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Abstract

This paper aims at investigating the adoption of non-intrusive global/local approaches

while modeling fracture by means of the phase-field framework. A successful extension

of the non-intrusive global/local approach to this setting would pave the way for a wide

adoption of phase-field modeling of fracture, already well established in the research

community, within legacy codes for industrial applications. Due to the extreme

difference in stiffness between the global counterpart of the zone to be analized locally

and its actual response when undergoing extensive cracking, the main foreseen issues

are robustness, accuracy and efficiency of the fixed point iterative algorithm which is at

the core of the method. These issues are tackled in this paper. We investigate the

convergence performance when using the native global/local algorithm and show that

the obtained results are identical to the reference phase-field solution. We also equip

the global/local solution update procedure with relaxation/acceleration techniques

such as Aitken’s �2-method, the Symmetric Rank One and Broyden’s methods and

show that the iterative convergence can be improved significantly. Results indicate that

Aitken’s �2-method is probably the most convenient choice for the implementation of

the approach within legacy codes, as this method needs only tools already available for

the so-called sub-modeling approach, a strategy routinely used in industrial contexts.

Keywords: Brittle fracture, Phase-field approach, Global/local formulation,

Non-intrusive computations, Relaxation techniques, Convergence acceleration

Introduction

The variational approach to fracture by Francfort and Marigo [1] and the related regu-

larized formulation of Bourdin et al. [2–5], commonly referred to as phase-field model

of (brittle) fracture, is a widely accepted framework for modeling and computing frac-

ture phenomena in elastic solids. The phase-field framework for modeling systems with

sharp interfaces consists in incorporating a continuous field variable—the so-called order

parameter—which differentiates between multiple physical phases within a given system

through a smooth transition. In the context of fracture, such an order parameter (termed

the crack phase-field) describes the smooth transition between the fully broken and intact

material phases, thus approximating the sharp crack discontinuity, as sketched in Fig. 1.
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Fig. 1 Phase-field description of fracture (sketchy): d ∈ C(�, [0, 1]) is the crack phase-field

The evolution of this field as a result of the external loading conditionsmodels the fracture

process. The formulation is strongly non-linear and calls for the resolution of small length

scales.

The use of phase-field approaches in the case of structures of industrial complexity has

been the subject of limited investigations thus far and poses a number of challenges. In

this paper, in order tomove forward in this direction we advocate the use of non-intrusive

global/local strategies initially proposed in [6]. When dealing with large structures, frac-

ture phenomena most often occur in regions of limited extent only. Moreover, in the case

of brittle fracture most of the structure behaves elastically. These features are particu-

larly appealing for global/local approaches as they make it possible to first compute the

global model elastically, and then determine the critical areas to be re-analyzed, while

storing the factorization of the decomposition of the structural stiffness. The local models

are then iteratively substituted within the unchanged global one, which has the advan-

tage of avoiding the reconstruction of the mesh of the whole structure. In fact, this is

the main motivation of non-intrusive global/local approaches: to avoid the modification

of the finite element model used by engineers, the creation of a complex global model

being by far the most time-consuming task, a task which is more and more external-

ized.

In the past decade, both phase-field and non-intrusive global/local approaches have

been extended to deal with a growing number of situations of interest for engineers.

The currently available phase-field formulations of brittle fracture encompass static and

dynamic models. We mention the papers by Amor et al. [7], Miehe et al. [8,9], Kuhn

and Müller [10], Pham et al. [11], Borden et al. [12], Mesgarnejad et al. [13], Kuhn et

al. [14], Ambati et al. [15], Wu et al. [16], where various formulations are developed

and validated. Recently, the framework has been also extended to ductile (elasto-plastic)

fracture [17–22], pressurized fracture in elastic and porous media [23,24], fracture in

films [25] and shells [26–28], and multi-field fracture [29–36]. Non-intrusive global/local

approaches have also been applied to a quite large number of situations: the computation

of the propagation of cracks in a sound model using the extended finite element method

(XFEM) [37], the computation of assembly of plates introducing realistic non-linear 3D

modeling of connectors [38], the extension to non-linear domain decompositionmethods

[39] and to explicit dynamics [40,41] with an application to the prediction of delamination
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under impact using Abaqus [42]. Alternative strategies can be derived from the Partition

of Unity Method [43,44].

The phase-field simulation of fracture processes with legacy codes bears a number of

advantageswhich fit perfectly within the framework of non-intrusive coupling approaches

using pre-defined ‘fixed’ meshes. The most obvious advantage is the ability to track auto-

matically a cracking process by the evolution of the smooth crack field on a ‘fixed’ mesh

which, in the proposed procedure, is the mesh of the local model. This is a signifi-

cant advantage over the discrete fracture description, whose numerical implementation

requires explicit (in the classical finite element method, FEM) or implicit (within XFEM)

handling of the discontinuities. The possibility to avoid the tedious task of tracking com-

plicated crack surfaces in 3D significantly simplifies the implementation. The second

advantage is the ability to simulate complicated processes, including crack initiation (also

in the absence of a crack tip singularity), propagation, coalescence and branching without

the need for additional ad-hoc criteria and with very few parameters to be identified. This

feature is particularly attractive for industrial applications, as it minimizes the need for

time-consuming and expensive calibration tests.

Due to the extreme difference in stiffness between the global counterpart of the zone

to be re-analyzed locally and its actual response when undergoing extensive cracking,

the foreseen fundamental issues associated with the use of the global/local strategy in

combination with phase-field fracture modeling are robustness, accuracy and efficiency

of the fixed point iterative algorithm which is at the core of the method. Also, the finite

element treatment of the phase-field formulation of brittle fracture is known to be com-

putationally demanding, mainly due to the non-convexity of the energy functional to be

minimized with respect to both arguments (the displacement and the phase field) simul-

taneously [45–47]. As a result, the so-called monolithic approach manifests major iter-

ative convergence issues of the Newton–Raphson procedure. A new line-search scheme

[46] and modified Newton methods [47] have been recently proposed to tackle this prob-

lem. Alternatively, staggered (also termed partitioned, or alternateminimization) solution

scheme is widely used. This is based on decoupling of the strongly non-linear weak for-

mulation into a system and then iterating between the equations [2–5,7–9,11–13,15,16].

The staggered scheme is proved to be robust, but typically has a very slow convergence

behavior of the iterative solution process, see e.g. [15,46,48]. In view of the above, a

central question that arises when combining non-intrusive global/local approaches with

phase-field modeling of fracture is how additional global/local iterations affect and pos-

sibly deteriorate the highly sensitive iterative behavior of the staggered scheme used to

solve the phase-field equations. In this paper, we make a first attempt to address these

questions.

The paper is organized as follows. In “The phase-field approach to brittle fracture”

section, we outline the main concepts of phase-field modeling of brittle fracture and

illustrate the specific formulation used in the present paper. “Global/local approach in a

non-intrusive setting” section introduces the non-intrusive global/local approach for the

solution of the reference phase-field model considered in “The phase-field approach to

brittle fracture” section. This is done in several steps. We start by illustrating an intrusive

global/local scheme through a domain decomposition formulation in a variational setting

well adapted to the phase field formulation. Several options are considered, including the

so-called primal, dual and localized Lagrange multipliers based versions. This domain
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decomposition framework is used afterwards to define some convergence indicators in

terms both of incompatibility of the reaction forces and of displacement jumps at the

interface between the unchanged global model and the re-analyzed local one. The moti-

vation here is to see which indicator or combination of indicators are themost suited to an

appropriate estimation of the quality of the global/local iteration resultswith respect to the

phase-field determination. The third version is then extended to the global/local setting,

for which a non-intrusive computational procedure is devised. The numerical results

which illustrate the performance of the proposed non-intrusive global/local approach

as well as their qualitative and quantitative comparison with the reference solution are

reported in “Results and discussion” section. Therein, we also outline and apply three

relaxation/acceleration techniques, which are incorporated into the global/local iterative

procedure and aim at improving its efficiency. Conclusions and outlook finalize the paper.

The phase-field approach to brittle fracture

In this section, we consider a mechanical system undergoing a brittle fracture process

modeled with the phase-field formulation, and term this the reference problem. For

this problem, we develop in “Global/local approach in a non-intrusive setting” section

a global/local formulation, which is dissected numerically in “Results and discussion”

section.

Let� ⊂ Rm,m = 2 or 3 be an open and bounded domain representing the configuration

of am-dimensional linear elastic body, and letŴD,0,ŴD,1 andŴN,1 be the (non-overlapping)

portions of the boundary ∂� of � on which homogeneous Dirichlet, non-homogeneous

Dirichlet andNeumannboundary conditions are prescribed, respectively. In the following,

we consider a quasi-static loading process with the discrete pseudo-time step parameter

l = 0, 1, ..., such that the displacement ūl and traction t̄ l loading data are prescribed on

the corresponding parts of the boundary, see Fig. 2a.

For the mechanical system at hand, the phase-field formulation of brittle fracture [5] in

an incremental variational setting relies on the following energy functional

E(u, d) =
∫

�

W (ε(u), d) dx −
∫

ŴN,1

t̄ l · u ds. (1)

with

W (ε(u), d) := (1 − d)2�+(ε(u)) + �−(ε(u)) +
Gc

2

(
d2

ℓ
+ ℓ|∇d|2

)
, (2)

Fig. 2 a Sketch of geometry and loading setup; b the computed crack phase-field evolution
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and the related minimization problem at each l ≥ 0. In the above, the displacement field

u : � → Rm and the crack phase-field d : � → [0, 1] are the arguments of E . As already

mentioned, the limiting values of d, namely, d = 0 and d = 1 represent the undamaged

and fully broken material phases. Furthermore, �+ and �− are the so-called ‘tensile’

and ‘compressive’ parts of an additive decomposition of the elastic strain energy density

function �(ε) := 1
2ε : C : ε = 1

2λtr
2(ε) + μtr(ε · ε), where, in turn, ε is the second-order

infinitesimal strain tensor,C is the fourth-order elasticity tensor, and λ andμ are the Lamé

constants. The decomposition of � into �+ and �− is required in order to distinguish

between fracture behavior in tension and compression, more precisely, to avoid crack

growth and crack faces interpenetration in compression. Here we use the spectral-based

split, proposed in [8,9]:

�±(ε) :=
1

2
λ〈tr(ε)〉2± + μtr(ε± · ε±), (3)

where 〈a〉± := 1
2 (a ± |a|) and ε± :=

∑3
I=1〈εI 〉±nI ⊗ nI with {εI }3I=1 and {nI }3I=1 as the

principal strains and principal strain directions, respectively. Finally, Gc is the material

fracture toughness, and 0 < ℓ ≪ diam(�) is the regularization parameter that controls

the width of the transition zone of d between the two material states.

With E defined by (1), the state of the system at a given loading step l ≥ 0 is then

represented by the solution of

arg min{E(u, d) : u ∈ Vūl , d ∈ Ddl−1
}, (4)

where

Vūl := {u ∈ H
1(�) : u = 0 on ŴD,0, u = ūl on ŴD,1}

is the kinematically admissible displacement space with H
1(�) := [H1(�)]m and H1

denoting the usual Sobolev space, and

Ddl−1
:= {d ∈ H1(�, [0, 1]) : dl−1 ≤ d}

is the admissible space for d with dl−1 being known from the previous step. The condition

dl−1 ≤ d is used to enforce the irreversibility of the crack phase-field evolution. Figure 2b

depicts an example of phase-field pattern resulting from (4).

Note that due to the dl−1 ≤ d requirement, problem (4) is a constrained minimization

problem and its necessary optimality condition which enables computing the solution

(u, d) ∈ Vūl × Ddl−1
is a variational inequality. Its partitioned form reads as

{
Eu(u, d; v) = 0, ∀ v ∈ V0,

Ed(u, d;w − d) ≥ 0, ∀ w ∈ Ddl−1
,

(5)

see e.g. [11,48], where Eu and Ed are the directional derivatives of the energy functional

with respect to u and d, respectively. It is

Eu(u, d; v) :=
∫

�

[
(1 − d)2

∂�+

∂ε
(ε(u)) +

∂�−

∂ε
(ε(u))

]
: ε(v) dx −

∫

ŴN,1

t̄ l · v ds, (6)
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Ed(u, d;w) :=
∫

�

[
− 2(1 − d)�+(ε(u))w + Gc

(
1

ℓ
dw + ℓ∇d · ∇w

)]
dx. (7)

The displacement test space in (5) is defined asV0 := {v ∈ H
1(�) : v = 0 on ŴD,0 ∪ŴD,1}.

In (6), the components ∂�±

∂ε
are the corresponding ‘tensile’ and ‘compressive’ stresses,

which are strongly non-linear in ε. In the case of the spectral-based split in (3), we obtain

σ±(ε) :=
∂�±

∂ε
(ε) = λ〈tr(ε)〉±I + 2με±. (8)

The related counterparts of the standard fourth-order elasticity tensor C read in this case

C
±(ε) :=

∂σ±

∂ε
(ε) = λH±(tr(ε))J + 2μP

±(ε), (9)

where H+ is the standard Heaviside function and H− := 1 − H+, J is the fourth-order

symmetric identity tensor, whereas P± are the fourth-order tensors obtained by differen-

tiation of ε± with respect to ε.

Stemming from the irreversibility constraint dl−1 ≤ d the variational inequality Ed ≥ 0

in (5) requires special solution algorithms, see e.g. [49,50]. Here, the irreversibility of d is

enforced ‘indirectly’ via the notion of a history variable, as proposed in Miehe et al. [9].

The idea is that the tensile energy�+ can be viewed as the driving force of the phase-field

evolution. Hence, the maximal �+ accumulated within the loading history and denoted

as Hl(x) := max∀l�
+(ε(u)) can be used to prevent a decrease of the phase-field. Hl

substitutes the corresponding �+ term in the original Ed , thus yielding

E
∗
d (u, d;w) :=

∫

�

[
−2(1 − d)Hlw + Gc

(
1

ℓ
dw + ℓ∇d · ∇w

)]
dx (10)

and the system for computing the solution (u, d) ∈ Vūl × H1(�) is

{
Eu(u, d; v) = 0, ∀ v ∈ V0,

E∗
d
(u, d;w) = 0, ∀ w ∈ H1(�),

(11)

where Eu is given by (6).We obtain in (11) an equality and unconstrained spaces for d and

w.

The staggered solution algorithm for the system in (11) implies alternately fixing u and

d, and solving the corresponding equations until convergence. The algorithm is sketched

in Table 1.

Note that the equation Eu = 0 in Table 1 is strongly non-linear due to the non-linearity

ofσ(u, d) := (1−d)2 ∂�+

∂ε
(ε(u))+ ∂�−

∂ε
(ε(u)), see equation (8). Therefore, at every staggered

iteration k ≥ 1 with given dk−1, a Newton–Raphson procedure is needed to compute uk ,

with e.g. uk−1 being taken as the initial guess, and TOLNR as a user-defined tolerance.

Owing to the ‘nested in’ nature of the Newton–Raphson process, it has to be TOLNR <

TOLStag . In the presented numerical examples we take TOLNR := 10−8 < TOLStag :=
10−5.
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Table1 Staggered iterative solution process for (11) at a fixed loading step l

Input: loading data (ūl, t̄l) on ΓD,1,ΓN,1 ⊂ ∂Ω;
solution (ul−1, dl−1) from step l − 1.

Initialization, k = 0:
• set (u0, d0) := (ul−1, dl−1).

Staggered iteration k ≥ 1:
• given dk−1, solve Eu(u, dk−1;v) = 0 for u, set u =: uk,
• given uk, solve E∗

d
(uk, d;w) = 0 for d, set d =: dk ,

• for the obtained pair (uk , dk), check Resk
Stag := |Eu(uk, dk ;v)| ≤ TOLStag, ∀ v ∈ V0,

• if fulfilled, set (uk, dk) =: (ul, dl) and stop;
• else k + 1 → k.

Output: solution (ul, dl).

Global/local approach in a non-intrusive setting

The starting point towards a non-intrusive global/local approach to the phase-field prob-

lem (4) with E defined by (1) is a standard non-overlapping domain decomposition pro-

cedure applied to E . The resulting formulation is then extended to a global/local one in

the spirit of [39,51], for which the non-intrusive computational scheme is devised.

Domain decomposition formulation

Let �L be an open sub-domain of �, where cracking (in a general setting: a strong local-

ization effect due to non-linearity) is expected to take place, and let �C ⊂ � be its open

complement (�C := �/�L), where the material remains intact and elastic (in a general

setting: non-linearity is negligible). In the following, the subscripts L and C always stand

for local and complementary, respectively. It is typical to assume that �L represents a

reasonably small ‘fraction’ of � such that |�L| ≪ |�C |. Let also Ŵ ⊂ � be the interface

between �L and �C , a set with one dimension less than the dimension of �, such that

�L ∪ Ŵ ∪ �C ≡ �. With an application to the problem sketched in Fig. 2, this domain

decomposition idea is presented in Fig. 3a.

Fig. 3 Domain decomposition procedure: a the classic one, when � is decomposed into local and

complementary sub-domains �L and �C , respectively, which do not overlap and are coupled by the

interface Ŵ; b its extension to the global/local setting, where a fictitious domain �F is introduced to form the

so-called global domain �G := �C ∪ Ŵ ∪ �F
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We now introduce two functions on �L and �C , namely, uL ∈ H
1(�L) and uC ∈

{H1(�C ) : uC = 0 on ŴD,0, uC = ūl on ŴD,1} such that

uL
!= uC for x ∈ Ŵ, (12)

and assume that the displacement u ∈ Vūl stemming from the solution of problem (4),

can be represented as

u =
{
uL, for x ∈ �L,

uC , for x ∈ �C .
(13)

We furthermore introduce a function dL : �L → [0, 1] such that the phase-field d ∈ Ddl−1

stemming from the solution of (4) has the representation

d =
{
dL, for x ∈ �L,

0, for x ∈ �C .
(14)

Using (13) and (14) in the function W in (2), we arrive at the energy functionals in the

corresponding sub-domains, namely,

E1(uC ) :=
∫

�C

W (ε(uC ), 0) dx −
∫

ŴN,1

t̄ l · uC ds, (15)

and

E2(uL, dL) :=
∫

�L

W (ε(uL), dL) dx, (16)

such that, also owing to (12), it holds

E(u, d) ≡ Ê(uC ,uL, dL) := E1(uC ) + E2(uL, dL), (17)

where, to recall, E is the original reference functional (1). As a result, the domain decom-

position variational formulation, which is equivalent to reference formulation (4), reads

arg min
uC ,uL ,dL

Ê(uC ,uL, dL). (18)

The advantage of ‘replacing’ (4) with (23) is that one of the two sub-problems stemming

from (18), more precisely, the complementary one, will be linear: indeed, W (ε(u), 0) =
�(ε(u)), thus yielding the standard linear stress-strain relation σ(u) := ∂W

∂ε
(ε(u), 0) = C :

ε(u). And this, moreover, will take place in a ‘large portion’ of �, since by assumption

|�L| ≪ |�C |.
Due to the strong displacement continuity requirement (12), formulation (18) is called

primal in the literature, see e.g. [52]. This requirement may be too restrictive from the

computational standpoint [53]. Relaxing, or rather neglecting (12), results in the appear-

ance of the traction-like terms in the corresponding sub-domain energy functionals (15)

and (16):

E1(uC ,λC ) :=
∫

�C

W (ε(uC ), 0) dx −
∫

Ŵ

λC · uC ds −
∫

ŴN,1

t̄ l · uC ds, (19)
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and

E2(uL, dL,λL) :=
∫

�L

W (ε(uL), dL) dx −
∫

Ŵ

λL · uL ds, (20)

with λC ,λL ∈ L
2(Ŵ) being the (unknown) Lagrangemultipliers, which represent tractions.

In this case, however, the ‘argminmax’-problem being posed for

Ê(uC ,uL, dL,λL,λC ) := E1(uC ,λC ) + E2(uL, dL,λL),

is under-determined, since no relation is yet specified between uL and uC , nor between

λL and λC .

Twostandardways toproceedwith (19) and (20), andobtaining a variational formulation

equivalent to the original one in (4) are as follows.

Option 1One imposes a strong continuity between λC and λL on Ŵ, by setting in E1 and

E2

λC
!= −λL =: λ. (21)

Summing the obtained functionals leads to

Ê(uC ,uL, dL,λ) :=
∫

�C

W (ε(uC ), 0) dx +
∫

�L

W (ε(uL), dL) dx

+
∫

Ŵ

λ · (uL − uC ) ds −
∫

ŴN,1

t̄ l · uC ds. (22)

Note that, in this case, E(u, d) ≈ Ê(uC ,uL, dL,λ), since the surface integral over the inter-

face Ŵ provides the weak continuity between the local and complementary displacement

fields. λ is the (unknown) Lagrangemultiplier. The corresponding variational problem for

Ê which approximates the reference problem (4) then reads

argmin
uC ,uL ,dL

max
λ

Ê(uC ,uL, dL,λ). (23)

Owing to condition (21), formulation (23) is called dual in the literature, see e.g. [54]. The

relation between the solution (u, d) of the reference problem (4) and the solution triple

(uC ,uL, dL) is given by (13) and (14).

Option 2 One preserves the representations (19) and (20), and, in contrast to (21),

imposes only a weak continuity between λC and λL on Ŵ. The latter is achieved by intro-

ducing the functional

E3(uŴ ,λC ,λL) :=
∫

Ŵ

uŴ · (λL + λC ) ds, (24)

with uŴ ∈ H
1(Ŵ) representing the (unknown) Lagrange multiplier, which has the dimen-

sion of a displacement. Summing E1 and E2 with E3, and also regrouping the terms, we

finally obtain

Ê(uC ,uL, dL,uŴ ,λC ,λL) :=
∫

�C

W (ε(uC ), 0) dx +
∫

�L

W (ε(uL), dL) dx

+
∫

Ŵ

{
λC · (uŴ − uC ) + λL · (uŴ − uL)

}
ds

−
∫

ŴN,1

t̄ l · uC ds. (25)
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From (25), it can be grasped that the introduction of uŴ enables also to implicitly provide

a weak continuity between uL and uC across Ŵ via an intermediate function uŴ (this is

in addition to the already incorporated weak continuity between λL and λC ). Conclud-

ing that E(u, d) ≈ Ê(uC ,uL, dL,uŴ ,λC ,λL), the variational problem for Ê in (25) which

approximates the reference problem (4) will be as follows:

argmin
uC ,uL ,dL ,uŴ

max
λC ,λL

Ê(uC ,uL, dL,uŴ ,λC ,λL). (26)

In this case, the representation of u stemming from the solution of problem (4) in terms

of the solution triple (uC ,uL,uŴ) stemming from (26) reads as

u =

⎧
⎪⎨
⎪⎩

uL, for x ∈ �L,

uC , for x ∈ �C ,

uŴ , for x ∈ Ŵ,

(27)

whereas the representation for d in terms of dL defined by (14) remains unaltered. In the

literature, formulation (26) is sometimes called the localized Lagrange multipliers based

formulation (we abbreviate this as LLM), where the term ‘localized’ is used to associate

the multipliers λC ,λL and uŴ with the corresponding sub-domains, see e.g. [55–57].

Table 2 briefly summarizes the considered formulations.

Formulation (23) is seemingly less computationally demanding than (26), since there

is only one extra field λ to be solved for in the former case, versus the triple (uŴ ,λC ,λL)

of unknown fields in the latter one. The potential advantage of (26) over (23) is a greater

flexibility, at the finite element discretization stage, of handling the interface between

complementary and local domains.

As follows, we move on with the LLM formulation (26) and extend it to the global/local

setting, for which, in turn, a non-intrusive solution procedure is devised. This will lead to

a non-intrusive global/local approach to the phase-field formulation (4).

Global/local formulation

As a first step, a so-called fictitious domain �F is introduced to ‘fill the gap’ obtained

in � by removing �L from it, see Fig. 3b. It is assumed that �F is constituted by a

material with the same linear elastic behaviour as in �C . It is also assumed that �F is

open (i.e. Ŵ �⊂ �F ). Unification of�F with Ŵ and�C forms the global domain�G , that is,

�G := �F ∪Ŵ∪�C . The fictitious domain�F is furthermore assumed free of geometrical

‘imperfections’ whichmay be present in�L, see Fig. 3b. Therefore, it is in general�G �= �,

and the constructed global domain�G should not be confused with the original reference

domain �.

Summing up the above, the role of the fictitious domain �F is twofold: it replaces the

“sub-regions” of a structure (reference domain) containing geometric details (e.g. holes,

Table2 Domain decomposition formulations of the reference problem (4)

Formulation Imposed continuity between Unknowns

uC &uL λC & λL

Primal, (18) Strong – (uC ,uL , dL)

Dual, (23) Weak Strong (uC ,uL , dL ,λ)

LLM, (26) Weak Weak (uC ,uL , dL ,uŴ ,λC ,λL)
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inclusions etc.) and/or constitutive non-linearity by there details-free and linearly elastic

“counterparts”. The obtained global domain �G is then straightforwardly suitable for

meshing and solving procedures within legacy codes. As it will be also seen below, the use

of �F is essential to realize the concept of non-intrusiveness of the computational scheme

for solving the coupled global/local formulation.

Next to this, it is assumed that there exists a continuous prolongation of uC into �F .

That is, we introduce a function uG ∈ H
1(�G) such that uG|�C ≡ uC and uG = uC on Ŵ

in the sense of trace. The former also implies that uG = 0 on ŴD,0 and uG = ūl on ŴD,1.

Owing to the definitions of �G and uG , the first term in (25) is recast as follows
∫

�C

W (ε(uC ), 0) dx =
∫

�C

W (ε(uG), 0) dx

=
∫

�G

W (ε(uG), 0) dx −
∫

�F

W (ε(uG), 0) dx,

and we also substitute uG for uC in the third and fourth integrals in (25). This yields the

desired global/local representation (approximation) of the reference energy functional E

in (1), namely,

Ẽ(uG ,uL, dL,uŴ ,λC ,λL) :=
∫

�G

W (ε(uG), 0) dx −
∫

�F

W (ε(uG), 0) dx

+
∫

�L

W (ε(uL), dL) dx

+
∫

Ŵ

{
λC · (uŴ − uG) + λL · (uŴ − uL)

}
ds

−
∫

ŴN,1

t̄ l · uG ds. (28)

(We used the ã to distinguish between the previously considered Ê and the constructed

Ẽ .) The resulting global/local variational problem, which approximates the reference for-

mulation (4) reads

argmin
uG ,uL ,dL ,uŴ

max
λC ,λL

Ẽ(uG ,uL, dL,uŴ ,λC ,λL), (29)

and the relation between the solution u of (4) and the solution triple (uG ,uL,uŴ) of (29)

is given by

u =

⎧
⎪⎨
⎪⎩

uL, for x ∈ �L,

uG , for x ∈ �C ,

uŴ , for x ∈ Ŵ.

In what follows, for the sake of compactness we set (uG ,uL, dL,uŴ ,λC ,λL) =: z.

Coupled system in weak form

To present the weak formulation of (29), we introduce the directional derivatives of Ẽ

with respect to the various components of z. Recalling the functionW defined by (2), the

‘main’ three derivatives read

ẼuG (z; vG) :=
∫

�G

σ(uG) : ε(vG) dx −
∫

�F

σ(uG) : ε(vG) dx

−
∫

Ŵ

λC · vG ds −
∫

ŴN,1

t̄ l · vG ds, (30)
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where σ(uG) = ∂W
∂ε

(ε(uG), 0) = ∂�
∂ε

(ε(uG)) = C : ε(uG), and vG ∈ {H1(�G) : vG =
0 on ŴD,0 ∪ ŴD,1} is the test function;

ẼuL (z; vL) :=
∫

�L

σ(uL, dL) : ε(vL) dx −
∫

Ŵ

λL · vL ds, (31)

where σ(uL, dL) = ∂W
∂ε

(ε(uL), dL) = (1− dL)
2 ∂�+

∂ε
(ε(uL))+ ∂�−

∂ε
(ε(uL)), and vL ∈ H

1(�L)

is the test function;

ẼdL (z;wL) :=
∫

�L

[
− 2(1 − dL)�

+(ε(uL))wL + Gc

(
1

ℓ
dLwL + ℓ∇dL · ∇wL

)]
dx,

where wL ∈ H1(�L) is the test function. The following ‘modified’ version of ẼdL , adjusted

to account for the irreversibility of the phase-field evolution, will be used in our compu-

tations:

Ẽ
∗
dL
(z;wL) :=

∫

�L

[
− 2(1 − dL)Hl(ε(uL))wL + Gc

(
1

ℓ
dLwL + ℓ∇dL · ∇wL

)]
dx.

(32)

This is similar to the modification discussed for equation (10).

The remaining three variational derivatives of Ẽ are

ẼuŴ
(z; vŴ) :=

∫

Ŵ

(λC + λL) · vŴ ds, (33)

ẼλC (z;βC ) :=
∫

Ŵ

(uŴ − uG) · βC ds, (34)

ẼλL (z;βL) :=
∫

Ŵ

(uŴ − uL) · βL ds, (35)

where vŴ ∈ H
1(Ŵ) and βC ,βL ∈ L

2(Ŵ) are the corresponding test functions.

Using equations (30) and (31), (32), the global and local weak problems are, respectively,

formed:

∫

�G

σ(uG) : ε(vG) dx −
∫

�F

σ(uG) : ε(vG) dx −
∫

Ŵ

λC · vG ds (G)

−
∫

ŴN,1

t̄ l · vG ds = 0,

and

⎧
⎪⎪⎨
⎪⎪⎩

∫

�L

σ(uL, dL) : ε(vL) dx −
∫

Ŵ

λL · vL ds = 0,
∫

�L

[
−2(1 − dL)Hl(ε(uL))wL + Gc

(
1

ℓ
dLwL + ℓ∇dL · ∇wL

)]
dx = 0,

(L)

whereas equations (33), (34) and (35) are used for establishing the (weak) coupling between

them:

∫

Ŵ

(λC + λL) · vŴ ds = 0, (C1)
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∫

Ŵ

(uŴ − uG) · βC ds = 0, (C2)

∫

Ŵ

(uŴ − uL) · βL ds = 0. (C3)

Here, (uG ,uL, dL,uŴ ,λC ,λL) is the vector of theunknowns tobe solved for, and (vG , vL, wL,

vŴ ,βC ,βL) is the vector of the corresponding test functions.

For the presented system of equations, a computational scheme can already be devised.

We should notice, however, that equation (G) in the current form does not fit in the

notion of non-intrusiveness yet. Indeed, being a linear one, it can naturally be solved for

uG ‘straightforwardly’. But the presence of the two domain integrals, namely, over�G and

�F ⊂ �G would imply in this case the need to simultaneously access the corresponding

stiffnessmatrices (in the following, KG and KF ), or, in other words, a necessity ofmodifying

KG—a situation that contradicts the concept of non-intrusiveness. Avoiding this can be

done in two steps: first, by introducing a partitioning of equation (G), and then, devising

the appropriate iterative solution procedure. The former will be presented here, and the

latter is addressed in “Non-intrusive computational scheme” section.

We focus on the domain integral over �F in (G). The divergence theorem leads to

∫

�F

σ(uG) : ε(vG) dx = −
∫

�F

div(σ(uG)) · vG dx +
∫

∂�F

σ(uG) · n∂�F · vG ds, (36)

where n∂�F is the unit outward normal vector to ∂�F . The first term in the right-hand

side of (36) can be canceled using the divergence-free assumption for the stress (no body

forces in�F ). The second term can be simplified as follows. In the most general case, ∂�F

is composed of five non-overlapping parts, including Ŵ. More precisely,

∂�F = Ŵ ∪ (∂�F ∩ ŴN,0) ∪ (∂�F ∩ ŴD,0) ∪ (∂�F ∩ ŴN,1) ∪ (∂�F ∩ ŴD,1), (37)

as sketched in Fig. 4a, and hence

∫

∂�F

R =
∫

Ŵ

R +
∫

∂�F∩ŴN,0

R +
∫

∂�F∩ŴD,0

R +
∫

∂�F∩ŴN,1

R +
∫

∂�F∩ŴD,1

R, (38)

Fig. 4 a The possible complex nature of ∂�F illustrating equation (37); b choice of �L that results in

∂�F ∩ ŴN,1 = ∅ for �F
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with R := σ(uG) · n∂�F · vG . In this case, due to the following basic properties

• σ(uG) · nŴN,0 = 0 on ŴN,0,

• vG = 0 on ŴD,0 and on ŴD,1,

• σ(uG) · nŴN,1 = t̄ l on ŴN,1,

the corresponding integrals in the right-hand side of (38) are simplified, thus yielding

∫

∂�F

σ(uG) · n∂�F · vG ds =
∫

Ŵ

σ(uG) · nŴ · vG ds +
∫

∂�F∩ŴN,1

t̄ l · vG ds.

Here, nŴ is the unit normal vector on Ŵ, outward with respect to �F . To further simplify

the last expression, we note that it is always possible to pick �L (and, hence, the resulting

�F ) such that ∂�F ∩ŴN,1 = ∅, see Fig. 4b, and, as a result, the last surface integral cancels.
For (36), this eventually yields:

∫

�F

σ(uG) : ε(vG) dx =
∫

Ŵ

σ(uG) · nŴ · vG ds. (39)

It can now be assumed that, given uG , there exists λF ∈ L
2(Ŵ) such that

∫

Ŵ

λF · vG ds =
∫

Ŵ

σ(uG) · nŴ · vG ds, (40)

holds. In the above, we use the subscript F to indicate, according to (39), the relation of

the corresponding quantity to �F (more precisely, to the restriction of uG to �F ).

Owing to (39) and (40), we finally arrive at the following partitioned representation of

equation (G):

∫

�G

σ(uG) : ε(vG) dx −
∫

Ŵ

λF · vG ds −
∫

Ŵ

λC · vG ds −
∫

ŴN,1

t̄ l · vG ds = 0, (G1)

with λF satisfying

∫

Ŵ

λF · vG ds =
∫

�F

σ(uG) : ε(vG) dx. (G2)

Equations (G1), (G2), system (L) and coupling equations (C1), (C2), (C3) consti-

tute what we term global/local coupled system, which is to be solved for the vector

(uG ,uL, dL,uŴ ,λC ,λL).

Non-intrusive computational scheme

Let n ≥ 0 be the iteration index. For designing at a fixed loading step l the iterative solution

procedure for the global/local system defined by (G1), (G2), (L), and (C1), (C2), (C3), the

following prerequisites are taken into account:

(a) Since the data (ūl , t̄ l) are posed on ŴD,1,ŴN,1 ⊂ ∂�G , the process initialization (i.e.

iteration n = 0) is started with the solution of global problem (G1), (G2).
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(b) In order to fit equation (G1) with λF = λF (uG) in the concept of non-intrusiveness,

λF must be treated as a known quantity. This defines the order in which equations

(G1) and (G2) are solved at any iteration n ≥ 0: the solution of (G2) precedes the

solution of (G1). In this case, as desired, the stiffness matrix KG remains unaltered;

the access to KF is still required, but only at the stage of solving (G2), not (G1).

(c) For solving (G1), λC must be also known. At n = 0, λC can simply be taken from the

previous loading step. At n ≥ 1, we use coupling equation (C1) for the extraction of

λC , assuming λL is already known. This defines the order in which the global and

local problems are solved: at any iteration starting from n = 1, the solution of (L)

precedes the solution of (G1).

We also notice that:

(d) Coupling equation (C3) provides the boundary condition for uL of the local problem

(L).

(e) Coupling equation (C2) is used for the recovery of uŴ .

As follows from (c) and (e), elimination of λC and uŴ from the set of unknowns to be

originally solved for is achieved. These two quantities, as well as λF , are the recovered

ones.

The summary of the solution operations to be performed at any iteration n of the

procedure, excluding the initialization step (n = 0), is as follows:

• solution of local problem (L) coupled with (C3),

• recovery phase using (C1) and (G2),

• solution of global problem (G1),

• recovery phase using (C2).

The detailed scheme, including the iteration n = 0, is depicted in Table 3. Note that in all

equations in the table we omit dx and ds.

Staggered process for the local problem

Solution of the local system in Table 3 at the given global/local iteration n ≥ 1 requires an

additional nested iterative solution process. In our case, this is the staggered procedure

from Table 1, which is adjusted to handle an extra variable λL, and is also equipped with

the appropriate definition of the input (initial guess) data and of the stopping criterion.

The initial guess for the staggered loop (with the iteration index k ≥ 0) is chosen as

follows. At iteration n = 1 (and staggered iteration k = 0) the values (uL,l−1, dL,l−1,λL,l−1)

known from the previous loading step are used as the initial guess. At n ≥ 2 (and staggered

iteration k = 0), we naturally take (un−1
L , dn−1

L ,λn−1
L ).

At any fixed iteration n ≥ 1, the accuracy check for the solution triple (u
(k)
L , d

(k)
L ,λ

(k)
L )

obtained at the staggered iteration k ≥ 0 is performed as follows:

ReskStag := |ẼuL (u
(k)
L , d

(k)
L ,λ

(k)
L ; vL)| ≤ TOLStag , ∀ vL ∈ H

1(�L), (41)

where, to recall, ẼuL is given by (31). If (41) is fulfilled—note again that in the fol-

lowing numerical test, TOLStag := 10−5 – the staggered process is stopped, we set

(u
(k)
L , d

(k)
L ,λ

(k)
L ) =: (un

L, d
n
L ,λ

n
L) and perform n + 1 → n.
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Table 3 Non-intrusive iterative solution process for (G1), (G2), (L), and (C1), (C2), (C3) at a

fixed loading step l

Input: loading data (ūl, t̄l) on ΓD,1, ΓN,1 ⊂ ∂ΩG;
solution (uG,l−1, uL,l−1, dL,l−1, uΓ,l−1, λC,l−1, λL,l−1) from step l − 1.

Initialization, n = 0:
• given λC,l−1, set λC,l−1 =: λ0

C
,

• given uG,l−1, solve

Γ

λF · vG =
ΩF

σ(uG,l−1) : ε(vG),

• for λF , set λF =: λ0
F ,

• given λ0
F

and λ0
C

, solve

ΩG

σ(uG) : ε(vG) −
Γ

λ0
F · vG −

Γ

λ0
C · vG −

ΓN,1

t̄l · vG = 0,

• for uG, set uG =: u0
G

,
• given u0

G
, solve

Γ

(uΓ − u0
G) · βC = 0

• for uΓ, set uΓ =: u0
Γ
.

Global/local iteration n ≥ 1:

• given un−1
Γ

, solve






























ΩL

σ(uL, dL) : ε(vL) −
Γ

λL · vL = 0,

ΩL

−2(1 − dL)Hl(ε(uL))wL + Gc
1

dLwL + ∇dL · ∇wL = 0,

Γ

(un−1
Γ

− uL) · βL = 0,

• for (uL, dL, λL), set (uL, dL, λL) =: (un
L

, dn
L

, λn
L
),

• given λn
L
, solve

Γ

(λC + λn
L) · vΓ = 0

• for λC , set λC =: λn
C ,

• given un−1
G

, solve

Γ

λF · vG =
ΩF

σ(un−1
G

) : ε(vG),

• for λF , set λF =: λn
F ,

• given λn
F and λn

C , solve

ΩG

σ(uG) : ε(vG) −
Γ

λn
F · vG −

Γ

λn
C · vG −

ΓN,1

t̄l · vG = 0,

• for uG, set uG =: un
G

,
• given un

G
, solve

Γ

(uΓ − un
G) · βC = 0

• for uΓ, set uΓ =: un
Γ.

• Accuracy/convergence check : ηn ≤ TOLGL,
• if fulfilled, set

(un
G, un

L, dn
L, un

Γ, λn
C , λn

L) =: (uG,l, uL,l, dL,l, uΓ,l, λC,l, λL,l),
• and stop; else n + 1 → n.

Output: solution (uG,l, uL,l, dL,l, uΓ,l, λC,l, λL,l).

* See “Staggered process for the local problem” section, ** see “Accuracy/convergence check” section

Accuracy/convergence check

Derivation of the convergence and stopping criteria for the global/local iterative solution

process in Table 3 is rather straightforward. Indeed, at any iteration n ≥ 1, the solution

outcome is denoted as (un
G ,u

n
L, d

n
L ,u

n
Ŵ ,λ

n
C ,λ

n
L). Plugging this in equations (G1), (G2), (L),

(C1), (C2), (C3) and comparing the obtained outcome with the corresponding equations

in Table 3, it is straightforward to locate the imbalanced quantities:

∫

Ŵ

(un
Ŵ − un

L) · βL �= 0, (42)
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and
∫

Ŵ

λn
F · vG �=

∫

�F

σ(un
G) : ε(vG). (43)

Therefore, the solution accuracy at n is measured by the quantity

ResnGL := Res′last k
′

Stag + |
∫

Ŵ

(un
Ŵ − un

L) · βL| + |
∫

Ŵ

(λn
F − λn+1

F ) · vG|, ∀ βL, vG , (44)

where ResStag is the staggered residual of the local problemwith ‘last k ’ denoting the index

of the converged staggered solution (see “Staggered process for the local problem” section

for details), and λn+1
F is recovered (post-processed) from the right-hand side of (43). The

stopping criterion for the global/local loop can then be defined as

ResnGL ≤ TOLGL, (45)

with TOLGL to be prescribed. Owing to the ‘nested in’ nature of the staggered process, it

has to be TOLStag < TOLGL. Recalling that TOLStag = 10−5, we set TOLGL := 10−4.

In our computations (see Table 3), we use a more convenient form of the stopping

criterion. Setting

ηnu :=
∥∥un

Ŵ − un
L

∥∥
L2(Ŵ)

, ηnλ :=
∥∥∥λn

F − λn+1
F

∥∥∥
L2(Ŵ)

,

we define ηn :=
√
(ηnu)

2 + (ηnλ)
2, and use this quantity to now check

ηn ≤ T̃OLGL := 10−6.

This choice of T̃OLGL fulfills the requirement ηn
!
< TOLGL − TOLStag , which is stipulated

by (44), (45), and the already prescribed above magnitudes of TOLGL and TOLStag .

Since the quantity η naturally stems from the global/local solution accuracy check

Ẽz(z
n; y) = 0, it represents not only the iterative convergence indicator, but also the

solution accuracy indicator—a very desired property, since the former is only suitable for

tracing the convergence of the corresponding iterative solution process, but, clearly, is

not adequate for stopping criterion. The corresponding ingredients ηu and ηλ are only

iterative convergence indicators, but none of them provides an adequate check of the

solution accuracy. In particular, since ηu measures, though implicitly, the displacement

continuity—a match between uG and uLacross Ŵ (recall that the traction continuity—a

match between λC and λL on Ŵ—is, in our case, fulfilled automatically), it is also the

indicator of a good “gluing” between the two models.

Incremental setting

For later developments (“Results and discussion” section), it proves convenient to refor-

mulate the global equation in incremental form. It is straightforward to see that for a given

global/local iteration n ≥ 1, this reads: given the triple (un−1
G ,λn−1

F ,λn−1
C ) known from the

iteration n − 1, as well as (λn
F ,λ

n
C ) ‘recovered’ at the iteration n, we solve

∫

�G

σ(�uG) : ε(vG) −
∫

Ŵ

(λn
F − λn−1

F ) · vG −
∫

Ŵ

(λn
C − λn−1

C ) · vG = 0, (Gincr)
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for �uG =: (�uG)
n and set

un
G := un−1

G + (�uG)
n. (46)

We term equation (46) a ‘direct update’ within the global/local iterative procedure. This

is in contrast to the notion of a ‘relaxed/accelerated update’ to be considered in Section .

Finite element discretization

In the following, for the sake of simplicity, we assume the dimension of the reference

problem is 2. Let P be a finite element partition of � into triangles or quadrilaterals, I

be the number of nodes in P , and Ni, i = 1, . . . , I be the nodal shape function associated

with the node i and supported on the collection of elements in P that share i. Finally, let

a scalar-valued quantity ·̂i represent the nodal value.
The standard discretization of the solution of the reference problem (using Voigt’s

notation) is as follows:

u =
[
ux

uy

]
=

I∑

i=1

[
Ni 0

0 Ni

] [
ûx,i

ûy,i

]
=: N uû,

whereN u is the 2× 2I interpolation/basis matrix and u is the 2I × 1 displacement nodal-

vector, and

d =
I∑

i=1

Nid̂i =: N d d̂.

where N d is the 1 × I interpolation/basis matrix and d is the I × 1 phase-field nodal-

vector.Ni constitutes bothmatricesN u andN d . The corresponding representation of the

gradients reads:

ε(u) =

⎡
⎢⎢⎣

εxx

εyy

εxy

⎤
⎥⎥⎦ =

I∑

i=1

⎡
⎢⎢⎣

∂Ni
∂x 0

0 ∂Ni
∂y

1
2

∂Ni
∂y

1
2

∂Ni
∂x

⎤
⎥⎥⎦

[
ûx,i

ûy,i

]
=: Buû,

where Bu is a 3 × 2I matrix, and

∇d =
[

∂d
∂x

∂d
∂y

]
=

I∑

i=1

[
∂Ni
∂x

∂Ni
∂y

]
d̂i =: Bd d̂,

where Bd is a 2 × I matrix. The problem test functions v and w, as well as their gradients

are discretized accordingly.

For the global/local formulation, we assume the existence of the partitions PG and PL

of �G and �L, respectively. Using this and adopting the above notations, the solution

discretizations are given by

uG = NG
u ûG , uL = N L

uûL, dL = N L
d d̂L, (47)

such that

ε(uG) = BG
u ûG , ε(uL) = BL

uûL, ∇dL = BL
d d̂L. (48)
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Note that the superscriptsG and L are introduced in the corresponding definitions ofN u,

N d and Bu, Bd .

To construct the discretization of the Lagrange multipliers λC , λL, uŴ and the supple-

mentary quantity λF on Ŵ we account for the following. In the most general situation,

three distinct partitions of Ŵ may be assumed: the restrictions of PG and PL—denoted

as TG and TL, respectively—which serve to create the corresponding bases for λC (also

λF ) and λL, and the ‘independent’ partition TŴ to be used for creating the basis for uŴ .

Introducing the three related basis matrices NG
λ , N

L
λ and NŴ

u , we write

λC = NG
λ λ̂C , λL = N L

λλ̂L, uŴ = NŴ
u ûŴ , λF = NG

λ λ̂F . (49)

In the following, for our numerical example, we assume that:

• the partitions TG , TL and TŴ match (this is usually termed a ‘matching case’);

• the basis in the global and local domains is identical, that is, NG
u = N L

u =: N u;

• the basis on the interface is obtained from N u by the corresponding restriction, that

is, NG
λ = N L

λ = NŴ
u = N u|Ŵ ;

• the nodal shape functions Ni composing bases N u and N d are piecewise linear.

Because of the matching interface situation, no intricate data transfer methods (the con-

struction of prolongation and restriction operators, generalized inverse matrices etc.) are

required. Also, with the above choice of the discretization basis for the Lagrange multi-

pliers, the related inf-sup condition is fulfilled, see e.g. [58,59].

Using expressions (47), (48) and (49) along with the above assumptions, the matrix

representation of all equations in Table 3 is straightforward.

Results and discussion

To illustrate the proposed approach, we consider the following benchmark problem. A

square specimen with two holes of different diameters is subjected to tension loading, see

Fig. 5a. The holes are introduced to weaken the structure and to facilitate the specimen

cracking in absence of a stronger singularity such as a pre-existing crack. The holes loca-

tion is chosen such that prediction of the sub-region where cracking occurs (hence, the

Fig. 5 a Specimen geometry and loading conditions; sketches of (b) the fracture pattern and c the

load-displacement curve with the points of interest
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local domain for the forthcoming global/local analysis) is feasible. Taking a different size

of the holes is intended to obtain a geometrically non-trivial crack pattern, as depicted

in Fig. 5b. This, moreover, results in a multi-stage crack propagation process to be man-

ifested by a load-displacement response with two peak points, see Fig. 5c for a sketch,

and Figs. 7 and 12 for the actually obtained results. We believe that the present setup,

being neither extremely complex, nor trivial, is suitable for the purpose of a qualitative

and quantitative comparison between the reference results and results obtained with the

proposed global/local approach.

The geometric data are as follows (all given in mm): a = 1, b1 = 0.197, b2 = 0.210,

b3 = 0.490 with the hole diameters c1 = 0.247 and c2 = 0.0806. The material data are:

Young’s modulus E = 210GPa, Poisson’s ratio ν = 0.3 and the critical energy release

rate Gc = 2.7 · 10−3 kN/mm. The characteristic length in the phase-field formulation is

ℓ = 1.5 · 10−2mm. We consider the plane-strain situation.

The algorithmic parameters are: the loading ūl = l�u with l ∈ [1, 110) and the

increment size �u := 0.06 · 10−3mm, the tolerance magnitudes are TOLNR := 10−8,

TOLStag := 10−5, and T̃OLGL := 10−6.

We recall that we use P1-triangles for approximating all unknown variables both in

the reference and global/local formulations. The minimum finite element size in the

reference and local domains is 0.004 mm, the maximum element size in the reference

and global domains is 0.1
√
2 mm. The former fulfills the heuristic requirement h < ℓ/2

for the element size inside the localization zone (i.e. the support) of d. The reference

domain partition contains 18,672 elements. The discretizations of the global and local

domains contain 200 and 18,552 elements, respectively. That is, in our case, the reference

and global/local problems have a comparable discretization size, as can be grasped from

Fig. 6.

Reference and global/local results

We start here with the presentation of the quantitative and qualitative reference and

global/local results and their comparison. As desired, the two load-displacement curves in

Fig. 7 are identical in the entire range of loading, including thepre- andpost-peakbehavior.

The computed phase-field profiles in Fig. 8 are also in a very good agreement. This is

already a good indicator of the potential of the global/local approach with application to

systems with strong non-linearity and localization.

Fig. 6 Finite element mesh used for the discretization a of the reference domain �, b of the global and local

domains �G and �L , respectively
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Fig. 7 Comparison of the load-displacement curves

Fig. 8 Comparison of the computed phase-field profiles

For a better insight into the the iterative convergence behavior of the global/local solu-

tion process, in Fig. 9 we depict the convergence indicators from “Accuracy/convergence

check” section for four given loading steps corresponding to the points 1–4 of our interest

sketched in Fig. 5c. Thus, we plot the quantities ηu, ηλ and η =
√

η2u + η2λ such that the

amount of global/local iterations required for the solution convergence at the step (also

in comparison with other steps) can be detected.

The first important observation is that ηu, which implicitly measures the displacement

discontinuity between the solutions of the global and local problem across the inter-

face, is two orders of magnitude less than ηλ. Thus, its contribution to η, which is used

not only for tracing the convergence of the iterative solution process, but also for the

solution accuracy check, is negligible. This means that a stopping criterion based solely

on the use of ηu (what seems typical for the global/local approaches in e.g. plasticity)

will yield, in our case, erroneous results. Secondly, it can be noted that a quite large

amount of global/local iterations is needed, especially at loading steps corresponding to

the peak loads of the load-displacement curves in Fig. 7 (the points of interest 2 and 4

from Fig. 5c).

Resulting from the slow convergence of the global/local procedure, the corresponding

cumulative computational time turns out to be high, see Fig. 10, where also the time

for solving the reference formulation by the staggered scheme is depicted. For the given

setup, with a standard machine (Intel(R) Core(TM) i7-3770 OK, CPU 3.5 GHz, RAM

16.0 GB) it takes about one hour of staggered computations vs. approximately four hours

required for the global/local approach. (We should note however that our goal was not

to gain computational efficiency, but rather to enable computations with legacy codes.)
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Fig. 9 Convergence behavior of the global/local iterative solution process at four different loading steps

(the points 1–4 from Fig. 5c), illustrated in terms of the indicator η, as well as its ingredients ηu and ηλ

High efforts are not surprising, as the global/local problem has a larger discretization size

than the reference problem, and three nested iterative processes vs. two for the reference

problem. The latter results in a larger time per loading step, as can be seen in Fig. 11.

It can be grasped that the rapid increase of cumulative time in Fig. 10 for both for-

mulation appears at loading steps related to the peak points 2 and 4. Also, regardless

of the formulation, the computational time per step in Fig. 11 at these points is sig-
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nificantly higher (by almost two orders of magnitude, to be more precise) than at the

pre-peak loading steps. These observations correlate with the convergence results from

Fig. 9.

Non-convexity and non-linearity of the global/local formulation, as well as the com-

plicated multi-level iterative nature of the related iterative solution procedure result in

a generically slow convergence of the approach. Another impacting factor that should

be noted is that the stiffness matrix of the global problem KG is never updated within

the global/local computation process. Incorporation of an incremental update relaxation

in this process is thus our next goal, with the objective to obtain an acceleration of the

convergence process.

Relaxation/acceleration techniques: Aitken’s, SR1, Broyden et al.

Following [39] and [51],wewill consider and incorporate two typesof relaxation/acceleration

techniques into our approach: Aitken’s �2-method (also known as dynamic relaxation,

whose efficient implementation in fluid-structure interaction computations has already

been reported [60,61]) andQuasi-Newton correction.Within the family ofQuasi-Newton

correction formulae, we restrict ourselves to the Symmetric RankOne (SR1) and the Broy-

den update versions.

Technically, both types deal with the global solution update equation (46) and modify

it specifically. Let us consider (46) written in terms of the nodal displacements

ûn
G := ûn−1

G + (�ûG)
n s.t. (�ûG)

n = K−1
G rnŴ , (50)

Fig. 10 Time-displacement curves in terms of ‘accumulated time’

Fig. 11 Time-displacement curves in terms of ‘time per loading step’
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where, owing to (Gincr), one has

KG :=
∫

�

(BG
u )

T
C̃BG

u ,

with C̃ as a 3 × 3-matrix representation of C, and

rnŴ :=
∫

Ŵ

(NG
u )

T (λn
F − λn−1

F ) +
∫

Ŵ

(NG
u )

T (λn
C − λn−1

C ).

Aitken’s method modifies (50) at any iteration n ≥ 2 introducing the damping factor

ωn−1 = f (ωn−2, (�ûG)
n−1, (�ûG)

n) s.t. ω0 = 1 as follows:

ûn
G := ûn−1

G + ωn−1(�ûG)
n, (51)

whereas the Quasi-Newton correction modifies (50) at any iteration n ≥ 2 by replacing

the matrix KG with K̃n = f (̃Kn−1, rnŴ , (�ûG)
n−1) s.t. K̃1 = KG , thus resulting in

ûn
G := ûn−1

G + (̃Kn)−1rnŴ . (52)

In (51), we explicitly have

ωn−1 := ωn−2
((�ûG)

n−1)T
(
(�ûG)

n−1 − (�ûG)
n
)

|(�ûG)n−1 − (�ûG)n|2
, n ≥ 2, (53)

with ω0 = 1. In (52), the SR1 update formula implies

K̃n := K̃n−1 −
rnŴ(r

n
Ŵ)

T

(rnŴ)
T(�ûG)n−1

, n ≥ 2, (54)

whereas the Broyden update reads as

K̃n := K̃n−1 −
rnŴ((�ûG)

n−1)T

((�ûG)n−1)T(�ûG)n−1
, n ≥ 2. (55)

In both cases K̃1 = KG . Further details about computing the inverse matrices, efficient

data storage etc. can be found e.g. in [6,39]. Also, followingConn et al. [62], the SR1 update

formula (54) is used only if

|(rnŴ)T(�ûG)
n−1| ≥ c1|rnŴ| |(�ûG)

n−1|,

with a constant c1 ∈ (0, 1). Otherwise, we simply set K̃n := K̃n−1. This helps preventing

the convergence issue of the global/local procedure using the SR1 based relaxation.

The results obtained with the relaxation/acceleration techniques are depicted in

Figs. 12–15. As can be seen from Fig. 12, all three considered techniques yield identi-

cal load-displacement curves, also identical to the curve obtained from the global/local

procedure with no relaxation/acceleration.

Similarly to Figs. 9 and 13 presents and compares the convergence of the global/local

iterative procedure and its acceleration/relaxation versions at the four loading steps of

interest. Here, we only plot the indicator η and not its ingredients. For a given point, the
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Fig. 12 Comparison of the load-displacement curves

amount of iterations required for the convergence of the solution process in all accelera-

tion/relaxation techniques is similar, but is less (in some cases, significantly) than in the

original unaccelerated case.

Figure 14 compares the phase-field solutions of the global/local formulations com-

puted using the corresponding acceleration/relaxation techniques. It can be observed

that even though the load-displacement curves are identical in all cases, the correspond-

ing phase-field profiles are not. This can be explained, first of all, by the solution non-

uniqueness of the original reference phase-field formulation, and, secondly, by the fact

that the global/local formulation is only the approximation of the reference one.

From the time-displacement curves comparison in terms of both ‘cumulative time’ and

‘time per loading step’, Fig. 15, it can be concluded that the desired improvement of

efficiency of the original procedure has indeed been achieved. However, in the global time

scale, all three techniques have a very similar effect, at least for the considered example.

Conclusions

We combined the adoption of non-intrusive global/local approaches with phase-field

modeling of brittle fracture, with the main objective to pave the way for a wide adoption

of this framework for industrial applications within legacy codes. We investigate the

convergence performance of the fixed-point scheme used for the global/local iterations

and showed that the obtained results are identical to the reference phase-field solution.

In order to accelerate the observably quite slow convergence behavior, especially close to

and beyond the peak point(s) of the load-displacement response, we also equipped the

global/local solution update procedure with relaxation/acceleration techniques such as

Aitken’s �2-method, the Symmetric Rank One and Broyden’s methods. Findings showed

that the iterative convergence can be improved significantly, to a similar extent for all

investigated methods. Aitken’s �2-method is probably the most convenient choice for

the implementation of the approach within legacy codes, as this method needs only tools

which are often used for the so-called sub-modeling strategy, which is well known and

widely used in industrial contexts.
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Fig. 13 Convergence behavior of the different versions of the global/local iterative solution process at four

different loading steps (the points 1–4 from Fig. 5c), illustrated in terms of the indicator η

Several extensions and improvements of the proposed framework are foreseen, such as

the study of the effect of global modeling choices on the iterative convergence behavior,

the investigation of alternative boundary conditions for the coupling, the implementation

ofmortar-type approaches to enable non-matchingmeshes at the boundary between local

and complementary domains. Moreover, in practical applications when i.e. the evolving

localization areas are not known á priori, the global/local approach must be supplied with
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Fig. 14 Comparison of the phase-field profiles computed with the various acceleration/relaxation versions

of the global/local approach

Fig. 15 Comparison of the time-displacement curves presented in different formats

the possibility of the adaptive choice of the local domain �L. The representation result

for d, namely,

d(x) =
1

|V |

∫

V
g(ξ)

2ℓ
Gc

�+(x + ξ)

1 + 2ℓ
Gc

�+(x + ξ)
dξ, (56)

obtained in Ambati et al. [15], p. 392, equation (34) suggests that�+, or rather the history

field Hl , may serve as an “indicator” for the adaptive choice of �L. In (56), V ⊂ � is an

averaging volume, ξ ∈ V , and g(ξ) is a bell-shaped function, typically a Gaussian, such

that 1
|V |

∫
V g(ξ) dξ = 1 holds. These issues are all open for further research.
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