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Abstract

Improvements in computing power� data gathering and our understanding of at�

mospheric dynamics have lead to the availability of spatially and temporally extensive

sets of data on the atmospheric processes that a�ect precipitation� However� these two

processes �atmospheric circulation and precipitation� operate on very di�erent spatial

scales� Recently� considerable e�ort has been devoted to developing �downscaling�

models which condition local precipitation on broad�scale atmospheric circulation� In

this article� we develop a stochastic model for relating precipitation occurrences at

multiple rain gauge stations to atmospheric circulation patterns�

The proposed model is an example of a nonhomogeneous hidden Markov model�

and generalizes existing downscaling models in the literature� The model assumes that

atmospheric circulation can be classi�ed into a small number of �unobserved� discrete

patterns �called �weather states��� The weather states are assumed to follow a Markov

chain in which the transition probabilities depend on observable characteristics of the

atmosphere �e�g� mean sea�level pressure�� Precipitation is assumed to be condition�

ally temporally� but not spatially� independent given the weather state� An autologistic

model for multivariate binary data is used to model rainfall occurrences and capture lo�

cal spatial dependencies� However� the usual approach to estimation in hidden Markov

models � exact likelihood using the EM algorithm � is computationally intractable if

there are large numbers of rain gauge stations� Therefore� two alternative estimation

procedures are developed which combine �an approximation to� the usual E�step with

a modi�ed M�step based on either maximum pseudolikelihood or Monte Carlo maxi�

mum likelihood� Both techniques yield models which �t the data well� although the

pseudolikelihood is seen to be ill�behaved in certain situations�

This approach is used to model a 
� year sequence of winter data from �
 rain

stations in southwestern Australia� The �rst 

 years of data are used for model

development and the remaining � years are used for model evaluation� The �tted

model is able to accurately reproduce the observed rainfall statistics in the reserved
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data� even in the face of a small non�stationary shift in atmospheric circulation �and�

consequently� rainfall� between the two periods� The �tted model also provides some

useful insights into the processes driving rainfall in this region� We discuss the role

that models such as this might play in assessing the impact of climate change�

Keywords� hidden Markov model� climate change� precipitation model� pseudolikeli�

hood� Monte Carlo maximum likelihood� EM algorithm
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� Introduction

Stochastic models for precipitation have long been used to aid in understanding the proba�

bilistic structure of rainfall and for simulation studies� In particular� precipitation simulations

are often used as input into hydrologic models of �ooding� runo�� water supply� agricultural

models of crop growth� and other applications� In the past these models considered only the

rainfall process� without reference to the atmospheric processes that drive precipitation� In

part� this re�ected the absence of good� long�term records of atmospheric circulation� Thus�

Gabriel and Neuman 	�
��� used a Markov chain with homogeneous transition matrix to

model daily wet
dry occurrences at a single rain gauge station in Israel� Stern and Coe

	�
��� extended this model by making the 	logits of� transition probabilities a Fourier series

to represent seasonal variations� Others developed more mechanistic models� For example�

LeCam 	�
��� described rainfall using a cluster point process whereby cyclonic storms were

assumed to contain �bands� 	areas of high rainfall intensity� and the bands contained rain

cells where precipitation activity occurs� Waymire and Gupta 	�
���� Kavvas and Delleur

	�
��� �
��� and others expanded on the point process approach�

These models have several limitations� however� In developing hydrologic models re�

searchers use information on temperature� solar radiation and other climatic factors in ad�

dition to precipitation� Ideally� the precipitation model should produce simulations which

are consistent with these other inputs into the hydrologic model� In addition� precipitation

models which exclude atmospheric information can only be used to simulate rainfall under

climatic conditions which are stochastically similar to those used to �t the model� Yet the

atmospheric processes that drive precipitation may be nonstationary� even over relatively

short time periods 	i�e� decades�� Thus� the ability of these models to produce precipitation

simulations for periods other than those used to �t the model 	or even for subintervals of this

period� is limited� In particular� a model which fails to incorporate atmospheric information

would not be useful in studies of climate variability or climate change�
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Over the past few decades advances in data gathering and our understanding of atmo�

spheric circulation have lead to the availability of high quality sets of atmospheric data of vari�

able length 	typically� ����� years�� In addition� the development of physically�based� three�

dimensional� dynamic models of global circulations � general circulation models 	GCMs� �

has lead to the creation of realistic simulations of atmospheric circulation of essentially unlim�

ited duration 	some background on GCMs can be found in IPCC 	�

���� To take advantage

of these types of data� and to address the problems noted above� a new class of stochastic

precipitation models known as �weather state models�� has been developed� Recent e�orts

include papers by Hay et� al 	�

��� Bardossy and Plate 	�

��� Kidson 	�

�� and others�

Weather state models condition precipitation on available atmospheric information� These

models can be thought of as �conditionally stationary� in the sense that any nonstationarity

in large�scale atmospheric circulation is 	hopefully� captured by the conditioning variables�

Weather state models can be used to generate realistic precipitation simulations by using

historical sequences of atmospheric data� Such an approach guarantees that the precipita�

tion simulations will be consistent with the observable atmospheric information� In addition�

weather state models can be used with atmospheric simulations from general circulation mod�

els to study the e�ects of climate variability on precipitation� In this respect� weather state

models provide important data that cannot� at present� be obtained from GCM simulations�

The spatial resolution of GCM�s is constrained by both computational considerations as well

as our understanding of atmospheric dynamics to scales of approximately �� to �� of longi�

tude and latitude� Precipitation� however� varies on much more local scales� For this reason�

GCMs have been unable to generate realistic simulations of rainfall 	Giorgi and Mearns�

�

��� Weather state models provide one solution to this so�called downscaling problem�

Using the GCM atmospheric simulations as input� a weather state model can be used to

generate realistic simulations of local precipitation�

A �nal� much more speculative� application of weather state models is to investigate

the e�ect of hypothesized climate changes on precipitation� One such e�ect of particular
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interest is the theory 	popularly termed the �greenhouse e�ect�� that observed increases

	along with predicted future increases� in atmospheric CO� will lead to a global rise in

temperature� These predictions are based on experiments with GCMs in which the model

is run with an increased 	typically doubled� atmospheric concentration of CO�� Under

the strong assumption that the historical relationship between precipitation and large�scale

circulation would still apply� a weather state model could be used to access the impact of

the altered climate on precipitation�

Hughes and Guttorp 	�

�a� �

�b� describe a class of models� which they term non�

homogeneous hidden Markov models 	NHMM�� that can be used to model the relationship

between atmospheric circulation and precipitation and to generate conditional simulations

of precipitation� In a basic hidden Markov model 	HMM�� one assumes the existence of

two processes � an observed process and a hidden process� The observed process 	such

as rain occurrence at a �xed set of stations� is assumed to be conditionally temporally

independent given the hidden process� the hidden process is assumed to evolve according to

a �rst order Markov chain 	see Juang and Rabiner 	�

�� for a review of hidden Markov

models�� A nonhomogeneous hidden Markov model 	NHMM� extends this idea by allowing

the transition matrix of the hidden states to depend on a set of observed covariates� In the

present application the covariates are derived from the atmospheric data� This approach

provides a general framework for the development of weather state models� since Hughes

and Guttorp 	�

�a� show that most existing weather state models can be written as special

cases of the NHMM�

In this article we illustrate the use of NHMMs by developing a model for precipitation

at �� rain gauge stations in southwestern Australia� We extend our previous methodological

work by developing improved methods of parameter estimation� variance computation and

handling missing data� Techniques for model selection and evaluation are discussed and

compared� Some interesting insights into the behavior of the pseudolikelihood 	Besag� �
���

are also provided� Finally� we show that the proposed model is able to capture the e�ect
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of a 	small� non�stationary shift in atmospheric circulation on precipitation� a necessary

condition if models such as this are to be used to assess the impact of hypothesized climate

changes�

� Model

To relate observed synoptic 	large�scale� atmospheric measures to observed local or regional

precipitation patterns we postulate the existence of an unobserved discrete valued process

� the �weather state� � which acts as a link between the two disparate scales� Formally�

let Rt be a multivariate vector giving rainfall amounts or occurrences at a network of sites

at time t� St be the weather state at time t� and Xt the vector of atmospheric measures at

time t for � � t � T � The Xt will usually consist of one or more derived measures from the

available atmospheric data 	e�g� north�south gradient in sea�level pressure�� The notation

X
T
� will be used to indicate the sequence of atmospheric data from time � to T and similarly

for RT
�
and ST

�
� Lower case will be used to indicate realized values of random variables 	i�e�

P 	Rt � r��� All vectors are row vectors� All vectors and matrices will be written in bold

type�

In its most general form� the NHMM is de�ned by the following assumptions�

	M�� P 	Rt j S
T
� �R

t��
� �XT

� � � P 	Rt j St�

	M�� P 	St j S
t��
� �XT

� � � P 	St j St���Xt�

and P 	S� j XT
� � � P 	S� j X��� Speci�c NHMM�s are de�ned by parameterizing P 	Rt j St�

and P 	St j St���Xt� as discussed below�

The �rst assumption 	M�� states that the rainfall process� Rt� is conditionally inde�

pendent given the current weather state� In other words� all the temporal persistence in

precipitation is captured by the persistence in the weather state described in 	M��� As�

sumption 	M�� states that� given the history of the weather state up to time t� � and the
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entire sequence of the atmospheric data 	past and future�� the weather state at time t de�

pends only on the previous weather state and the current atmospheric data� In the absence

of the atmospheric data this is simply the Markov assumption applied to the hidden process�

The atmospheric data� when included� are used to modify the transition probabilities of the

Markov process � hence the term �nonhomogeneous�� Conceptually� it may seem that there

is little need for the Markov assumption on St given the current atmospheric measurements�

In practive� however� the Xt are typically collected at a point in time while Rt represents

rainfall accumulation over a �� hour period� The Markov assumption helps to make up for

this temporal mismatch� Most weather state models in the literature de�ne the weather

states as deterministic functions of the atmospheric variables� These models can be written

as special cases of the NHMM by forcing P 	St j St���Xt� to be degenerate�

There are many possible parameterizations for P 	Rt j St�� We discuss two models for

rainfall occurrence since occurrences are often of primary interest� in section � we discuss

approaches to modelling amounts�

For an n�station network� let Rt � fR�
t � � � � � R

n
t g with observed value of rt � fr�t � � � � r

n
t g�

Let rit � � if rain occurs on day t at station i and � otherwise� Then the �independence

model� for P 	Rt j St� is de�ned as

P 	Rt � r j St � s� �
nY
i��

pr
i

si	� � psi�
��ri 	��

The parameters� psi� may be interpreted as the probability of rain at station i in weather

state s� The rainfall occurrences� Ri
t� are assumed to be spatially independent conditional on

the weather state 	unconditionally� however� the Ri
t will be correlated due to the in�uence of

the common weather state�� Hughes and Guttorp 	�

�a� present an example of a spatially

dispersed network of rain gauge stations for which the independence model works well� If

there are m weather states then there are nm parameters to estimate in this model�

The second model which we will consider is the autologistic model for multivariate binary

data� This model generalizes the independence model by including second order 	spatial�
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interactions between the stations� The autologistic model is de�ned as

P 	Rt � r j St � s� � exp

�
� nX
i��

�sir
i �
X
j�i

�sijr
irj

�
A 	��

where both �si and �sij must be �nite and �sii � �� �sij is the �conditional log odds ratio�

of rain at station i to rain at station j 	in state s� based on the probability distribution

P 	ri� rj j r�i��j� St � s�� When �sij is positive� stations i and j are positively associated

	within weather state s�� A negative value for �sij implies a negative association between

stations i and j 	within weather state s�� When �sij � � for all i� j� and s� equation 	��

reduces to the independence model with �si � log	psi�	� � psi��� To reduce the number

of parameters in this model it will often be reasonable to model �sij as a function of the

distance and direction between stations i and j�

Two parameterizations for P 	St j St���Xt� have been investigated� The parameterization

which we prefer is motivated by Bayes formula and uses the normal kernel for the joint

distribution of the atmospheric data�

P 	St � j j St�� � i�Xt� � P 	St � j j St�� � i�P 	Xt j St�� � i� St � j� 	��

� �ij exp	�
�

�
	Xt � �ij��

��	Xt � �ij�
�� 	��

where �ij is the mean of Xt and � is the corresponding covariance matrix� This model shows

clearly how the NHMM is a general version of the simpler HMM� The �ij may be thought of as

the baseline transition matrix of the weather state process and corresponds to the transition

matrix of an HMM� The exponential term quanti�es the e�ect of the atmospheric data on

the baseline transition matrix� To ensure identi�ability of the parameters� the constraintsP
j �ij � � and

P
j �ij � �i � � are imposed� In this formulation � is merely a scaling factor

to aid in parameter interpretability and is not estimated as part of the model�

An alternative parameterization of P 	St j St���Xt� is as a logistic model�

P 	St j St���Xt� � exp	ast���st �Xtb
�
st�� �st

� 	��

�



Both 	�� and 	�� are just di�erent parameterizations of the same underlying model� The

choice of which parameterization to use will depend� in part� on the desired interpretation

of the parameters in the application at hand�

� Likelihood

Letting 	 denote the model parameters� the likelihood can be written as

L		� � P 	RT
�
j XT

�
� 	�

�
X

S������ST

P 	RT
�
� ST

�
j XT

�
� 	�

�
X

S������ST

P 	S� j X��
TY
�

P 	St j St���Xt�P 	Rt j St� 	��

which appears to be computationally intractable� even for a short sequence of data� How�

ever� the forward�backward procedure� a recursive algorithm developed to solve the standard

hidden Markov model 	e�g� Juang and Rabiner� �

�� can be extended to the NHMM and

makes the calculation possible� The basic idea is to successively pass each of the multiple

summations in the likelihood as far to the right as possible� For example� the summation over

ST may be passed through all terms in the product except the T �th term� Then� by de�ning

the matrices A	x�� and B	r� as in table �� and 
	x� as the solution to A	x�
�	x� � 
�	x��

the likelihood can be expressed in the matrix form

L		� � 
	x��B	r��A	x��B	r�� � � �A	xT �B	rT ��
�� 	��

If one has several independent sequences of data 	for instance� multiple years of data�

then the likelihoods for each sequence are multiplied together to form the overall likelihood�

To simplify the computations de�ne the recursive relationships

f� � 
	x��B	r��

ft � ft��A	xt�B	rt� 	��






Table �� De�nitions used in writing the likelihood�

�rt	i� � P 	Rt � rt j St � i�

Bij	rt� � �rt	i� i � j

� � i �� j

�ij � P 	St � j j St�� � i�

hij	xt� � P 	Xt � xt j St � j� St�� � i�

Aij	xt� � P 	St � j j St�� � i�Xt � xt�

�
hij	xt� � �ijP
j	hij	xt� � �ij�

and

bT � �

bt � A	xt���B	rt���b
�
t��� 	
�

Note that ft � P 	Rt
� � r

t
�� St j X

T
� � 	the �forward� probabilities� and bt � P 	RT

t�� � r
T
t�� j

St�X
T
� � 	the �backward� probabilities�� Since Rt

� and RT
t�� are conditionally independent

given St� the likelihood may be written compactly as

L		� � P 	RT
� j X

T
� � � ftb

�
t �t

� fT�
��

� Parameter Estimation

Baum et al� 	�
��� developed an iterative algorithm to obtain maximum likelihood estimates

for hidden Markov models by considering the hidden states� ST
� � to be �missing� data� Let

��



	 � 		R� 	S�� the parameters of the observed and hidden processes� respectively� Then� using

the notation from table �� write

�		� j 	� �
X
S

P 	S j RT
�
� 	�XT

�
� lnP 	RT

�
�S j 	��XT

�
� 	���

�
X
S

P 	S j RT
�
� 	�XT

�
�

�
TX
t��

ln��rt	st� � ln 
�s�	X�� �
TX
t��

lnA�
st���st

	Xt�

�

�
X
S

P 	S j RT
�
� 	�XT

�
�

TX
t��

ln��rt	st�

�
X
S

P 	S j RT
�
� 	�XT

�
�

�
ln 
�s�	X�� �

TX
t��

lnA�
st���st

	Xt�

�

�
TX
t��

mX
i���

P 	St � i� j R
T
�
� 	�XT

�
� ln��rt	i��

�
mX

i���

P 	S� � i� j R
T
� � 	�X

T
� � ln 


�
i�
	X��

�
TX
t��

mX
i���

mX
i���

P 	St�� � i�� St � i� j R
T
� � 	�X

T
� � lnA

�
i�i�

	Xt� 	���

� �		�R j 	� � �		�S j 	� 	���

Baum et al� 	�
��� recommended iteratively maximizing �		� j 	� as a function of 	�

to estimate the parameters� Since �		� j 	� is the expected complete data log likelihood�

given the observed data and the current parameters 		�� this procedure constitutes an EM

algorithm 	Dempster et al�� �
��� and will converge to the maximum likelihood estimates�

Equation 	��� shows that �		�R j 	� and �		�S j 	� can be maximized separately� Closed

form solutions for these maximization problems are available for some parameterizations of

�		�R j 	� but maximization of �		�S j 	� usually requires numerical optimization� Further

details of the EM algorithm 	including closed form solutions to the M�step where possible

and �rst derivatives of �		�R j 	� and �		�S j 	� otherwise� for the parameterizations used in

this paper are given in the appendix�

Implementation of the EM algorithm requires repeated computation of P 	Rt j St�� When

the autologistic model for P 	Rt j St� 	equation �� is used� the normalization constant of the
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distribution 	which is a sum over �n terms� becomes increasingly burdensome to compute as

the number of stations increases� Hughes and Guttorp 	�

�b� developed an ad�hoc method

for parameter estimation� Brie�y� they �rst �t a model with �sij � � 	independence model��

Using this model they restored 	estimated� the state sequence� estimated the parameters of

P 	Rt j St � s� for each s using the restored states and maximumpseudolikelihood estimation

	see section ����� and then iterated between these two steps� This is similar in spirit to the

EM algorithm with two exceptions� the parameters of P 	St j St��� were not reestimated at

each step� and the pseudolikelihood was used in the state restoration process� The iteration

was stopped when a �good� match was obtained between the sample rainfall statistics and

the model predicted statistics�

This approach has several drawbacks� First� a fully EM approach would reestimate the

hidden model parameters at each step� Second� there is no obvious optimality or conver�

gence criterion for the procedure� In fact� as noted by Hughes and Guttorp 	�

�b�� the

procedure appears to continue past the point where a �good� match is obtained between

the observed and predicted rainfall statistics� In part� this de�ciency results from the use

of pseudolikelihood to estimate P 	Rt j St� during the state restoration process� since the

resulting �pseudo�probabilities� do not form a true probability distribution� Third� it is not

possible to use likelihood�based procedures for model comparison� These problems have lead

us to seek a more systematic approach to estimation in applications with many spatially�

correlated stations� We now describe two techniques which will be used to modify the EM

algorithm to obtain a more computationally feasible procedure�

��� Pseudo�likelihood

An alternative to maximum likelihood estimation that has been used successfully to �t the

autologistic model is maximum pseudolikelihood estimation 	MPLE � Besag� �
���� For the
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autologistic model 	��� the pseudolikelihood has the following form�

PL	Rt � r j St � s� �
nY
i��

P 	Ri
t j R

�i
t � St � s�

�
nY
i��

exp	�sir
i �
P

j ��i �sijr
irj�

� � exp	�si �
P

j ��i �sijrj�
� 	���

where R�i
t is the set of rain occurrences for all stations other than station i� Thus� the

pseudolikelihood is simply the product of the n conditional probabilities of each station given

all the others� Each of the conditional probabilities in 	��� can be easily computed since

there is no complicated normalizing constant� In the case of �sij � � the pseudolikelihood

is equivalent to the likelihood� When �sij �� � use of the pseudolikelihood is less e�cient

than the true likelihood� Besag 	�
��� showed� via simulation studies� that the e�ciency

loss was small when the spatial autocorrelation was small but could be substantial when the

spatial autocorrelation was large� Grenander 	�
�
� showed that maximumpseudo�likelihood

estimation is consistent when the data consist of independent identically distributed samples

from the autologistic model� Estimates of the parameters of the pseudolikelihood can be

obtained using existing software for logistic regression 	Cressie� �

���

��� Monte Carlo maximum likelihood

Geyer and Thompson 	�

�� describe another technique that can be used when computation

of the exact likelihood is intractable � Monte Carlo maximum likelihood 	MCML��

Note that the autologistic model 	�� has the form of an exponential family� Letting

� w� 
 � denote the inner product of w and 
� we can write

P 	Rt � r j St � s� 
� �
�

c	
�
exp � w	r�� 
 �

where the su�cient statistic is w	r� � 	r�� r�� � � � � r�r�� � � �� and the natural parameter is


 � 	�s�� � � � � �s��� � � �� each of dimension n	n� ����� The constant c	
� is

c	
� �
X
w

exp � w	r�� 
 � �

��



It is well�known that the moment generating function for the exponential family has the

form

MW 	� � 
� � E�	exp � W� � ��

�
�

c	
�

X
w

exp � w� � � exp � w� 
 �

�
c	
 � � �

c	
�
	���

provided 
�� is in the parameter space� Suppose that there is at least one 
 in the parameter

space� say 
�� for which we can compute the normalizing constant c	
�� 	for the autologistic

model� this can be achieved by setting �sij � ��� Using 	��� gives

c	
� � c	
��MW 	
 � 
�� 
�� 	���

The Monte Carlo maximum likelihood approach replaces MW 	
� 
�� 
�� in 	��� by a Monte

Carlo estimate based on a series of samples from P 	Rt j St� 
�� 	the Gibbs sampler can be

used to generate these samples � see below�� Denote these samples by r�� � � � � rN � Then� the

value of the the normalizing constant at 
 may be approximated as

c	
� �
c	
��

N

NX
i��

exp � w	ri�� 
 � 
� � � 	���

When P 	Rt j St� 
� is based on 	���� the resulting probability will be denoted by �P 	Rt j St��

and similarly for other probabilities involving c	
��

The �rst and second moments of Rt may also be computed using Monte Carlo methods

and the same sample� r�� � � � � rN 	the moments are used in the numerical maximization of

the autologistic model likelihood�� For instance�

E�	R
k
t � �

�

c	
�

X
w

rk exp � w	r�� 
 �

�
�

c	
�

X
w

rk exp � w	r�� 
� � exp � w	r�� 
 � 
� �

�
E��r

k exp � w	r�� 
 � 
� �

E�� exp � w	r�� 
 � 
� �

��



�

PN
i�� r

k
i exp � w	ri�� 
 � 
� �PN

i�� exp � w	ri�� 
 � 
� �
	���

Similarly�

E�	R
k
tR

h
t � �

PN
i�� r

k
i r

h
i exp � w	ri�� 
 � 
� �PN

i�� exp � w	ri�� 
 � 
� �
	���

��� A modi�ed EM procedure for the autologistic model

As can be seen in equation 	���� the M�step of the EM algorithm amounts to �nding the

root of a weighted sum of the complete data scores for each weather state 	see the appendix

for further details�� When the autologistic model is used for P 	Rt j St� both the E�step and

the M�step are computationally intractable� in the E�step P 	Rt j St� is used to compute the

weights 	namely� P 	St � i� j R
T
� � 	�X

T
� � and P 	St�� � i�� St � i� j R

T
� � 	�X

T
� � in 	����� so the

normalizing constant of the distribution is needed� in the M�step the normalizing constant

as well as the �rst and second moments of Rt are required to compute the scores associated

with �		�R j 	�� Additionally� the M�step computations may be performed several times for

each EM iteration since numerical optimization methods are required to maximize �		�R j 	��

We have developed two modi�cations of the EM algorithm to circumvent the computa�

tional intractibility of P 	Rt j St�� In both approaches equation 	��� is used to estimate the

normalizing constant of the autologistic distribution� This allows us to estimate P 	Rt j St�

and� hence� the weights in the E�step� The approaches di�er in their treatment of the M�

step� In the �rst approach 	which we term EM
MPLE� the pseudolikelihood 	��� scores

are substituted for the scores of P 	Rt j St� in the M�step� In the second approach 	which

we term EM
MCML� the scores of the true complete data likelihood are approximated by

MCML estimates 	based on equations �� and ���� In both cases� Newton�Raphson iteration

is used maximize �		�R j 	� in the M�step� Table � summarizes these two algorithms and

compares them to the standard MLE�

The computational e�ciency of these approaches depends on the choice of 
�� An 
� which

is far from 
 will require a much larger N to achieve a stable estimate of MW 	
 � 
�� 
��

��



Table �� Summary of EM algorithms for maximizing �		�R j 	��

MLE EM�MPLE EM�MCML

E�step compute estimate estimate

wt�s� � P �St � s j RT
�
�XT

�
� �� �wt�s� � �P �St � s j RT

�
�XT

�
� �� �wt�s� � �P �St � s j RT

�
�XT

�
� ��

using ��� using ��� and �	
� using ��� and �	
�

M�step maximize maximize maximizeP
ts
wt�s� lnP �Rt j s� ���

P
ts

�wt�s� lnPL�Rt j s� ���
P

ts
�wt�s� ln �P �Rt j s� ���

as a function of �� as a function of �� as a function of ��

than would be required for 
� near to 
� Therefore� we use the following operational proce�

dure for parameter estimation� First� an NHMM is �t using the conditional independence

model for P 	Rt j St� 	equation ��� The parameters from this �t serve as 
�� The norm is

easily computed 	since �sij � �� the norm is
Q

i	� � exp	�si��� and it is straightforward to

generate random variates r�� � � � � rN � Starting from these initial values one cycle of the EM

algorithm is run using numerical maximization 	Newton�Raphson� of either the pseudolike�

lihood 	EM
MPLE� or the Monte Carlo likelihood 	EM
MCML� in the M�step� At the next

E�step 	beginning of cycle �� equation 	��� is used to estimate the normalizing constant c	
��

and hence the weights �P 	St � s j Rt� 	�� As before� the pseudolikelihood or the Monte Carlo

likelihood is maximized in the M�step� At the beginning of cycle �� 
� and c	
�� replace


� and c	
�� in equation 	��� to estimate c	
��� Subsequent iterations proceed in a similar

manner�

Simulation of r�� � � � � rN from P 	Rt j St� 
�� is simple when 
� represents the conditional

independence model 	i�e� all �sij � �� but simulation based on an arbitrary 
� is less

straightforward� However� the Gibbs sampler 	Geman and Geman� �
��� provides an e�cient

way of sampling from the general autologistic distribution� To implement the Gibbs sampler

for this problem we successively sample from the conditional distributions P 	Ri j R�i� S �

s� 
�� 	the form of this distribution was given in equation ���� One random value of R is

generated for each pass through the subscripts i � � � � � n� A value of R from the previous

��



iteration can be used to seed the sampler 	that is� a value from P 	R j S� 
�� can be used

to start the sampler for P 	R j S� 
���� although a burn�in period may be necessary before

samples from the new distribution are obtained� The Gibbs sampler can also be used to

generate simulations from a �tted NHMM� although in that case it is important to use only

every k�th sample 	e�g� k � ��� to avoid introducing arti�cal temporal correlation in the

rainfall simulation�

Additional tuning can improve the computational e�ciency of these algorithms in any

given problem� For instance� in any EM procedure in which the M�step depends on numerical

optimization� it is not necessary to fully maximize the expected complete data likelihood to

ensure self�consistency 	Rai and Matthews� �

��� In the modi�ed EM procedures described

above we have found that it is often advantageous to limit the number of Newton�Raphson

iterates in the M�step� This prevents the new parameters from moving too far from the

current values and reduces the number of samples needed to update the normalizing constant

and moments via MCML� If the distance between 
� and 
� is still too large then the interval

can be broken into several smaller intervals and 	��� can be applied repeatedly�

� Missing data

Missing values will commonly be found in the rainfall record and less often in the atmospheric

data record� Missing rainfall data may be incorporated into the estimation procedures by

considering the missing rainfall observations to be unobserved just as the weather states are

unobserved� Formally� write fRT
�
g � fRobs�Rmissg where fRobsg is the observed data and

fRmissg is the missing data� Then equation 	��� can be rewritten as

�		� j 	� �
X

S�Rmiss

P 	S�Rmiss j Robs� 	�XT
� � lnP 	RT

� �S j 	
��XT

� � 	�
�

and the development of the EM algorithm proceeds along the same lines as before� In the

end the changes are minor and involve replacing P 	Rt j St� by
P

Rmiss
t

P 	Rt j St� in the
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computation of the forward�backward probabilities 	equations � and 
��

When the pseudolikelihood is used� the approach to missing data is slightly di�erent�

The pseudolikelihood 	equation 	���� conditions on only those Rj
t that are observed and the

product is over only the observed Ri
t� That is� rewrite 	��� as

PL	Rt j St � s� �
Y

i��miss

P 	Ri
t j R

�i��miss
t � St � s� 	���

where fmissg represents the indicies of the missing sites� To derive the distribution of

P 	Ri
t j R

�i��miss
t � St � s� note that

P 	Ri � � j R�i��miss�

P 	Ri � � j R�i��miss�
�

P 	Ri � �� R�i��miss�

P 	Ri � �� R�i��miss�
�

P
Rmiss P 	Ri � �� R�i�P
Rmiss P 	Ri � �� R�i�

	���

This expression involves only the numerator of the autologistic model 	�� and is therefore

readily computable� The conditional probabilities required in 	��� follow directly from 	����

In the case of missing atmospheric data� values may be imputed from a separate model

or the Xt may be set equal to their mean� �ij� which e�ectively reduces P 	St j St���Xt� to

the baseline transition matrix� � 	see equation 	����

� Model selection and evaluation

There are several issues involved in selecting the �best� NHMM for any given set of data�

These include order selection 	selecting the number of hidden states�� selecting candidate

atmospheric variables for inclusion in the model� testing various constrained submodels and

evaluating the goodness�of��t of the model� These issues are discussed below�

Note that lower order NHMMs are nested in higher order models and that a model with

one atmospheric variable is nested within a model with additional atmospheric variables� A

standard statistical technique for choosing between two nested models is the likelihood ratio

criterion� Such a procedure might be used to test� for example� the hypotheses of no spatial

correlation in the autologistic model 	�sij � � in equation ��� However� there are objections
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to using the likelihood ratio criterion to decide among a series of models� especially when

no one model is favored a priori� A cogent discussion of these issues is given by Kass and

Raftery 	�

�� who describe an alternative approach to model selection based on Bayes

factors� Speci�cally� they suggest selecting the model which maximizes the Bayes factor

�� � log jV j where � is the log�likelihood and V is the covariance matrix of the parameters�

To estimate jV j� the approach described by Hughes 	�

�� to approximate the information

matrix for hidden Markov models can be adapted to the NHMM� Kass and Raftery 	�

��

also describe a simpler approximation which can be used in model selection�

�� � � log T 	���

where T is the sample size and � is the number of independent parameters in the model�

This is referred to as the Bayes Information Criterion 	BIC��

Our experience has been that both the BIC and Bayes factors usually yield a reasonable

model in the sense that the �nal model is interpretable and provides a good �t to the data�

There are theoretical reasons for prefering Bayes factors but the BIC is much easier to

compute� Further research on the utility of these measures for model selection in the context

of NHMM�s is required�

The atmospheric variables to be considered for inclusion in a model 	the X�s� will typi�

cally be determined by climate patterns and rainfall generating mechanisms speci�c to the

application at hand� A variety of derived measures 	e�g� mean level� gradients in various

directions� laplaceans� etc�� on several �elds may be considered potentially relevant� Since it

is usually not computationally practicable to try �tting all possible models� we have found

it is useful to screen the candidate measures in some simple way� such as correlating the

atmospheric measures with rainfall at each station� Only measures that show a relatively

high correlation are considered for inclusion in the model� Bayes factors or the BIC criterion

can then be used to choose a set of measures to be included in the �nal model�

Ultimately� a good model is one that reproduces the observed precipitation statistics

�




on reserved data� The key statistics of interest are usually the �rst and second 	spatial

and temporal� moments� and the distribution of storm lengths and storm interarrival times

	de�ned as the number of consecutive days of rain and no rain� respectively�� These duration

distributions are of particular interest to hydrologists because they strongly in�uence �ood

magnitude and frequency� They have also proven to be the most di�cult characteristics of

rainfall to reproduce using weather state models� The predicted values of these statistics can

be computed from the �tted NHMM by simulation�

� Example

A �fteen year record 	�
����

�� of daily winter 	May�October� rainfall occurrences 	����

days� total� at �� stations in southwestern Australia was made available by the Australian

Bureau of Meteorology� The locations of the stations are shown in �gure �� While total

daily rainfall is available� we restrict our modelling e�orts to the binary measure� rainfall

below
above ��� mm� since this measure is often of greatest interest to hydrologists� Ap�

proaches to developing an amounts model are described in the discussion� Each rainfall value

represents the total rainfall over a �� hour period ending at �
�� 	local standard time�� At�

mospheric data were obtained from the Australian Bureau of Meteorology on a Lambert

conformal grid and interpolated to a rectangular grid of similar scale�����o latitude by

����o longitude 	also shown in �gure ��� Available atmospheric measures included sea�level

pressure� geopotential height at ��� hPa 	hectoPascals� and ��� hPa� air temperature� dew

point temperature and u 	north�south� and v 	east� west� wind speed components� The

atmospheric measurements were taken at �
�� 	local standard time� on the preceeding day�

Consultation with atmospheric scientists produced a list of �� summary measures of the

atmospheric data that might in�uence rainfall in this area� These included measures such as

mean sea�level pressure and geopotential height over the region of interest� north�south and

east�west gradients� etc� Some preliminary analyses were conducted to get a rough idea of
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the ability of each of these summary measures to predict rainfall� These analyses included

simple procedures such as correlating each summary atmospheric measure with rainfall at

each station� as well as more complex multivariate procedures such as using tree�based clas�

si�cation 	Breiman et al�� �
��� to determine which summary atmospheric measures best

predicted rainfall occurrence patterns at a subset 	stations �� 
� ��� and ��� of the stations�

These preliminary analyses were used to provide a tentative ranking of the �� measures for

inclusion in the NHMM�

Using the results of the preliminary analyses for guidance� a series of NHMM�s were �t

to the �rst �� years of data using the conditional spatial independence model 	equation ��

for P 	RtjSt� and the Bayes model 	equation �� for P 	St j St���Xt�� The remaining � years

of data were reserved for model validation� Bayes factors 	BF� 	section �� were used to

guide model selection� Among the models that assume conditional spatial independence for

P 	RtjSt�� the �best� model 	having the lowest BF� included � weather states and � atmo�

spheric measures 	mean sea�level pressure 	MSLP�� north�south gradient in sea�level pressure

and the east�west gradient in ��� hPa geopotential height 	GPH�� and had a log�likelihood

of ������ 	table ��� The BIC gave generally similar results� although that criterion would

have lead us to chose a � weather state model with only � atmospheric measures 	MSLP

and north�south gradient in SLP�� In general� we have observed some trade�o� between the

number of weather states identi�ed and the number of atmospheric variables included in the

model�models with fewer weather states achieve a minimum BF with more atmospheric

variables while models with more weather states achieve a minimum BF with fewer atmo�

spheric variables� Further research is necessary to assess the e�cacy of these two measures

for model selection in this context� However� one would expect that a model with more

atmospheric information would produce precipitation simulations which are more responsive

to shifts in atmospheric conditions�

Figures � and � illustrate the �t of the � state� � atmospheric variable model to observed

rainfall statistics 	the model�based statistics are computed by generating multiple simulations

��



Table �� Comparison of the log�likelihood� BIC and Bayes Factor for several nonhomogeneous

hidden Markov models using the conditional spatial independence model for P 	Rt j St��

Covariates are � � mean sea�level pressure� � � Mean geopotential height at ���mb� � �

N�S gradient in sea level pressure� � � E�W gradient in geopotential height at ���mb�

no� states covariates log�likelihood df BIC Bayes factor

� � �
��� ��� �
��� �
��


� � ����� ��� ����� ����


� � ����� ��� ����
 ���
�

� � ���
� ��� ��
�� ����


� ��� ����� ��� ����� �����

� ����� ����� ��� ����� ����� 

� ������� ����� ��� ����� �����

� � ���
� ��� ���
� �����

� � ����� �
� ����� �����

� ��� ����� ��� ����� �����

� ����� ����� ��� ����� �����

from the model� conditional on the observed atmospheric data� and then averaging over the

simulations so that variability in the predicted quantities is negligible�� From these �gures

it is clear that the conditional spatial independence model does well in reproducing the

observed probability of rainfall at each station and the distribution of �storm durations�

	number of consecutive days with rain�� However� this model does less well at reproducing

the observed patterns of spatial correlation between stations� particularly for stations that

are highly correlated� This makes sense� most of the spatial correlation between stations is

induced by the common weather state and this source of correlation is captured by the model�

However� additional correlation between nearby stations is created by local orographic and
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other �sub weather state� scale e�ects and this source of correlation is not captured in the

independence model for P 	Rt j St��

To include these local e�ects� an NHMM was �t using the autologistic model 	eq� �� for

P 	Rt j St�� The conditional log�odds ratios� �sij� were modelled as a function of the distance

and direction between the stations to reduce the number of parameters� To determine an

appropriate functional form for the �sij� each day was �rst classi�ed into its most likely

weather state using the � state� � atmospheric variables� conditional spatial independence

model described above 	a procedure known as the Viterbi algorithm is used to classify each

day into a weather state� see� for example� Juang and Rabiner� �

��� Then� for each

state� empirical estimates of the pairwise 	unconditional� log�odds ratios were generated and

plotted against the distance and direction between the stations� These plots 	see �gure �

for an example� suggested that the within�state spatial correlation declined as the distance

between stations increased and varied elliptically with direction� Using a nonlinear least�

squares regression analysis� the following functional form was found to give a good �t to the

empirical log�odds ratios and was� therefore� adopted as a model for the conditional log�odds

ratios�

�sij � b�s � b�s log	dij
q
cos	�s � hij�� � sin	�s � hij���es� 	���

where dij and hij are� respectively� the distance and direction between stations i and j�

For each state� s� there are � parameters in this model� Although� theoretically� all four

parameters could be estimated by the methods outlined in section �� estimation of the

nonlinear parameters� �s and es� slows down the computations substantially� Therefore�

these parameters were �xed at the values obtained from the nonlinear regression analyses of

the empirical log�odds ratios� The b�s were then estimated using both the EM
MPLE and

EM
MCML procedures described in section ��

Both approaches signi�cantly improved the �t of the model to the empirical log�odds

ratios� as seen in �gure �� The EM
MCML algorithm converged to a model with estimated
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log�likelihood equal to ������ while the estimated log�likelihood of the �nal model obtained

using the EM
MPLE algorithm was ������� Both represent a signi�cant improvement over

the conditional spatial independence model� The computational performance of EM
MCML

was somewhat slower than EM
MPLE� In part� this results from the need to estimate the

moments of Rt by Monte Carlo� but we also observed that the EM
MCML algorithm was

more likely than the EM
MPLE algorithm to overshoot the maximum of the objective

function on the �rst few M�steps� resulting in a greater computational e�ort to compute

the new normalizing constant�

The ability of the NHMM to reproduce key precipitation statistics conditional on the

observed atmospheric data suggests that this model could be useful for generating condi�

tional rainfall simulations for the period �
����
��� However� if the model is to be used

to generate precipitation simulations for other periods or alternative atmospheric datasets

	e�g� to investigate the e�ects of climate change� then it is important to test the model

on reserved data� Figure � compares various observed rainfall statistics to those predicted

by the model for the � years of reserved data� Results for the spatial model �t using the

EM
MCML algorithm are shown� Results obtained from the EM
MPLE algorithm 	not

shown� are similar� Figure � shows increased variability when the model is applied to re�

served data 	as expected� but no systematic biases� This latter point is important since a

small but measureable shift in the mean atmospheric data �elds occurred during the � year

period of reserved data 	table ��� If this shift is deliberately removed from the atmospheric

data� but not the rainfall data 	e�g� by recentering the atmospheric measures in the � year

period around the same means as were observed in the �� year period� then a small but

noticable 	about � percentage points� downward bias is observed in the predicted rainfall

probabilities 	table ��� In other words� the lack of bias seen in �gure � indicates that the

model was able to adjust the rainfall probabilities to account for the 	slight� nonstationary

shift in the atmospheric data� This is clearly a necessary condition if the model is to be able

to make useful predictions about rainfall under altered climates�
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Table �� Mean change in the three atmospheric measures included in the �nal model between

the �� year period used for model �tting and the � year period used for model validation�

Also shown is the bias in the predicted precipitation probability 	observed � predicted� during

the � year evaluation period if the model does
does not adjust for the mean change� SLP �

sea level pressure 	hPa�� GPH��� � geopotential height 	m� at ��� hPa�

Precipitation bias 	!�

Mean SLP N�S SLP gradient E�W GPH��� gradient adjusted not adjusted

����� ���� ���� ����� ���

Although the EM
MPLE and EM
MCML algorithms perform comparably in the exam�

ple presented above� we have noted some unusual behavior in the EM
MPLE algorithm in

other situations� We will discuss one such example that occurred when the full �� years

of data were used for model �tting� Initially� the same basic model was obtained 	� states

with the same � atmospheric variables� using the conditional spatial independence model

for P 	Rt j St�� As in �gure �� certain de�ciencies were noted in the �t of the model to the

observed log�odds ratios� Therefore� as described previously� we �t an autologistic model for

P 	Rt j St�� using the functional form for the �sij shown in 	���� After a single EM iteration

of the EM
MPLE algorithm� the estimated log�likelihood was observed to decrease substan�

tially� Further iterations did not improve the �t� When the overall 	marginal� observed

probability of rainfall at each station was compared to that predicted from the EM
MPLE

model the �t was very poor� It was not until we looked at the �t within each weather state

that a possible explanation for this anomalous behavior presented itself� Each weather state

is characterized by a particular rainfall pattern� For instance� state � is associated with

greater probability of rainfall in the northern and eastern stations and lower probability of

rainfall along the coast� State �� in contrast� exhibits a very homogeneous pattern of high

probability of rain over the entire study area� States �� � and � are similar to state � in the
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sense that they present spatially variable patterns of rainfall over the region while state �

is associated with a very homogeneous pattern of low probability of rainfall over the entire

region� When the model for P 	Rt j St� obtained after the �rst EM
MPLE iteration was

used to simulate rainfall from each of the � weather states separately� we found that the

simulations for state � had a low probability of rain at all stations while the simulations

for state � had a high probability of rain at all stations 	�gure ��� Both results are exactly

opposite the observed data for those states� In contrast� the predicted rain probabilities from

the other states closely matched the observed probabilities of rainfall in those states�

The failure of the EM
MPLE algorithm in this situation may result from a lack of in�

formation about the log�odds ratios in states � and �� That is� the homogeneous patterns

of rainfall seen in these states mean that there will be relatively few discordant rainfall

pairs and� hence� little information about the spatial parameters b�s and b�s� In addition�

although asymptotically consistent� the pseudolikelihood tends to overestimate the spatial

correlation in �nite samples 	Geyer and Thompson� �

�� who also report poor performance

by the MPLE in some situations�� In combination� these two factors apparently produce

an extremely poor �t to the data in these two states� If the spatial parameters for states

� and � are �xed at � 	i�e� in equation 	��� set b�� � b�� � b�� � b�� � ��� which cor�

responds to conditional spatial independence� and the remaining parameters are estimated

using EM
MPLE� the algorithm converges smoothly� No examples of inconsistent behavior

have been observed using the EM
MCML algorithm�

Although the weather states are abstract constructs of the model� they can be visualized

by �rst classifying each day into its most likely state and then averaging the values of sea�

level pressure� geopotential height or other atmospheric measures over all days in a given

state at each node of the atmospheric data grid� The resulting �composite� �eld can then be

contoured to give a visual representation of the average �eld in that state� This procedure is

illustrated in �gure � for the �nal EM
MCML model� The other models give substantially

similar plots� The upper row of plots characterizes state �� which has high probability of rain
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at all stations� In this state� the sea�level pressure pattern leads to a strong westerly �ow

of moist marine air over the entire study area� In contrast� state � 	bottom row of �gures�

is associated with low probability of rain at all stations� This state is characterized by a

high pressure system in the great Australian bight which blows dry air from inland over the

region and forces moist marine air to the south� The remaining four states are characterized

by rainfall in particular regions of the study area� For instance� state � 	shown in the middle

row of plots in �gure �� exhibits high probability of rain at the southwest stations but low

probability of rain in the north and western stations� In this case the sea�level pressure

pattern seen in state � is shifted to the south� The patterns seen in the composite MSLP

plots are also present in the ��� hPa GPH composite plots� supporting our view that the

model has identi�ed the dominant synoptic scale features of precipitation in this region�

The weather states de�ned by this model are also relatively more homogeneous with

respect to the atmospheric variables compared to the full dataset� The pooled� within�state

variances for the three atmospheric measures used in the model are� respectively� ��!� ��!

and �
! smaller than the total variances for those measures�

In addition to de�ning weather states� the �tted model can provide additional information

to researchers� including the percentage of days which fall into each weather state� the average

duration of each weather state and the pattern of transitions between weather states�

� Discussion

Nonhomogeneous hidden Markov models can provide hydrologists and atmospheric scientists

with a useful tool for generating realistic simulations of precipitation and understanding

the relationships between atmospheric circulation patterns and rainfall� This approach to

precipitation modelling will be most successful in areas and
or seasons where precipitation is

driven by synoptic�scale systems� It is unlikely that these models will be successful in areas or

seasons in which rainfall is driven primarily by convective activity 	e�g� thunderstorms� since
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these processes evolve on relatively small scales and may not be predictable from synoptic

circulation patterns�

NHMMs generalize the concept of a weather state model as described by Hay et al�

	�

��� Bardossy and Plate 	�

��� Kidson 	�

�� and others� In these models� however�

the investigators explicitly de�ned the weather states� The resulting states� while re�ecting

meteorological intuition� may not have been optimal for modelling rainfall� An important

advantage of the NHMM approach is that one need not de�ne the weather states a priori�

Instead� one need only identify those atmospheric measures which are thought to in�uence

precipitation� Then the weather states are de�ned automatically by the model� Plots such

as �gure � can provide insight into the interpretation of the weather states and the relation�

ship between atmospheric circulation patterns and precipitation� A comparison of the total

variance in the atmospheric measures to the within�weather state variance can be used to

assess the homogeneity of the weather states�

Another important distinction of the NHMM approach is the use of the Markov assump�

tion in the de�nition of the weather states� In previous work 	Hughes and Guttorp� �

�a��

we noted that the inclusion of the Markov assumption improves the �t of the model to

observed rainfall statistics� particularly the observed duration distribution� Although it is

conceptually appealing to assume that the current weather state 	and� therefore� the cur�

rent rainfall pattern� should depend only on current atmospheric conditions� the temporal

discordance between the atmospheric data and the precipitation data described in section �

makes such an assumption untenable�

NHMMs represent a completely stochastic approach to the downscaling problem� Thus

far� more mechanistic approaches� such as GCM�based simulations of precipitation� have

proved to be de�cient at the spatial and temporal scales of relevance to regional and lo�

cal hydrology 	Grotch and MacCraken� �

��� Although it is� at present� computationally

impossible to implement an entire GCM at local scales� some progress has been made in

developing �nested� GCMs which implement phenomenologic models for rainfall on a �ner
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grid over a restricted area and use the coarse scale GCM data as boundary conditions� These

limited area models are able to achieve grid spacings on the order of �o by �o� Even at this

scale� however� de�ciencies in the precipitation simulations have been noted 	Mearns et al��

�

��� Additional studies to compare the NHMM approach with the nested GCM approach

in terms of ability to accurately reproduce current climate precipitation patterns are ongoing

	Charles et al�� �

��� However� even if GCMs are� at some point� able to accurately charac�

terize local precipitation patterns� downscaling models would still be valuable for modelling

phenomena that are not explicitly included in the GCMs 	e�g� air pollution patterns��

We believe that future research in this area should focus on both conceptual and method�

ological issues� The outstanding conceptual issue in research on downscaling is making pre�

dictions under altered climate regimes� Predictions of the e�ects of hypothesized changes in

climate 	e�g� global warming� are based on GCM simulations and are� therefore� restricted to

large scale e�ects� As described in IPCC 	�

�� sec� ����� there are considerable discrepancies

between predictions of di�erent GCMs in terms of changes in precipitation that would occur

on a sub�continental scale under a doubled CO� climate� In addition� there are substantial

biases in precipitation between GCM control runs and observations� At present� therefore�

assessment of the local hydrologic e�ects of climate change necessitates the use of models

to downscale the 	altered climate� GCM circulation patterns� However� this means that the

downscaling models must be used under very di�erent conditions than they were �t under�

Although the validity of a downscaling model under a radically di�erent climate regime is

impossible to determine a priori� some insight into the behavior
validity of the model under

altered climates is possible from studies on reserved datasets� as has been presented here� In

addition� data from �natural experiments� such as the eruption of Mt� Pinatubo in �

��

which caused measureable changes in global climate� can provide another approach to model

validation� Of course� the validity of downscaling models for impact assessment also depends

on the validity of the GCM model which provides the atmospheric information that drives

precipitation� Assessment of GCM models is an active area of research � the interested

�




reader is referred to the IPCC report 	�

�� chapter �� for a summary of the current state

of knowledge�

Several methodological issues remain� The model developed here deals with rainfall

occurrences only� For many applications this is su�cient� However� for some applications it

is also necessary to model amounts� One approach is to �rst �t an NHMM to the occurrence

data and then �t a model to the amounts� conditional on occurrence 	and� possibly� weather

state�� a posteriori� However� this means that the amounts do not in�uence the de�nitions

of the weather states� To fully integrate an amounts model into the NHMM would require

speci�cation of a multivariate mixed discrete�continuous model for P 	Rt j St�� In the context

of an explicit weather state model� Bardossy and Plate 	�

�� have used a transformed

multivariate normal distribution to model amounts at multiple stations� To extend this idea

further� models based on multivariate observations 	e�g� precipitation and temperature�

could be developed and would be useful for input into hydrologic models�

Selecting the �correct� order 	number of states� of a HMM or a NHMM is a problem

similar to selecting the proper number of components in a mixture model� Titterington

	�

�� reviews some approaches to this problem but concludes that further research is needed�

We have found that Bayes factors 	and the related BIC� yield useful models but further

research� including simulation studies� are needed to completely evaluate the e�cacy of

these procedures for model selection�

Finally� to further extend the utility of the weather state approach� methods could be

developed to simulate rainfall occurrence at locations that have not been explicitly included

in the model� In the context of the autologistic model this could be accomplished by spatially

interpolating the �si 	note that a spatially smooth model for �sij has already been included

in the present analysis�� For the example presented in section � we observed that the �si

from the best��tting autologistic model were small and showed little variation within weather

state in the interior of the network 	e�g� ���� to ����� depending on the weather state� note

that exp	�si��� � exp	�si� is the probability of rain at station i given no rain at all other

��



stations�� Thus� to generate rainfall probabilities at a new location� i�� in the interior of the

network one could set �si� equal to the mean value of �si from other stations in the interior

and compute �si�j from 	����
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Appendix

In terms of the forward�backward probabilities 	equations � and 
� and the de�nitions in

table �� �		�S j 	� and �		�R j 	� may be written as

�		�S j 	� �
mX
s��

f�	s�b�	s� ln 
�s	X��

fT�
�

TX
t��

mX
s���

mX
s���

ft��	s��As�s�	Xt��rt	s��bt	s�� lnA
�
s�s�

	Xt�

fT�
�

	A��

and

�		�R j 	� �
TX
t��

mX
s��

ft	s�bt	s�

fT�
�

ln��rt	s�� 	A��

The EM algorithm consists of alternately computing the forward�backward probabilities 	the

E step�� then maximizing �		�S j 	� and �		�R j 	� 	the M step� until convergence is achieved�

We discuss each of these separately�

�		�S j 	�

In general� �		�S j 	� must be maximized numerically using a routine such as the NAG

library E��UCF� Speci�cation of the algebraic form of the derivatives of �		�S j 	� increases

e�ciency and are presented here� Let �S � �		�S j 	� and 	 � 	�� ��� Then� using the Bayes

model 	equation �� for P 	St j St���Xt�

��S

�	�
�

mX
s��

C�	s�


�s	X��

�
�s	X��

�	�
�

TX
t��

mX
s���

mX
s���

Ct���t	s�� s��

A�
s��s�

	Xt�

�A�
s��s�

	Xt�

�	�
	A��

where

Ct	s� �
ft	s�bt	s�

fT�

Ct���t	s�� s�� �
ft��	s��As�s�	Xt��rt	s��bt	s��

fT�
�

Qij � �
�

�
	X� �ij�"

��	X � �ij�
t

�A�
ij	X�

��gh
� exp	Qij�

X
l��j

�il exp	Qil��	
X
l

�il exp	Qil��
� i � g� j � h

��



� ��ij exp	Qij� exp	Qih��	
X
l

�il exp	Qil��
� i � g� j �� h

� � i �� g

�A�
ij	X�

��ghk
� �ij #"

��	X � �ij�
t$k exp	Qij�

X
l��j

�il exp	Qil��	
X
l

�il exp	Qil��
� i � g� j � h

� ��ij�ih exp	Qij� exp	Qih�#"
��	X � �ih�

t$k�	
X
l

�il exp	Qil��
� i � g� j �� h

� � i �� g

�		�R j 	�

When the independence model 	equation �� is used for P 	Rt j St�� �		�R j 	� is maximized

by

p�si �

P
t ft	s�bt	s�r

i
tP

t ft	s�bt	s�
	A��

for each station i and weather state s�

There is no closed form solution for maximizing �		�R j 	� when the autologistic model

	equation �� is used so a numerical maximization procedure must be implemented� The

derivatives of �		�R j 	� with respect to �si and �sij are

True likelihood�

��R

��si

�
X
t

Ct	s�

�
rit �

P
r r

i exp	
P

h �shr
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P
hk �shkr

hrk�P
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P
h �shrh �

P
hk �shkr

hrk�

�
	A��

��R

��sij
�

�

�

X
t
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�
ritr

j
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P
r r

i
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j
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P
h �shr

h �
P
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hrk�P
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P
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P

hk �shkrhrk�
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	A��

Pseudolikelihood�

��R

��si

�
X
t
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�
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h �sihr
h
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P
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h
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��R
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X
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�
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j
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j
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P
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h
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Figure �� Map of study area showing the locations of the atmospheric data grid and rain

gauge stations in southwestern Australia� Atmospheric data are interpolated to the verticies

of the grid as described in the text�
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Figure �� Comparison of observed and model�predicted rainfall statistics based on the ��

years of data used for model �tting� Model�predicted statistics are generated by simulation

from the �tted model using the observed atmospheric data� Observed statistics are on the

x�axis� model�predicted statistics are on the y�axis�
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Figure �� Comparison of observed and model�predicted rainfall statistics� duration distri�

bution� Results are presented for � representative stations 	see �gure ��� Observed and

model�predicted statistics are based on the �� years of data used for model �tting�
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Figure �� Empirical log�odds ratios as a function of the distance and direction between

pairs of rain gauge stations for all days classi�ed as weather state � using the � state� �

atmospheric variable� conditional spatial independence model described in the text� The data

were smoothed using the loess procedure 	Cleveland and Devlin� �
��� prior to contouring�

This plot is based on the �� years of data used for model �tting�
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Figure �� Comparison of observed and model�predicted rainfall statistics on the � years of

reserved data� Model�predicted statistics are generated by simulation from the �tted model

using the observed atmospheric data� Duration distributions are shown at a representative

subset of stations� Station � represents the poorest �t seen�
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Figure �� Observed probability of rain versus predicted probability of rain at each station in

each weather state after one iteration of the EM
MPLE algorithm on the full �� year dataset�

starting at the best �tting conditional spatial independence model� Numbers correspond to

the estimated weather states just prior to this iteration�

��



.2 .4 .6 .8 1.0

S
ta

te
  2

.2 .4 .6 .8 1.0

S
ta

te
  4

.2 .4 .6 .8 1.0

S
ta

te
  5

Probability of Rain

99599799910011003 1005100710091011

1011 1011

1011

1013

10131015

1015

1017

1017

1019

1019

1021

1023

995997999 1001 100310051007 1009 1011

1011
1011

1013

1013

1015

1015

1017

1017
1019
1021

1021

1001 10031005 10051007 1007 1009
1011

1011
1011

1013

1013

1015

1015

1017

10171019 1019

10211023

Mean Sea Level Pressure (hPa)

12561276129613161336 135613761396 1416

1436

1456

1476

1496

1516

1516 1516

1536

1536
1556

125012701290 1310 133013501370 1390 1410
1430

1450

1470

1490

1510

1510

1530

1530
1550

1308 13281348 1368 1368 1388
1408
1428
1448
1468

1488

1508

1508

1528

1548

850 hPa Geopotential Ht. (m)

Figure �� Probability of rain� composite sea�level pressure 	hPa� and ��� hPa geopotential

height 	m� �elds for three states from the six state spatial model estimated using EM
MCML�

Each day is �rst classi�ed into its most likely state using the Viterbi algorithm� All days

in a particular state are then averaged at each station 	for rainfall� or grid node 	for the

atmospheric variables� to obtain the composite �elds�
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