v‖
2
ZsT
.

The proof is complete.

Lemma 4.7. Let s ∈ [0, 3/4] and T > 0 be given. Then for any u ∈ Z1
T and

v ∈ ZsT , uvx ∈ L2(0, T ;Hs(R+)) and

‖(uv)x‖L2(0,T ;Hs(R+)) ≤ C‖u‖Z1
T
‖v‖ZsT(4.5)

where C is independent of u and v.

Proof. The proof is similar to the proof of Lemma 4.6.

As in many initial-boundary-value problems, some compatibility conditions are
needed for relating the initial data φ and the boundary value h. A simple compu-
tation shows that if u is a C∞-smooth solution of (4.1) up to the boundary, then
its initial data u(x, 0) = φ(x) and its boundary value u(0, t) = h(t) must satisfy

φk(0) = hk(0)(4.6)
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for k = 0, 1, · · · , where hk(t) ≡ h(k)(t) is the k-th order derivative of h,
φ0(x) = φ(x), and

φk(x) = −
(
φ′′′k−1(x) + φ′k−1(x) +

∑k−1
j=0 [φj(x)φk−j−1(x)]′

)(4.7)

for k = 1, 2, · · · .

Definition (s-compatibility). Given T > 0 and s ≥ 0, we say that (φ, h) ∈
Hs(R+)×H(s+1)/3(0, T ) is s-compatible if

φk(0) = hk(0)

for k = 0, 1, · · · , [s/3]− 1 when s − 3[s/3] ≤ 1/2 and for k = 0, 1, · · · , [s/3] when
s− 3[s/3] > 1/2.

Here is the local well-posedness result for the problem (4.1) that is the ultimate
focus in this section.

Theorem 4.8. Let T > 0 and s ∈ (3/4, 3] be given. For a pair of s-compatible
functions φ ∈ Hs(R+) and h ∈ H(1+s)/3(0, T ), there exists a T ∗ ∈ (0, T ] depending
only on ‖φ‖Hs(R+) + ‖h‖H(s+1)/3(0,T ) such that the problem (4.1) admits a unique
solution u ∈ ZsT∗.

Remark 4.2. The proof given below shows that the solution map

(φ, h) 7→ u

from Hs(R+) × H(s+1)/3(0, T ) → ZsT∗ is Lipschitz-continuous. It will be shown
later in Section 6 that this map has much stronger regularity; namely, it is real
analytic.

Proof. For the given s-compatible pair (φ, h), let 0 < β ≤ T and r > 0 be two
constants (to be determined later) and define

Sβ,r = {w ∈ Zsβ : w(0, t) = h(t), w(x, 0) = φ(x), ‖w‖Zsβ ≤ r}.

The set Sβ,r is a closed subset of the space Zsβ. According to Proposition 4.5, for
any v ∈ Sβ,s, the linear problem

ut + ux + uxxx = −vvx, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t)
(4.8)

has a unique solution u ∈ Zsβ. Thus (4.8) defines a map Γ from Zsβ to Zsβ, say

u = Γ(v)

for any v ∈ Zsβ . In addition, for any ε > 0, there exists a constant C such that

λβ,s (Γ(v)) ≤ C
(
‖φ‖Hs(R+) + ‖h‖H(s+1)/3(0,T )

)
+C

(∫ β

0

‖v(·, τ)vx(·, τ)‖Hs(R+)dτ + ‖v(0, ·)vx(0, ·)‖L2(0,β)

)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



466 JERRY L. BONA, S. M. SUN, AND BING-YU ZHANG

if 3/4 < s ≤ 2 and

λβ,s (Γ(v)) ≤ C
(∫ β

0

‖v(·, τ)vx(·, τ)‖Hs(R+)dτ + ‖φ‖Hs(R+)

)

+C
(

(β1/2 + β1/4)‖v(0, ·)vx(0, ·)‖
H
s−2

3 (0,β)
+ ‖h‖

H
s+1

3 (0,T )

)
if 2 < s ≤ 3. By Lemma 4.6, it is known that∫ β

0

‖v(·, τ)vx(·, τ)‖Hs(R+)dτ ≤ Cβ1/2λβ,s(v)λβ,s(v).

In addition, for 3/4 < s ≤ 2, it is clear that(∫ β

0

|vx(0, t)v(0, t)|2dt
)1/2

=

(∫ β

0

|vx(0, t)h(t)|2dt
)1/2

≤ C

(∫ β

0

|vx(0, t)|2dt
)1/2

‖h‖H(s+1)/3(0,T )

≤ Cβ1/4λT,s(v)‖h‖H(s+1)/3(0,T ).

If 2 < s ≤ 3, then

‖vx(0, ·)v(0, ·)‖H(s−2)/3(0,β) ≤ Cβ
5−s

6 ‖vx(0, ·)v(0, ·)‖H(s+4)/9(0,β)

≤ Cβ
5−s

6 λβ,s(v)λβ,s(v).

Combining the above estimates yields

λβ,s (Γ(v)) ≤ C
(
‖φ‖Hs(R+) + ‖h‖H(1+s)/3(0,T ) + (β1/4 + β1/2)λ2

β,s(v)
)

for any s ∈ (3/4, 3] and 0 < β ≤ T . Here C is independent of φ, h and β. Setting

r = 2C
(
‖φ‖Hs(R+) + ‖h‖H(1+s)/3(0,T )

)
(4.9)

and choosing β ∈ (0, T ] such that

C
(
β1/4 + β1/2

)
r ≤ 1/2,(4.10)

it is seen immediately that

λβ,s (Γ(v)) ≤ r for any v ∈ Sβ,r .

Thus Γ is a map from Sβ,r to Sβ,r if β and r are chosen according to (4.9) and
(4.10). A similar argument shows that for such β and r,

λβ,s (Γ(v1)− Γ(v2)) ≤ 1
2
λβ,s(v1 − v2)

for any v1, v2 ∈ Sβ,r. Thus Γ is a contraction from Sβ,r to Sβ,r. Its unique fixed
point is the desired solution of (4.1); it is defined on the temporal interval [0, β].

The next step is to extend Theorem 4.8 to the case where s > 3. First, the
definition of the space ZsT is extended to values of s > 3. For s > 3, write s in the
form

s = 3m+ s′
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with m = [s/3] or m = [s/3] − 1 and 0 < s′ ≤ 3. For a given T > 0 and such
a value s, let ZsT be the collection of all functions u ∈ Cm−1([0, T ];H3(R+)) with
∂mt u ∈ C([0, T ];Hs′(R+)) satisfying

‖u‖ZsT = ‖∂mt u‖Zs′T +
m−1∑
k=0

‖∂kt u‖Z3
T
< +∞.

Theorem 4.9. Let T > 0 and s > 3 be given with s = 3m + s′ where m =
[s/3] and 0 < s′ ≤ 3. For any given pair of s-compatible functions (φ, h) ∈
Hs(R+)×H(s+1)/3(0, T ), there exists a T ∗ ∈ (0, T ] depending only on ‖φ‖Hs(R+) +
‖h‖H(s+1)(0,T ) such that (4.1) admits a unique solution u ∈ ZsT∗ .

Proof. As in the proof of Theorem 4.8, for the given s-compatible (φ, h) ∈ Hs(R+)×
H(s+1)/3(0, T ), let β ∈ (0, T ] and r > 0 be two constants to be determined and let

Sβ,r = {w ∈ Zsβ : w(0, t) = h(t), w(x, 0) = φ(x), ‖w‖Zsβ ≤ r}.

The set Sβ,r is a closed subspace of Zsβ. Define the map Γ from Zsβ to Zsβ by

u = Γ(v)

where v ∈ Zβ,s and u is the unique solution of the linear problem
ut + ux + uxxx = −vvx, for x, t ≥ 0,

u(x, 0) = φ(x), u(0, t) = h(t).

As above, it will transpire that if β and r are appropriately chosen, then Γ is a
contraction map from Sβ,r to Sβ,r.

The proof of Theorem 4.8 implies that there is a constant C such that

λβ,3 (Γ(v)) ≤ C
(
‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T ) + (β1/2 + β1/4)λ2

β,3(v)
)
.(4.11)

Let w(k) = ∂kt Γ(v) for k = 1, 2, · · · ,m. The function w(k) solves the initial-
boundary-value problem w

(k)
t + w

(k)
x + w

(k)
xxx = −(∂kt (vvx), for x, t ≥ 0,

w(k)(x, 0) = φk(x), w(k)(0, t) = hk(t),

for k = 1, 2, · · · ,m. By Proposition 4.5, there is a constant C such that

λβ,3

(
w(k)

)
≤ C

(
‖(φk, hk)‖H3(R+)×H(3+1)/3(0,T ) + ‖∂kt (vvx)‖L1(0,β;H3(R+))

)
for k = 1, · · · ,m− 1. In addition, we know that

λβ1,s′
(
w(m)

)
≤ C

(
‖φm‖Hs′ (R+) + ‖hm‖H(s′+1)/3(0,T )

+‖∂mt (vvx)‖L1(0,β;Hs′(R+))

)
if 0 < s′ ≤ 1/2;

λβ1,s′
(
w(m)

)
+ Λβ4

(
w(m)

)
≤ C

(
‖φm‖Hs′ (R+) + ‖hm‖H(s′+1)/3(0,T )

)
+C

(
‖∂mt (vvx)‖L1(0,β;Hs′ (R+)) + ‖(∂mt (vvx))(0, t)‖L2(0,β)

)
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if 1/2 < s′ ≤ 3/4;

λβ,s′
(
w(m)

)
≤ C

(
‖φm‖Hs′ (R+) + ‖hm‖H(s′+1)/3(0,T )

)
+C

(
‖∂mt (vvx)‖L1(0,β;Hs′ (R+)) + ‖(∂mt (vvx))(0, t)‖L2(0,β)

)
if 3/4 < s′ ≤ 2; and

λβ,s′
(
w(m)

)
≤ C

(
‖φm‖Hs′ (R+) + ‖hm‖H(s′+1)/3(0,T )

)
+C

(
‖∂mt (vvx)‖L1(0,β;Hs′ (R+)) + ‖(∂mt (vvx))(0, t)‖H(s−2)/3(0,β)

)
if 2 < s′ ≤ 3. Since v ∈ Zsβ , by repeated application of Lemma 4.6, there follows
the inequality

‖∂kt (vvx)‖L1(0,β;Hs′(R+)) ≤ Cβ1/2
k∑
j=0

(
k
j

)
‖(∂jt v∂

k−j
t v)x‖L2(0,β;Hs′ (R+))

≤ Cβ1/2
k∑
j=0

(
k
j

)
λβ,3(∂jt v)λβ,3(∂k−jt v)

≤ Cβ1/2‖v‖2Zsβ
for k = 1, · · · ,m− 1. Similarly, using Lemma 4.6 and Lemma 4.7, it is seen that

‖∂mt (vvx)‖L1(0,β;Hs′ (R+)) ≤ Cβ1/2‖v‖2Zsβ .

Furthermore, it is straightforward to show that

‖(∂mt (vvx))(0, t)‖L2(0,β) ≤ Cβ1/4‖v‖2Zsβ
when 1/2 < s′ ≤ 2, and that

‖(∂mt (vvx))(0, t)‖H(s−2)/3(0,β) ≤ C(β1/2 + β1/4)‖v‖2Zsβ
when 2 < s′ ≤ 3.

Those estimates, together with (4.11) yield

‖Γ(v)‖Zsβ ≤ C
(
‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T ) + (β1/2 + β1/4)‖v‖2Zsβ

)
.

The remainder of the proof is the same as the culmination of the proof for Theorem
4.8. The theorem is thereby proved.

By writing the equation in (4.1) in the form

uxxx = −ut − ux − uux,

one sees that if both u and ut belong to the space C([0, T ];Hs(R+)) for some
s > 1/2, then u ∈ C([0, T ];Hs+3(R+)). Thus the following theorem is a direct
consequence of Theorem 4.8 and Theorem 4.9.

Theorem 4.10. Let T > 0 and s > 3/4 be given. Then for any s-compatible pair
(φ, h) ∈ Hs(R+) × H(s+1)/3(0, T ), there exists a T ∗ ∈ (0, T ] depending only on
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‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T ) such that (4.1) with initial data φ and boundary data
h admits a unique solution

u ∈ ZsT∗ ∩C([0, T ∗];Hs(R+))

with ∂kt u ∈ C([0, T ∗];Hs−3k(R+)) for k = 0, 1, · · · , [s/3].

5. Global well-posedness

The well-posedness results presented in Section 4 are local in the sense that
the length of the time interval [0, T ∗] on which the solution exists depends on
the quantity ‖φ‖Hs(R+) + ‖h‖H(s+1)/3(0,T ). In general, the larger is ‖φ‖Hs(R+) +
‖h‖H(s+1)/3(0,T ), the smaller will be T ∗. However, if T ∗ = T no matter what the size
of ‖φ‖Hs(R+) + ‖h‖H(s+1)/3(0,T ), the initial-boundary-value problem (4.1) is said to
be globally well-posed. With local well-posedness in hand, it is well understood that
one need only establish a priori global Hs(R+)-estimates for the smooth solution
u of (4.1) to show that (4.1) is globally well-posed.

In this section, aided by the smoothing properties established in Section 3, a
range of a priori estimates is provided and these are established under the same
hypotheses as those used to prove the local well-posedness when s ≥ 3, while a
slightly stronger assumption on the boundary data h is employed when 1 ≤ s < 3.
The theory begins with Hs(R+)-bounds in the range 1 ≤ s ≤ 3.

Theorem 5.1. Let T > 0 and s ∈ [1, 3] be given. Then there exists a continuous
non-decreasing function αs : R+ → R+ such that for any smooth solution u of
(4.1),

sup
0≤t≤T

‖u(·, t)‖Hs(R+) ≤ αs
(
‖φ‖Hs(R+) + ‖h‖

H
7+3s

12 (0,T )

)
.(5.1)

Two important tools will be utilized in the proof of this theorem. One is the
smoothing properties of the equation established earlier. These will be used to
recover the regularity lost through taking boundary traces. The other is nonlinear
interpolation theory as expounded in Tartar [57] and Bona and Scott [8], which is
the key to obtaining the estimate (5.1) for 1 < s < 3.

Here is a précis of the (real) interpolation theory as it will be used below. Let B0

and B1 be two Banach spaces such that B1 ⊂ B0 with continuous inclusion map.
Let f ∈ B0 and, for t ≥ 0, define

K(f, t) = inf
g∈B1
{‖f − g‖B0 + t‖g‖B1}.

For 0 < θ < 1 and 1 ≤ p ≤ +∞, define

[B0, B1]θ,p = Bθ,p =

{
f ∈ B0 : ‖f‖θ,p =

(∫ ∞
0

K(f, t)pt−θp−1dt

)1/p

< +∞
}

with the usual modification for the case p = +∞. Then Bθ,p is a Banach space
with norm ‖ · ‖θ,p. Given two pairs of indices (θ1, p1) and (θ2, p2) as above, then
(θ1, p1) < (θ2, p2) means 

θ1 < θ2, or

θ1 = θ2 and p1 > p2.

If (θ1, p1) < (θ2, p2), then Bθ2,p2 ⊂ Bθ1,p1 and the inclusion map is continuous.
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Theorem 5.2. Let Bj0 and Bj1 be Banach spaces such that Bj1 ⊂ Bj0 with contin-
uous inclusion mappings, j = 1, 2. Let λ and q lie in the ranges 0 < λ < 1 and
1 ≤ q ≤ +∞. Suppose A is a mapping such that

i) A : B1
λ,q → B2

0 and for f, g ∈ B1
λ,q,

‖Af −Ag‖B2
0
≤ C0(‖f‖B1

λ,q
+ ‖g‖B1

λ,q
)‖f − g‖B1

0

and
ii) A : B1

1 → B2
1 and for h ∈ B1

1

‖Ah‖B2
1
≤ C1(‖h‖B1

λ,q
)‖h‖B1

1
,

where Cj : R+ → R+ are continuous non-decreasing functions, j = 0, 1.
Then if (θ, p) ≥ (λ, q), A maps B1

θ,p into B2
θ,p and for f ∈ B1

θ,p

‖Af‖B2
θ,p
≤ C(‖f‖B1

λ,q
)‖f‖B1

θ,p
,

where for r > 0, C(r) = 4C0(4r)1−θC1(3r)θ .

Remark 5.1. This theorem is identical with Theorem 2 of Tartar [57] except that
Tartar makes the more restrictive assumption that the constants C0 and C1 depend
only on the B1

0 norms of the functions in question. Theorem 5.2 was used by Bona
and Scott [8] to provide the original proof of global well-posedness of the pure
initial-value problem for the KdV equation on the whole line in fractional order
Sobolev spaces Hs(R).

Nonlinear interpolation theory as embodied in Theorem 5.2 will be used to prove
the estimate (5.1).

Proof of Theorem 5.1. For T > 0 and 1 ≤ s ≤ 3, let

V sT = {(φ, h) ∈ Hs(R+)×H 7+3s
12 (0, T )| φ(0) = h(0)}

with the inherited norm from the product space Hs(R+)×H 7+3s
12 (0, T ). To apply

Theorem 5.2, choose

B1
0 = V 1

T , B2
0 = V 3

T , B1
1 = C([0, T ];H1(R+)), B2

1 = C([0, T ];H3(R+)).

Let A be the solution map for the IBVP (4.1): u = A(φ, h). For a given s with
1 < s < 3, choose p = 2 and θ = (3− s)/2, so that

B2
θ,p = C([0, T ];Hs(R+)) and B1

θ,p = V sT .

The following two propositions are needed to assure both the hypotheses (i) and
(ii) in Theorem 5.2 are satisfied in the present context.

Proposition 5.3. For a given T > 0, there is a T -dependent and non-decreasing
continuous function αT : R+ → R+ such that any smooth solution u of (4.1)
satisfies

sup
0≤t≤T

‖u(·, t)‖H1(R+) ≤ αT (‖(φ, h)‖V 1
T

).(5.2)

Proposition 5.4. For a given T > 0, there is a T -dependent and non-decreasing
function αT : R+ → R+ such that any smooth solution u of (4.1) satisfies

sup
0≤t≤T

‖u(·, t)‖H3(R+) ≤ αT (‖(φ, h)‖V 1
T

)‖(φ, h)‖V 3
T
.(5.3)
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If Propositions 5.3 and 5.4 are valid, then hypothesis (ii) is assured by (5.3). To
see hypothesis (i) is also satisfied, let u1 and u2 be two smooth solutions of the
equation in (4.1) with

uj(x, 0) = ψj(x), uj(0, t) = gj(t)

for j = 1, 2 and let z(x, t) = u1(x, t)− u2(x, t). Then z(x, t) solves
zt + zx + (a(x, t)z)x + zxxx = 0, x > 0, t > 0,

z(x, 0) = ψ1(x)− ψ2(x), z(0, t) = g1(t)− g2(t)

where a(x, t) = 1
2 (u1(x, t) + u2(x, t)). It follows from estimate (5.2) and Theorem

4.9 that a ∈ Z1
T and

‖a‖Z1
T
≤ αT

(
‖(ψ1, g1)‖V 1

T
+ ‖(ψ2, g2)‖V 1

T

)
.

Then, by Proposition 6.1 in the next section, which is proved independently of the
present considerations, we have that

sup
0≤t≤T

‖u1(·, t)− u2(·, t)‖H1(R+) ≤ αT
(
‖(ψ1, g1)‖V 1

T
+ ‖(ψ2, g2)‖V 1

T

)
×‖(ψ1 − ψ2, g1 − g2)‖V 1

T
.

Thus Theorem 5.1 follows by a direct application of Theorem 5.2.

Consideration is turned to proving Proposition 5.3 and Proposition 5.4.

Proof of Proposition 5.3. For a smooth solution u of (4.1), write it in the form
u = w + v + g(x, t) where g(x, t) ≡ e−x−th(0), v solves

vt + vx + vxxx = 0, for x, t ≥ 0,

v(x, 0) = 0, v(0, t) = h∗(t) ≡ h(t)− e−th(0),

and w solves

wt + wx + wwx + (vw)x + (gw)x + wxxx = Y (x, t)− (gv)x − vvx(5.4)

with Y (x, t) = 3g(x, t) + g2(x, t) and with the auxiliary conditions

w(x, 0) = φ∗(x) ≡ φ(x) − e−xφ(0) and w(0, t) = 0.(5.5)

By Proposition 4.5 and the third part of Lemma 3.11, there is a T -dependent
constant CT such that

‖v‖Z1
T
≤ CT ‖h‖H2/3(0,T ) and

(∫ T

0

sup
x∈R+

|vxx(x, t)|4dt
)1/4

≤ CT ‖h‖H5/6(0,T )

(5.6)
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for any (φ, h) ∈ V 1
T . Multiplying both sides of (5.4) by 2w, integrating with respect

to x over (0,∞), and integrating by parts appropriately, there obtains

d

dt

∫ ∞
0

w2(x, t)dx + w2
x(0, t) = −

∫ ∞
0

v(x, t)vx(x, t)w(x, t)dx

−
∫ ∞

0

vx(x, t)w2(x, t)dx

+2
∫ ∞

0

(Y (x, t)− (g(x, t)w(x, t))x − (g(x, t)v(x, t))x)w(x, t)dx.(5.7)

Hölder’s inequality gives∫ t

0

∫ ∞
0

|vx(x, τ)|w2(x, τ)dxdt ≤
∫ t

0

sup
x∈R+

|vx(x, τ)|
∫ ∞

0

w2(x, τ)dxdτ

≤
(∫ t

0

sup
x∈R+

|vx(x, τ)|4dτ
)1/4(∫ t

0

‖w(·, τ)‖8/3L2(R+)dτ

)3/4

≤ ‖v‖Z1
T

(∫ t

0

‖w(·, τ)‖8/3L2(R+)dτ

)3/4

≤ ‖v‖Z1
T

sup
0≤τ≤t

‖w(·, τ)‖L2(R+)

(∫ t

0

‖w(·, τ)‖4/3L2(R+)dτ

)3/4

≤ CT ‖v‖Z1
T

sup
0≤τ≤t

‖w(·, τ)‖L2(R+)

(∫ t

0

‖w(·, τ)‖2L2(R+)dτ

)1/2

and∫ t

0

∫ ∞
0

|v(x, τ)vx(x, τ)w(x, τ)|dxdτ ≤
∫ t

0

‖v(·, τ)‖2H1(R+)‖w(·, τ)‖L2(R+)dτ

≤ ‖v‖2Z1
T

∫ t

0

‖w(·, τ)‖L2(R+)dτ.

Similarly, one has∫ t

0

∫ ∞
0

|g(x, τ)|w2(x, τ)dxdτ ≤ ‖φ‖H1(R+)

∫ t

0

∫ ∞
0

w2(x, τ)dxdτ,

∫ t

0

∫ ∞
0

|Y (x, t)w(x, t)|dxdτ ≤ CT ‖φ‖2H1(R+)

(∫ t

0

∫ ∞
0

w2(x, τ)dxdτ
)1/2

,

and ∫ t

0

∫ ∞
0

|(g(x, τ)v(x, τ))xw(x, τ)|dxdτ

≤ CT ‖φ‖H1(R+)‖v‖Z1
T

(∫ t

0

∫ ∞
0

w2(x, τ)dxdτ
)1/2

.
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Integrating (5.7) with respect to the temporal variable over [0, t] and combining the
above inequalities with (5.6) allows one to infer that∫ ∞

0

w2(x, t)dx +
∫ t

0

w2
x(0, τ)dτ ≤ 1

2
sup

0≤τ≤t
‖w(·, τ)‖2L2(R+)

+α0 + α1

∫ t

0

‖w(·, τ)‖L2(R+)dτ + α2

∫ t

0

‖w(·, τ)‖2L2(R+)dτ

≤ 1
2

sup
0≤τ≤t

‖w(·, τ)‖2L2(R+) + α0 + α3

∫ t

0

‖w(·, τ)‖2L2(R+)dτ,

for any t ∈ (0, T ], where αj , j = 0, 1, 2, 3, are constants depending only on T and
‖(φ, h)‖V 1

T
. Consequently, it transpires that

sup
0≤t≤T

‖w(·, t)‖L2(R+) +
∫ t

0

w2
x(0, t)dt ≤ αT

(
‖(φ, h)‖V 1

T

)
.(5.8)

Next, multiply both sides of (5.4) by −2wxx − w2, integrate over R+ and (0, t)
with respect to x and t, respectively, and integrate by parts appropriately to reach
the formula∫ ∞

0

w2
x(x, t)dx+

∫ t

0

w2
xx(0, τ )dτ =

∫ ∞
0

|Dxφ∗(x)|2dx+
1

3

∫ ∞
0

w3(x, t)dx

−5

∫ t

0

∫ ∞
0

v2
x(x, τ )wx(x, τ )dxdτ − 2

∫ t

0

∫ ∞
0

vxx(x, τ )w(x, τ )wx(x, τ )dxdτ

−2

∫ t

0

∫ ∞
0

vxx(x, τ )v(x, τ )wx(x, τ )dxdτ +
2

3

∫ t

0

∫ ∞
0

vx(x, τ )w3(x, τ )dxdτ

+

∫ t

0

∫ ∞
0

vx(x, τ )v(x, τ )w2(x, τ )dxdτ −
∫ t

0

v(0, τ )w2
x(0, τ )dτ

−
∫ t

0

v(0, τ )vx(0, τ )wx(0, τ )dτ − 2

∫ t

0

Y (0, τ )wx(0, τ )dτ

+2

∫ t

0

∫ ∞
0

Yx(x, τ )wx(x, τ )dxdτ −
∫ t

0

∫ ∞
0

Y (x, τ )w2(x, τ )dxdτ

−2

∫ t

0

∫ ∞
0

gxx(x, τ )w(x, τ )wx(x, τ )dxdτ − 3

∫ t

0

∫ ∞
0

gx(x, τ )w2
x(x, τ )dxdτ

−
∫ t

0

g(0, τ )w2
x(0, τ )dτ +

2

3

∫ t

0

∫ ∞
0

gx(x, τ )w3(x, τ )dxdτ

−2

∫ t

0

∫ ∞
0

gxx(x, τ )wx(x, τ )dxdτ − 4

∫ t

0

∫ ∞
0

gx(x, τ )vx(x, τ )wx(x, τ )dxdτ

−2

∫ t

0

∫ ∞
0

g(x, τ )vxx(x, τ )wx(x, τ )dxdτ

−2

∫ t

0

[gx(0, τ )v(0, τ ) + g(0, τ )vx(0, τ )]wx(0, τ )dτ.(5.9)
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For any t ∈ (0, T ], the terms on the right-hand side of equation (5.9) may be
estimated as follows:∣∣∣∣∫ t

0

∫ ∞
0

vx(x, τ)w3(x, τ)dxdτ
∣∣∣∣

≤
∫ t

0

‖w(·, τ)‖2H1(R+)‖vx(·, τ)‖L2(R+)‖w(·, τ)‖L2(R+)dτ

≤ ‖v‖Z1
T

sup
0≤τ≤t

‖w(·, τ)‖L2(R+)

∫ t

0

‖w(·, τ)‖2H1(R+)dτ ;

∣∣∣∣∫ t

0

∫ ∞
0

v(x, τ)vx(x, τ)w2(x, τ)dxdτ
∣∣∣∣

≤
∫ t

0

‖w(·, τ)‖2H1(R+)‖v(·, τ)‖L2(R+)‖vx(·, τ)‖L2(R+)dτ

≤ ‖v‖2Z1
T

∫ t

0

‖w(·, τ)‖2H1(R+)dτ ;

∣∣∣∣∫ t

0

∫ ∞
0

v2
x(x, τ)wx(x, τ)dxdτ

∣∣∣∣
≤
∫ t

0

‖vx(·, τ)‖L∞(R+)‖vx(·, τ)‖L2(R+)‖wx(·, τ)‖L2(R+)dτ

≤ sup
0≤τ≤t

‖vx(·, τ)‖L2(R+)

(∫ t

0

‖vx(·, τ)‖4L∞(R+)dτ

)1/4(∫ t

0

‖wx(·, τ)‖4/3L2(R+)dτ

)3/4

≤ CT ‖v‖2Z1
T

(∫ t

0

‖w(·, τ)‖2H1(R+)dτ

)1/2

;

∣∣∣∣∫ t

0

∫ ∞
0

vxx(x, τ)w(x, τ)wx(x, τ)dxdτ
∣∣∣∣

≤
∫ t

0

‖vxx(·, τ)‖L∞(R+)‖w(·, τ)‖2H1(R+)dτ

≤
(∫ t

0

‖vxx(·, τ)‖4L∞(R+)dτ

)1/4(∫ t

0

‖w(·, τ)‖8/3H1(R+)

)3/4

≤ CT ‖h‖H5/6(0,T ) sup
0≤τ≤t

‖w(·, τ)‖H1(R+)

(∫ t

0

‖w(·, τ)‖4/3H1(R+)

)3/4

≤ CT ‖h‖H5/6(0,T ) sup
0≤τ≤t

‖w(·, τ)‖H1(R+)

(∫ t

0

‖w(·, τ)‖2H1(R+)

)1/2

;
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0

∫ ∞
0

v(x, τ)vxx(x, τ)wx(x, τ)dxdτ
∣∣∣∣

≤
∫ t

0

‖v(·, τ)vxx(·, τ)‖L2(R+)‖wx(·, τ)‖L2(R+)dτ

≤
(∫ t

0

‖v(·, τ)vxx(·, τ)‖2L2(R+)dτ

)1/2(∫ t

0

‖wx(·, τ)‖2L2(R+)dτ

)1/2

≤
∫ t

0

‖wx(·, τ)‖2L2(R+)dτ +
∫ ∞

0

sup
0≤τ≤t

v2(x, τ)
∫ t

0

v2
xx(x, τ)dτdx

≤
∫ t

0

‖wx(·, τ)‖2L2(R+)dτ + sup
0<x<+∞

∫ t

0

v2
xx(x, τ)dτ

∫ ∞
0

sup
0≤τ≤t

v2(x, τ)dx

≤
∫ t

0

‖wx(·, τ)‖2L2(R+)dτ + ‖v‖4Z1
T

and ∣∣∣∣∫ ∞
0

w3(x, t)dx
∣∣∣∣ ≤ ‖w(·, t)‖H1(R+)‖w(·, t)‖2L2

≤ 1
4
‖w(·, t)‖2H1(R+) + ‖w(·, t)‖4L2(R+).

In a similar vein, one obtains the following inequalities:∫ t

0

∫ ∞
0

|Y (x, τ)|w2(x, τ)dxdτ ≤ CT ‖(φ, h)‖2V 1
T

∫ t

0

‖w‖2L2(R+)dτ ;

∫ t

0

∫ ∞
0

|Yx(x, τ)wx(x, τ)|dxdτ ≤ CT ‖(φ, h)‖V 1
T

(∫ t

0

‖w(·, τ)‖2H1(R+)dτ

)1/2

;

∫ t

0

∫ ∞
0

|gx(x, τ)w3(x, τ)|dxdτ

≤ |h(0)|
∫ t

0

‖w(·, τ)‖H1(R+)‖w(·, τ)‖2L2(R+)dτ

≤ ‖h‖H2/3(0,T ) sup
0≤τ≤t

‖w(·, τ)‖2L2(R+)

∫ t

0

‖w(·, τ)‖H1(R+)dτ ;

∫ t

0

∫ ∞
0

|gxx(x, τ)w(x, τ)wx(x, τ)|dxdτ

≤ CT ‖h‖H2/3(0,T ) sup
0≤τ≤t

‖w(·, τ)‖L2(R+)

∫ t

0

‖wx(·, τ)‖L2(R+)dτ ;

∫ t

0

∫ ∞
0

|gx(x, τ)w2
x(x, τ)|dx ≤ CT ‖h‖H2/3(0,T )

∫ t

0

‖wx(·, τ)‖2L2(R+)dτ ;
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0

∫ ∞
0

|(g(x, τ)v(x, τ))xw2(x, τ)|dxdτ ≤ Ct‖v‖Z1
T

∫ t

0

‖w(·, τ)‖2L2(R+)dτ ;

∫ t

0

∫ ∞
0

|g(x, τ)vxx(x, τ)wx(x, τ)|dxdτ

≤ CT |h(0)|
(∫ ∞

0

sup
0≤τ≤t

|vxx(x, τ)|2dx
)1/2 (∫ t

0

∫ ∞
0

w2
x(x, τ)dxdτ

)1/2

and ∫ t ∫ ∞
0

|(gxv)xwx|dxdτ ≤ CT ‖v‖Z1
T

∫ t

0

‖wx‖L2(R+)dτ.

In addition, the integrals corresponding to boundary traces need to be bounded:∣∣∣∣∫ t

0

v(0, τ)w2
x(0, τ)dτ

∣∣∣∣ ≤ sup
0≤τ≤t

|v(0, τ)|
∫ t

0

w2
x(0, τ)dτ

≤ ‖v‖Z1
T

∫ t

0

w2
x(0, τ)dτ ;

∣∣∣∣∫ t

0

v(0, τ)vx(0, τ)wx(0, τ)dτ
∣∣∣∣

≤ ‖v‖Z1
T

(∫ t

0

v2
x(0, τ)dτ

)1/2(∫ t

0

w2
x(0, τ)dτ

)1/2

≤ ‖v‖2Z1
T

(∫ t

0

w2
x(0, τ)dτ

)1/2

;

∫ t

0

|Y (0, τ)wx(0, τ)|dτ ≤ 3
(
‖h‖H2/3(0,T ) + ‖h‖2H2/3(0,T )

)

×
(∫ t

0

|wx(0, τ)|2dτ
)1/2

;

∫ t

0

∣∣g(0, τ)|w2
x(0, τ)

∣∣ dτ ≤ |h(0)|
∫ t

0

|wx(0, τ)|2dτ

and ∫ t

0

|gx(0, τ) [v(0, τ) + vx(0, τ)]wx(0, τ)| dτ ≤ CT |h(0)|‖v‖Z1
T

×
(∫ t

0

|wx(0, τ)|2dτ
)1/2

.
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Combining the above estimates yields the inequality

‖w(·, t)‖2H1(R+) +
∫ t

0

w2
xx(0, τ)dτ

≤ 1
2

sup
0≤τ≤t

‖w(·, τ)‖2H1(R+) + α1 + α2

∫ t

0

‖w‖2H1(R+)dτ,

valid for any t ∈ [0, T ], where the αj , j = 1, 2, depend only on T , ‖φ‖H1(R+) and
‖h‖H5/6(R+). As before, there obtains from this integral inequality the bound

sup
0≤t≤T

‖w(·, t)‖H1(R+) +

(∫ T

0

w2
xx(0, t)dt

)1/2

≤ αT (‖(φ, h)‖V 1
T

).

The proof of Proposition 5.3 is complete.

Proof of Proposition 5.4. Observing that

uxxx = −ut − ux − uux,

we are naturally led to search for a global L2-estimate on ut instead of attempting
to derive a global L2-estimate for uxxx directly. As observed already in [5, 6], there
is a crucial advantage to this approach in terms of the boundary traces that arise
in the analysis.

If v = ut, then v solves
∂tv + ∂xv + ∂x(uv) + ∂3

xv = 0, for x, t ≥ 0,

v(x, 0) = φ1(x), v(0, t) = h1(t),
(5.10)

with φ1(x) = −φ′(x) − φ(x)φ′(x) − φ′′′(x) and h1(t) = h′(t). We show that

sup
t∈[0,T ]

‖v(·, t)‖L2(R+) ≤ αT (‖u‖Z1
T

)(‖h1‖H1/3(R+) + ‖φ1‖L2R+),(5.11)

which, together with (5.2) is equivalent to the desired estimate (5.3).
Rewrite v as v = w + z with w solving wt + wx + wxxx = 0, for x, t ≥ 0,

w(x, 0) = φ1(x), w(0, t) = h1(t).

It follows that z is a solution to the initial-boundary-value problem ∂tz + ∂xz + ∂x(uz) + ∂3
xz = −(uw)x, for x, t ≥ 0,

z(x, 0) = 0, z(0, t) = 0.
.(5.12)

By Proposition 4.5, there is a T -dependent constant CT such that

sup
0≤t≤T

‖w(·, t)‖L2(R+) + sup
x≥0

(∫ T

0

|wx(x, t)|2 dt
)1/2

≤ CT
(
‖φ1‖L2(R+) + ‖h1‖H1/3(0,T )

)
.(5.13)
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Since ∫ T

0

∫ ∞
0

|wx(x, t)u(x, t)|2dxdt =
∫ ∞

0

∫ T

0

|wx(x, t)u(x, t)|2dtdx

≤
∫ ∞

0

sup
0≤t≤T

|u(x, t)|2
∫ T

0

|wx(x, t)|2dtdx

≤ sup
x≥0

∫ T

0

|wx(x, t)|2dt
∫ ∞

0

sup
0≤t≤T

|u(x, t)|2dx

≤ CT ‖u‖2Z1
T

(
‖φ1‖L2(R+) + ‖h1‖H1/3(0,T )

)2
and ∫ T

0

∫ ∞
0

|w(x, t)ux(x, t)|2dxdt ≤
∫ T

0

sup
x∈R+

|ux(x, t)|2
∫ ∞

0

|w(x, t)|2dxdt

≤ sup
0≤t≤T

∫ ∞
0

|w(x, t)|2dx
∫ T

0

sup
x∈R+

|ux(x, t)|2dt

≤ CT ‖u‖2Z1
T

(
‖φ1‖L2(R+) + ‖h1‖H1/3(0,T )

)2
,

it is seen that(∫ T

0

‖(uw)x‖2L2(R+)dt

)1/2

≤ CT ‖u‖Z1
T

(
‖φ1‖L2(R+) + ‖h1‖H1/3(0,T )

)
(5.14)

for any T > 0.
Next multiply both sides of the evolution equation in (5.12) by 2z and integrate

with respect to x over R+. After integration by parts, there appears

d

dt

∫ ∞
0

z2(x, t)dx + z2
x(0, t) +

∫ ∞
0

ux(x, t)z2(x, t)dx = 2
∫ ∞

0

g(x, t)z(x, t)dx,

which holds for any t ∈ [0, T ], where g = −(uw)x. As a result, it follows that

d

dt

∫ ∞
0

z2(x, t)dx ≤
∫ ∞

0

g2(x, t)dx +
(

1 + sup
x∈R+

|ux(x, t)|
)∫ ∞

0

z2(x, t)dx.

Using Gronwall’s lemma, it is adduced that

sup
0≤t≤T

∫ ∞
0

z2(x, t)dx ≤
∫ t

0

e
∫
t
s

(1+supy≥0 |ux(y,τ)|)dτ
∫ ∞

0

g2(x, s)dxds

≤ αT (‖u‖Z1
T

)
∫ T

0

∫ ∞
0

g2(x, s)dxds,

which, together with (5.13) and (5.14), yields (5.11). The proof is complete.

Next, a global a priori bound in Hs(R+) is obtained for solutions of (4.1) when
s > 3.

Theorem 5.5. For given T > 0 and s = 3m+ s′ with 0 < s′ ≤ 3 and m ≥ 1, there
exists a T -dependent and continuous non-decreasing function αT : R+ → R+ such
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that for any smooth solution u of (4.1),

sup
0≤t≤T

‖∂mt u(·, t)‖Hs′(R+) +
m−1∑
k=0

sup
0≤t≤T

‖∂kt u(·, t)‖H3(R+)

≤ αT
(
‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T )

)
.

Proof. We only prove Theorem 5.5 form = 1. The general case follows by induction.
Let v = ut. Then v is a solution of

∂tv + ∂xv + ∂x(uv) + ∂3
xv = 0, for x, t ≥ 0,

v(x, 0) = φ1(x), v(0, t) = h1(t).
(5.15)

The problem (5.15) is linear, but with u ∈ Z3
T as a variable coefficient. Applying

the proof of Proposition 5.3, the following estimate emerges for sufficiently regular
solutions of (5.15):

sup
0≤t≤T

‖v(·, t)‖L2(R+) ≤ CT ‖u‖Z1
T

(
‖φ1‖L2(R+) + ‖h1‖H1/3(0,T )

)
.

Secondly, by using Proposition 6.1 in the next section, which, as mentioned before,
is proved independently of the considerations in this section, we also have

sup
t∈[0,T ]

‖v(·, t)‖H1(R+) ≤ αT
(
‖u‖Z1

T

) (
‖φ1‖H1(R+) + ‖h1‖H2/3(0,T )

)
.

The following estimates hold by interpolation:

sup
t∈[0,T ]

‖v(·, t)‖Hs′ (R+) ≤ αT (‖u‖Z1
T

)‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T )

≤ αT
(
‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T )

)
(5.16)

for any s′ with 0 ≤ s′ ≤ 1. When s′ > 1, using Proposition 6.1 directly gives

sup
t∈[0,T ]

‖v(·, t)‖Hs′ (R+) ≤ αT

(
‖u‖Z3

T

)
‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T )

≤ αT
(
‖(φ, h)‖Hs(R+)×H(s+1)/3(0,T )

)
.

Thus (5.15) holds for m = 1. As already indicated, the remainder of the proof
follows by an induction that is analogous to the argument just presented for the
case m = 1.

As an immediate consequence of Theorem 5.1, Theorem 5.5 and the local well-
posedness results established in Section 4, the following global well-posedness result
for the initial-boundary-value problem (4.1) is obtained.

Theorem 5.6. Let T > 0 and s ≥ 1 be given. Then for any s-compatible (φ, h) ∈
Hs(R+) × H(7+3s)/12(0, T ) when 1 ≤ s ≤ 3 and for any s-compatible (φ, h) ∈
Hs(R+) ×H(s+1)/3(0, T ) when s > 3, the problem (4.1) admits a unique solution
u ∈ ZsT∩C([0, T ];Hs(R+)) with ∂kt u ∈ C([0, T ];Hs−3k(R+)) for k = 0, 1, · · · , [s/3].
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6. Taylor series expansion

Having established local and global well-posedness results, interest naturally
turns to related issues. Here we focus on the mapping that takes compatible pairs of
initial- and boundary-data into associated solutions and inquire about the regularity
of this correspondence. For given T > 0 and s ≥ 0, let Xs

T be the collection of all
s-compatible functions (φ, h) ∈ Hs(R+) ×H(s+1)/3(0, T ). By its definition, Xs

T is
a linear vector subspace of Hs(R+)×H(s+1)/3(0, T ) only when 0 ≤ s ≤ 7/2. When
s is in this range, we consider Xs

T as a Banach space with norm induced by that
of Hs(R+)×H(s+1)/3(0, T ). For any s > 3/4, the results established in Sections 4
and 5 show that the initial-boundary-value problem (4.1) defines a nonlinear map
KI from the space Xs

T to the space ZsT . For T > 0, let DTs = DTs (KI) denote the
domain of the map KI in the space Xs

T . An element g = (φ, h) belongs to DTs if
(φ, h) ∈ Xs

T and the associated solution u of (4.1) with auxiliary data (φ, h) exists
at least on the time interval [0, T ]. Obviously, DTs is not empty since 0 ∈ DTs .
Because of the global well-posedness of (4.1) for s ≥ 3, it is clear that DTs = Xs

T

in this case. From the proofs of the results presented in Section 4, the map KI

is known to be Lipschitz continuous from DTs to ZsT . In this section it is shown
that KI has far stronger regularity. More precisely, when 3/4 < s ≤ 7/2, for any
g ∈ DTs , there exists an η > 0 such that for any w ∈ Xs

T with ‖w‖XsT ≤ η, we have
g + w ∈ DTs and KI(g + w) has the following Taylor series expansion:

KI(g + w) = KI(g) +
∞∑
n=1

K
(n)
I (g)[wn]

n!

where K(n)
I (g) is the n-th order Fréchet derivative of KI evaluated at g and the

series converges strongly in the space ZsT . In other words, the map KI is analytic.
In case s > 7/2, the Taylor series expansion does not hold in the form just presented
since the space Xs

T is no longer a vector space. In this situation, consideration is
given to an initial-boundary-value problem for a general m-nonlinear system which
includes (4.1) as a special case. It will be shown that the corresponding nonlinear
map KI is analytic.

To begin, we present a well-posedness result for the linear, variable-coefficient,
initial-boundary-value problem

∂tu+ ∂xu+ ∂x(au) + ∂3
xu = ∂x(fg), for x ≥ 0, 0 ≤ t ≤ T,

u(x, 0) = φ(x), u(0, t) = h(t),
(6.1)

for the linearized KdV equation. This result was already used in Section 5 and will
also play an important role in establishing analyticity of the map KI .

Proposition 6.1. Let T > 0 and s ∈ (3/4, 3] be given. Suppose that a, f, g ∈ ZsT .
Then, for any (φ, h) ∈ Xs

T , (6.1) admits a unique solution u ∈ ZsT satisfying

‖u‖ZsT ≤ αT
(
‖a‖ZsT

) (
‖f‖Z1

T
‖g‖ZsT + ‖(φ, h)‖XsT

)
(6.2)

where αT : R+ → R+ is a T -dependent and continuous non-decreasing function
which is independent of f , g and (φ, h).
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Proof. The proof is similar to that of Theorem 4.8 and consequently we content
ourselves with a sketch. For given (φ, h) ∈ Xs

T , β ∈ (0, T ] and r > 0, let

Sβ,r = {w ∈ Zsβ : w(x, 0) = φ(x), w(0, t) = h(t), ‖w‖Zsβ ≤ r}.
For given a, f, g ∈ ZsT , consider the map Γ : Sβ,r → ZsT defined for v ∈ Sβ,r by

u = Γ(v),

where u is the unique solution of ut + ux + uxxx = −(av)x + (fg)x, for x ≥ 0, 0 ≤ t ≤ T,

u(x, 0) = φ(x), u(0, t) = h(t).

Applying Lemmas 4.1 – 4.6, one can show that there is a constant C depending on
r and T , but independent of v, such that

λβ,s (Γ(v)) ≤ C
(
‖g‖ZsT ‖f‖ZsT + ‖(φ, h)‖XsT

)
+ C(β1/4 + β1/2)λT,s(a)λβ,s(v).

Hence if we choose r so that

r = 2C
(
‖g‖ZsT ‖f‖ZsT + ‖(φ, h)‖XsT

)
,(6.3)

then there is a unique choice β̃ for which

rC(β̃1/4 + β̃1/2)λT,s(a) = 1/2.(6.4)

If we define β = min{T, β̃}, then

λβ,s (Γ(v)) ≤ r
for any v ∈ Sβ,r. Moreover, for any v1, v2 ∈ Sβ,r,

λβ,r
(
Γ(v1)− Γ(v2)

)
≤ 1

2
λβ,r(v1 − v2).

With such a choice of r and β, Γ is a contraction map from Sβ,r to Sβ,r. Its unique
fixed point is the desired solution of (6.1) on the temporal interval 0 ≤ t ≤ β.
However, since the value of β is chosen according to (6.3) and (6.4) which only
depends on ‖a‖ZsT , ‖g‖ZsT and ‖f‖ZsT , a standard iteration extends the solution to
the entire interval 0 ≤ t ≤ T . The proof is complete.

The major step in the present development is to show that for T > 0 and
s ∈ (3/4, 3], DTs is an open set in the space Xs

T and that the nonlinear map KI is
analytic from DTs to ZsT .

The following formal calculation is instructive. If KI is an analytic mapping
from DTs to ZsT , then, for n = 0, 1, 2, · · · , its n-th order Fréchet derivative K(n)

I (g)
at g ∈ DTs exists and is the symmetric, n-linear map from the n-fold product
Xs
T × · · · ×Xs

T to ZsT given as

K
(n)
I (g)[w1, · · · , wn] =

{
∂n

∂ξ1 · · · ∂ξn
KI

(
g +

n∑
k=1

ξkwk

)}
0,··· ,0

for any w1, w2, · · · , wn ∈ Xs
T . The homogeneous polynomial K(n)

I (g)[wn] of degree
n induced by K(n)

I (g) evaluated at wn = (w,w, · · · , w) (n-components) is

K
(n)
I (g)[wn] =

{
dn

dξn
KI(g + ξw)

}
ξ=0
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where w = (wφ, wh) ∈ Xs
T . If we define yn by

yn = K
(n)
I (g)[wn],

then it is formally ascertained that (y1, y2, · · · , yn) solves the system ∂ty1 + ∂xy1 + ∂x(uy1) + ∂3
xy1 = 0, for x ≥ 0, 0 ≤ t ≤ T,

y1(x, 0) = wφ(x), y1(0, t) = wh(t),
(6.5)

and 
∂tyk + ∂xyk + ∂x(uyk) + ∂3

xyk = −1
2

k−1∑
j=1

(
k
j

)
∂x(yjyk−j),

yk(x, 0) = 0, yk(0, t) = 0,

(6.6)

for x ≥ 0, 0 ≤ t ≤ T and 2 ≤ k ≤ n, where u = KI(g) ≡ y0 and w = (wφ, wh) ∈ Xs
T .

On the other hand, for any g = (φ, h) ∈ DTs , let u = KI(g) and consider solving
the linear system (6.5)-(6.6). It follows from Proposition 6.1 that the system (6.5)-
(6.6) may be used to define a homogeneous polynomial of degree n which maps Xs

T

to ZsT as described in the following proposition.

Proposition 6.2. Let T > 0, 3/4 < s ≤ 3 and g ∈ DTs = DTs (KI) be given and
let u = KI(g). Then the system (6.5)-(6.6) defines a homogeneous polynomial
K

(n)
I (g)[wn] of degree n from Xs

T to ZsT . Moreover, there exists a constant c3 such
that

‖yn‖ZsT ≤ c
n
3n!‖w‖nXsT(6.7)

for any n ≥ 2, where c3 = c3(T, ‖u‖ZsT ), and it may be that c3 → +∞ as T → +∞
or as ‖u‖ZsT → +∞, but in any case c3 → 0 if T → 0, or if ‖u‖ZsT → 0.

Proof. The proof is a straightforward consequence of Lemmas 4.1 – 4.6 and Propo-
sition 6.1 (see [64], Prop. 3.3 for details).

For w ∈ Xs
T , define a Taylor polynomial Pn(w) of degree n by

Pn(w) =
n∑
k=0

K
(k)
I (g)[wk]
k!

= KI(g) +
n∑
k=1

yk
k!
,(6.8)

and a Taylor series by

P (w) =
∞∑
k=0

K
(k)
I (g)[wk]
k!

.(6.9)

Proposition 6.3. Let T > 0 and 3/4 < s ≤ 3 be given. For any g = (φ, h) ∈ DTs ,
there exists an η > 0 depending only on ‖KI(g)‖ZsT such that the formal Taylor
series (6.9) is uniformly convergent in the space ZsT with respect to w ∈ Xs

T with
‖w‖XsT ≤ η. Moreover, if v = P (w), then v ∈ ZsT solves the problem

vt + vx + vvx + vxxx = 0, for x ≥ 0, t ∈ (0, T ],

v(x, 0) = φ(x) + wφ(x), v(0, t) = h(t) + wh(t).
(6.10)
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Proof. It is readily seen that the sequence {Pn(w)}∞n=0 of Taylor polynomials is
Cauchy in ZsT uniformly for w in the ball of radius η in Xs

T for suitable η. Indeed,
because of Proposition 6.2, it transpires that for m ≥ n ≥ 0,

‖Pn(w)− Pm(w)‖ZsT =

∥∥∥∥∥
m∑
k=n

yk
k!

∥∥∥∥∥
ZsT

≤
m∑
k=n

‖yk‖ZsT
k!

≤
m∑
k=n

ck3‖w‖kXsT .

If η is chosen so that

η ≤ 1/(2c3),(6.11)

then for w ∈ Xs
T with ‖w‖XsT ≤ η, one has

‖Pn(w)− Pm(w)‖ZsT ≤
m∑
k=n

1
2k

which goes to zero uniformly as n, m→∞.
Since {Pn(w)}∞n=0 is a Cauchy sequence in the space ZsT , it makes sense to define

v = P (w) as its limit as n → ∞. Then v ∈ ZsT and v solves the initial-boundary-
value problem (6.10). To see this, note first that

v(x, 0) =
∞∑
k=0

yk(x, 0)
k!

= u(x, 0) + y1(x, 0) = φ(x) + wφ(x),

v(0, t) =
∞∑
k=0

yk(0, t)
k!

= u(0, t) + y1(0, t) = h(t) + wh(t).

Moreover, since the series P (w) is absolutely convergent in the Banach algebra ZsT ,
it follows that

v2 =

(
u+

∞∑
k=1

yk
k!

)2

= u2 + 2
∞∑
k=1

uyk
k!

+

( ∞∑
k=1

yk
k!

)2

= 2

(
1
2
u2 +

∞∑
k=1

uyk
k!

+
1
2

∞∑
k=1

1
k!

k−1∑
n=0

(
k
n

)
ynyn−k

)
.

In consequence, we have

∂tv +
1
2
∂x(v2) + ∂3

xv = ∂tu+
∞∑
k=1

∂tyk
k!

+ ∂3
xu

+
∞∑
k=1

∂3
xyk
k!

+
1
2
∂x(u2) +

∞∑
k=1

{
∂x(uyk)
k!

+
1

2k!

k−1∑
n=0

(
k
n

)
∂x(ynyn−k)

}

=
(
∂tu+

1
2
∂x(u2) + ∂3

xu

)
+
(
∂ty1 + ∂x(uy1) + ∂3

xy1

)
+

+
∞∑
k=2

1
k!

{
∂tyk + ∂x(uyk) +

1
2

k−1∑
n=0

(
k
n

)
∂x(ynyn−k) + ∂3

xyk

}

= 0.

The proof is complete.
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The following theorem is now readily adduced.

Theorem 6.4 (Analyticity). For any T > 0 and 3/4 < s ≤ 3 the nonlinear prob-
lem (4.1) establishes a map KI from the space Xs

T to the space ZsT having as its
domain DTs a non-empty open subset of Xs

T . The map KI is analytic from DTs
to ZsT in the sense that for any φ ∈ DTs , there exists an η > 0 such that for any
w ∈ Xs

T with ‖w‖XsT ≤ η, the Taylor series expansion

KI(φ+ w) =
∞∑
n=0

K
(n)
I (φ)[wn]

n!

converges in the space ZsT . Moreover, the convergence is uniform with regard to w
in the aforementioned ball in Xs

T .

Remarks. 1. The above theorem holds also for 3 < s < 7/2. Since its proof is
similar to that for the system discussed below, a separate discussion is not
included.

2. Since 0 ∈ DTs , there exists an η > 0 depending on T such that for any
g = (φ, h) ∈ Xs

T with ‖g‖XsT ≤ η, the problem (4.1) has a unique solution
u ∈ ZsT defined at least on the time interval (0, T ). Moreover, according to
(6.8) and Proposition 6.2, η →∞ as T → 0. The local well-posedness of the
problem (4.1) thus follows as a corollary to Theorem 5.1. This provides an
alternative approach to the well-posedness of (4.1): show first the analyticity
of the map KI by establishing the solvability of the n-linear system (6.5)-
(6.6). One advantage of this approach is that it clearly shows the solution of
the nonlinear problem (4.1) can be obtained by solving a sequence of linear
problems.

3. We know already that (4.1) is globally well-posed in the space Xs
T when

s ≥ 3. In case 3/4 < s < 3, only local well-posedness has been proved in
Xs
T and the needed a priori estimates are not available. Of course, global

well-posedness is valid for 1 ≤ s < 3, but slightly stronger conditions on the
boundary data are needed than is implied by membership in Xs

T . This raises
the question of whether the corresponding solutions blow up in finite time or
exist globally in the space Hs(R+). As an application of the analyticity of the
map KI , a partial answer to this question is forthcoming. For (φ, h) ∈ Xs

∞,
the corresponding solution u of (4.1) exists globally in the space Hs(R+) if
and only if (φ, h) ∈ DTs for all T > 0. On the other hand, it follows from
our theory that for any T > 0, DTs is a dense subset of the space Xs

T . The
Baire Category Theorem thus implies that initial- and boundary-data that
yield globally defined solutions comprise a dense Gδ-set in Xs

∞.

Attention is turned to the case s > 3. As pointed out earlier, if s > 7/2, then
Xs
T is not a linear space because of the nonlinear compatibility condition imposed

by membership in this class. One way to deal with this fact of life is to realize
(4.1) as a specialization of a system of equations. This formulation is useful also
for 3 < s ≤ 7/2, and so it is pursued here in the entire range s > 3.

As in Section 4, for any s > 3, write s = 3m+ s′ where m > 0 is an integer and
0 < s′ ≤ 3. For T > 0, define the space ZsT as

ZsT = Z3
T × Z3

T × · · · × Z3
T × Zs

′

T
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and the space X sT as

X sT = X3
T ×X3

T × · · ·X3
T ×Xs′

T ,

in which there are m copies of Z3
T and X3

T featured, respectively. Consider the
system 

~ut + ~ux + ~uxxx = −F (~u)x, for x ≥ 0, 0 ≤ t ≤ T,

~u(x, 0) = ~φ(x), ~u(0, t) = ~h(t),
(6.12)

where

~u = (u0, u1, · · · , um)τ , ~φ = (φ0, φ1, · · · , φm)τ ,

~h = (h0, h1, · · · , hm)τ

and

F (~u) =
1
2

(
u2

0, 2u0u1, · · · ,
m∑
k=0

(
m
k

)
ukum−k

)τ
,

and the superscript τ connotes the transpose of the relevant vector. The pair (~φ,~h)
is said to be s-compatible if

φj(0) = hj(0)

for j = 0, 1, · · · ,m − 1 when s′ ≤ 1/2 and for j = 0, 1, · · · ,m when s′ > 1/2. By
Theorem 4.8, for any s-compatible (φ, h) ∈ Xs

T , the initial-boundary-value problem
(4.1) has a unique solution u ∈ ZsT . If we let φ0 = φ, then φ1, φ2, · · · , φm may be
obtained recursively via (4.7). For k = 0, 1, · · · ,m, let hk = h(k), and uk = ∂kt u. If
~φ = (φ0, · · · , φm), ~h = (h0, · · · , hm) and ~u = (u0, · · · , um), then (~φ,~h) ∈ X sT and ~u
is a solution of (6.12). In this sense, (4.1) is a special case of the system (6.12).

Theorem 6.5. Let T > 0 and s > 3 be given with s = 3m + s′ and 0 < s′ ≤ 3.
Then for any s-compatible (~φ,~h) ∈ X sT , the system (6.12) admits a unique solution
~u ∈ ZsT .

Proof. Observe that the nonlinear system (6.12) consists of initial-boundary-value
problems for m + 1 scalar equations. Among them, the first one is the initial-
boundary-value problem (4.1) which only involves u0. The second one involves
only u0 and u1. If u0 is considered known, then the second equation is linear in u1,
and so on. Thus we may solve the nonlinear system by solving for u0 in the first
equation, then using this determination of u0 in the second equation and solving
the corresponding linearized problem to obtain u1 and so forth. Using Theorem 4.8
and Proposition 6.1, we obtain inductively uk ∈ Z3

T for k = 0, 1, · · · ,m − 1. The
equation for um has the form

∂tum + ∂xum + ∂x(aum) + ∂3
xum = f, for x ≥ 0, 0 ≤ t ≤ T,

um(x, 0) = φm(x), um(0, t) = hm(t),
(6.13)

where

f = −1
2
∂x

(
m−1∑
k=1

(
m
k

)
ukum−k

)
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and the coefficient a = u0 is known. By Proposition 6.1, for any s′-compatible
(φm, hm) ∈ Xs′

T , (6.13) possesses a unique solution um ∈ Zs
′

T . The proof is complete.

By Theorem 6.5, for given T > 0, the system (6.12) defines a map KI from the
space X sT to ZsT where s = 3m+s′ with m ≥ 1 and s′ 6= 1/2. The map KI is analytic
from X sT to ZsT . To establish this, consider the linearized system corresponding to
(6.12), namely ∂t ~w + ∂x ~w + ∂x(J(~a)~w) + ∂3

x ~w = ∂x ~f, for x ≥ 0, 0 ≤ t ≤ T,

~w(x, 0) = ~φ(x), ~w(0, t) = ~h(t),
(6.14)

where J is the Jacobian of F at ~u = ~a given by

J(~a) =
∂F (~u)
∂~u

∣∣∣∣
~u=~a

=

 k∑
j=0

(
k
j

)
(δ(i, j)ak−j + ajδ(i, k − j))


0≤k, i≤m

,

δ(i, j) =


1 if i = j,

0 if i 6= j ,

and
~f = (b0v0, b1v1, · · · , bmvm)τ .

Proposition 6.6. Let T > 0 and s > 3 be given and let

~b = (b0, b1, · · · , bm)τ , ~v = (v0, v1, · · · , vm)τ .

Suppose ~a, ~b, ~v ∈ ZsT . Then for any (~φ,~h) ∈ X sT , (6.14) admits a unique solution
~w ∈ ZsT . Moreover,

‖~w‖ZsT ≤ αT
(
‖~a‖ZsT

) (
‖(~φ,~h)‖X sT + ‖~b‖ZsT ‖~v‖ZsT

)
where αT : R+ → R+ is a T -dependent and continuous non-decreasing function.

Proof. The proof is very similar to that of Proposition 6.1 and is therefore omitted.

For given ~u = KI
(

(~φ,~h)
)

with (~φ,~h) ∈ ZsT , consider the linear systems
∂t~y1 + ∂x~y1 + ∂x(J(~u)~y1) + ∂3

x~y1 = 0, for x ≥ 0, 0 ≤ t ≤ T,

~y1(x, 0) = ~w~φ(x), ~y1(0, t) = ~w~h(t),
(6.15)

and for x ≥ 0, 0 ≤ t ≤ T ,
∂t~yn + ∂x~yn + ∂x(J(~u)~yn) + ∂3

x~yn = Fn(~y1, · · · , ~yn−1),

~yn(x, 0) = 0, ~yn(0, t) = 0
(6.16)

for 2 ≤ n ≤ N , where

Fn = (fn,0, fn,1, · · · , fn,m)τ
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with

fn,k = −1
2
∂x

 k∑
j=0

n−1∑
i=1

(
k
j

)(
n
i

)
yi,jyn−i,k−j


for k = 0, 1, · · · ,m.

Proposition 6.7. Given T > 0, s > 3 and ~g = (~φ,~h) ∈ X sT , let ~u = KI((~φ,~h)).
Then the system (6.15)-(6.16) defines a homogeneous polynomial K(N)

I (~g)[~wn] of
degree n from X sT to ZsT . Moreover, there exists a constant C such that

‖~yn‖ZsT ≤ C
nn!‖~w‖nX sT

for any n ≥ 2, where C = C(T, ‖~u‖ZsT ), and it may be that C → +∞ as T → ∞
or ‖~u‖ZsT →∞, but in any case C → 0 if ‖~u‖ZsT → 0 or if T → 0.

Proof. This follows from Proposition 6.6 by direct computation.

For ~w ∈ X sT , define a Taylor polynomial PN (~w) of degree n by

Pn(~w) =
N∑
k=0

K(k)
I (g)[~wk]

k!
= KI(~g) +

N∑
k=1

~yk
k!
,(6.17)

and a formal Taylor series by

P (~w) =
∞∑
k=0

K(k)
I (~g)[~wk]

k!
.(6.18)

Arguing as in the proof of Proposition 6.3 gives the following result.

Proposition 6.8. For any ~g = (~φ,~h) ∈ DTs = DTs (KI), there exists an η > 0
depending only on ‖KI(~g)‖ZsT such that the formal Taylor series (6.18) is uniformly
convergent in the space ZsT for ~w ∈ X sT with ‖~w‖X sT ≤ η. Moreover, if ~v = P (~w),
then ~v ∈ ZsT solves the problem

∂t~v + ∂x~v + ∂x(F (~v)~v) + ∂3
x~v = 0, for x ≥ 0, 0 ≤ t ≤ T,

~v(x, 0) = ~φ+ ~w~φ, ~v(0, t) = ~h+ ~w~h

(6.19)

for 0 ≤ t ≤ T .

As a direct consequence of Proposition 6.8, we arrive at the following satisfactory
result.

Theorem 6.9 (Analyticity). For any T > 0 and s > 3 the nonlinear problem
(6.12) establishes a map KI from the space X sT to the space ZsT . The map KI is
analytic from X sT to ZsT in the sense that for any ~φ ∈ X sT , there exists an η > 0
such that for any ~h ∈ X sT with ‖~h‖X sT ≤ η, the Taylor series expansion

KI(~φ+ ~h) =
∞∑
n=0

K(n)
I (φ)[~hn]
n!

converges in the space ZsT . Moreover, the convergence is uniform with regard to h
in the aforementioned ball in X sT .
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