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Abstract

This paper presents a capacitive pressure sensor strip implemented in general purpose printed circuit board (PCB) technology based on a
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hin 3D structure composed of polyimide, woven glass reinforced epoxy resin (FR4) and metal layers. Multiphysics finite elemen
FEM) simulations have been performed over the proposed structure in order to develop a time-dependent electrical and mecha
hat can be easily used to tailor the characteristics to the application. The device targets a wide class of fluid dynamics applica
on-invasive, comformable and smart for placement. The device simulations are herein validated by experimental wind tunnel me
nd compared with figures obtained on a wing profile by conventional electromechanical pressure transducers. This approach i
rst example of fully embedding and electronically controlled fluid flow monitoring apparatus that could be used in replacement o
he art mechanical systems.
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. Introduction

Pressure measurements are of great importance in almost
ll field of engineering and industrial application. The recent
evelopment of numerical codes to calculate fluid flow has
ot diminished the need of detailed space and time resolved
easurements, both to provide boundary condition and to

alidate the results. Despite the large amount of literature on
he subject[1], whenever sensors are used in situ to monitor
ressures on large domains in highly unsteady flows, there are
till problems in using classical techniques due, for instance,
o the cost of each single transducer, their intrusiveness or
heir time response.

In transport related industry, sensors are essential for mon-
toring the fluid dynamic environment, required for instance
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in aerospace, ground vehicle and nautical applications
for the aerodynamic body optimization during the de
phase. Although similar, the above mentioned applica
are characterized by very different environments, requ
sensor features and specifications that are very different
each others. For instance, sensors for aircraft design
high accuracy and precision, working in ranges up to 2
Conversely, sensors for internal airflow for automotive
plications require a reduced sensitivity with respect to
previous ones, operating in a range of pressure from
about 30 kPa and requiring fast dynamic response wit
gard to the fluid to be monitored. Finally, sensors for nau
applications must be able to resist to wet environments
they must detect pressure ranges up to 300 Pa.

A common specification in most of the above applicat
is related to the large size of the surfaces that has to be
tored, leading to the use of a large number of sensors in
to achieve the required spatial resolution. In this scena
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real-time pressure distribution represents an important mean
for the analysis of the aerodynamic behavior of the body and
for its correct trim.

Modern pressure sensors that are used in this environment
are silicon based capacitive sensor[2–4]. Silicon sensors can
reach high sensitivity and accuracy, however they scarcely
address all the requirements of the above industrial applica-
tions, such as high robustness and low manufacturing costs.
On the other hand, standard fluid dynamics techniques, as
Pitot tube, Prandtl tube or other optic techniques[5,6], are
not able to satisfy, in many cases, either the low invasiveness
(due to the presence of the pressure tubes) or the required
accuracy, reducing their range of applications.

2. Aims and sensor structure

In the last few years printed circuit board (PCB) technol-
ogy has greatly improved, achieving the photolithographic
resolutions of silicon planar technology in the earlier 1970s,
thus allowing the design of low cost precision transducers
[7,8]. Materials such as polyimides and polyesters are now
available in thin films of tens of�m, allowing PCB de-
vices to be used other than connecting electronic compo-
nents but also as means for mechanical transduction. By
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Fig. 2. PCB pressure sensor strip structure: (a) deformable copper-clad poly-
imide layer, (b) rigid glass-fiber spacer, (c) rigid copper-clad glass-fiber base.
Exploded top view (up left side). Exploded bottom view (up right side). As-
sembled view (bottom).

ments and simulations of this paper are related to devices
that are from 13 to 16 cm long and from 1.5 to 3 cm large.
The total thickness is below 1 mm. Each unit can be elec-
tronically readout in a multiplexed fashion in order to collect
a set of surface pressure points, depending upon the appli-
cation (Fig. 3). All chambers are connected by miniaturized
pipes, patterned in the spacing layers, in order to share the
same internal pressure. Small holes, drilled on the sides of
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sing PCB technology it is possible to build up devi
chieving most of the specifications required by fluid
amic applications at low cost. Herein the sensors stru

s presented together with the simulation methodolog
hich these devices can be optimally designed for the
eted application. Furthermore, the use of PCB techno
as advantages over other approaches: it allows to nat
ost electronic sensing and signal processing compone
eans of smart packaging such as the chip on board (C

echnology.
The sensor presented in this paper is a capacitive d

ntial pressure transducer built in PCB technology as sh
n Fig. 1. The sensitive unit consists of a three layer st
ure in a stack (Fig. 2): a rigid copper-clad glass-fiber base
igid glass-fiber spacer and a 25�m thick deformable coppe
lad Kapton® polyimide layer. Layers are attached to e
ther by means of a 50�m thick biadhesive tape, pattern

n the same shape as the spacing layer. The device leng
idth can be set according to the application: the mea

Fig. 1. PCB pressure sensor strip.
ig. 3. Application example: monitoring pressure distribution over a w
rofile. The pressure distribution over the profile depends by free s
elocity V and angle of attackα: a changing in the (α, V) field leads to a
ifferent pressure pattern.
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Fig. 4. PCB differential pressure sensor strip working principle. Membranes
deflect upward or downward with respect to the gradient of pressure between
outside and inside the chamber.

the first unit membrane or obtained in the spacing layer, act
as a reference. As illustrated inFig. 4, the membrane at each
point of sensing deforms itself downward or upward with re-
spect to the static pressure reference taken by means of the
holes. Since the membrane area is usually much smaller than
the aerodynamic surface to be monitored, the corresponding
pressure distribution over the deformable film can be con-
sidered constant with a good approximation. The differen-
tial pressure sensors approach is very useful in aerospace
environment: it overcomes altitude problems whereas ab-
solute pressure sensors are affected by barometric pressure
gradients. Membrane displacements due to the pressure in-
duce variations of electrical capacitance between upper and
lower conductive plates that can be easily readout by elec-
tronic circuitry. Capacitive sensors offer advantages as low
power consumption, high sensitivity and low temperature
dependence.

3. Multiphysics simulations

The sensor design is a fundamental task which involves
understanding the range and sensitivity of the PCB units and
to make comparisons to commonly used silicon MEMS struc-
tures. With the aid of FEM simulation, it is possible to de-
scribe most of the physical and structural sensor behavior
i ma-
t tput
o rical
a ount.
F trast
w igi-
b efor-
m s of
1
o for
a nce,
e ith-
o sue
i m is
u in
S

3.1. Approximated reference model

Modeling of plate deformations with respect to pressure
should be carefully taken into account for design purposes.
Whenever small mechanical perturbations are applied, clas-
sical mechanical theory of deformation can be used, where
a linear stress–strain relationship for matters (Hooke law) is
used. In this case, linear deformation of plates with respect
to pressure is expected. However, whenever large deforma-
tions are applied, a specific theory has to be considered[9].
The increase of bending of a circular plate creates a strain
in the middle plane that can not be neglected in cases where
the deflections are no longer negligible with respect to the
plate thickness. At the same time, large deflections in a plate
cause supplementary stresses with respect to the conventional
elastic theory and they must be taken into consideration in
deriving the differential equations. This is a geometrical ef-
fect that causes non linearity between stress and deflection:
the more a plate is stressed, the less it deflects. One should
distinguish between two kinds of plates: thin plates with large
deflections and thick plates. Sensors membrane, because of
its thickness, is supposed to be described by the large de-
flections theory for thin plates with a good approximation.
An useful relationship for an appropriate calculation of the
deflections can be obtained by applying the energy method
[9]. Considering a circular plate of radiusa be clamped at the
e
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f the sensor is a capacitive information, coupled elect
nd mechanical simulation have to be taken into acc
ortunately, simple hand calculations show that, in con
ith typical MEMS structures, electrostatic force is negl
le with respect to external forces inducing mechanical d
ation: for a parallel circular plate capacitor with a radiu
cm, the distance among armatures should be tens of�m for
btaining an electrostatic force, in air, equivalent to 5 Pa
n applied difference of potential of 5 V. As a conseque
lectrostatic simulations may follow mechanical ones w
ut coupling. On the other hand, an important difficult is

s due to viscoelastic behavior of polymers. This proble
sually referred to ascreep and its modeling is described
ection3.3.
dge and be subject to a uniformly distributed pressurep and
ssuming the shape of the deflected surface represente

= w0

(
1 − r2

a2

)2

(1)

herer is the radius coordinate whose origin is set in
enter of the membrane andw0 the maximum deflection, th
elationship of the displacement with respect to pressu
iven by:

0 = pa2

64D

1

1 + 0.488(w2
0/h

2)
(2)

hereD = Eh3

12(1−ν2)
, E is the modulus of elasticity,ν is the

oisson ratio andh is the plate thickness. Eq.(2) is typically
sed forw0 greater than 0.5 h and it shows how the rigid
f the plate increases with respect the deflection, so thw0

s no longer proportional with respect to the pressure,

he elastic theory wherew0 = pa4

64D . In the case of very thi
lates, wherew0 � h a useful relationship is given by t

ollowing [10]:

0 = 0.662a 3

√
pa

Eh
. (3)

his relationship shows that the deflection changes a
ube root of the intensityp. The above equations are a fi
seful tool for a rough estimation of the sensor dimens
ssuming to build the sensor membrane with homogen
aterials and considering pressure values up to 2 kPa
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can describe the membrane deflections with Eqs.(2) and (3)
for a plate thickness of tens of�m (i.e., as provided by PCB
technology). Using the above expressions, it turns out that
circular shaped membranes having diameters of about 1 cm
can show deflections in the order of hundreds of microns in
the given pressure ranges. This is precisely the amount of de-
flection needed for having the optimal electrical capacitance
dynamic range. Unfortunately, this theory is very satisfactory
in case of an homogeneous material, but not for composite
laminates, where FEM non-linear algorithms need to be used
to refine sensors design.

3.2. FEM models

Among the many possible FEM packages now available,
Femlab [11] has been used as finite elements software. The
simulation has been organized in the following mode: first,
the sensor geometry is solved for the mechanical large deflec-
tion problems, static and time dependent, that gives as a re-
sult the membrane deflection, then the respective capacitance
value is calculated. With this approach one can establish the
sensor characteristic in absence of creep and add afterward
the time dependent creep contribution as an error, calculated
as a worst case. This procedure will be described in Section
3.3. The solution for the mechanical static large deflections
problem is obtained solving the equilibrium equations for
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Fig. 5. FEM simulations graphical results: (a) sensitive unit geometry, (b)
mechanical simulations: stress pattern, (c) electrostatic simulation: electric
potential pattern.

chamber of the sensor is solved for the space charge density
δ variable, whereV is the electrostatic potential andε the per-
mittivity. Integratingδ over the plate area of the sensor, the
total capacitanceC is obtained as:

C = Q

V
= 2π

V

∫ R

0
δ(r)r dr (6)

whereR is the radius of the electrode. To summarize, from
this analysis the sensor membrane deflection are calculated
as the response to the respective applied pressure distribution,
finding out the capacitance variation, due to the geometrical
changing (Fig. 5).

3.3. Viscoelastic model

Viscoelastic behavior of polymers has to be considered
[13]. These properties depend upon their chemical structure
and morphology, the size of the applied load and, crucially,
temperature. An important implication of viscoelastic behav-
n axial symmetric problem, revealing that the creep be
or can not be neglected because of the stresses presen

embrane.Femlab solves for large deflections using a stra
isplacement relation, known as Green or Green-Lagr
trains[12] and defined as:

GL = 1

2

(
l2 − l20

l20

)
, (4)

hereε is the deformation,l0 the initial length andl the de-
ormed length. This formula has been used in place of cl

al engineering strains, defined asεE =
(

l−l0
l0

)
. Furthermore

auchy stresses, defined asσC = F
A

, are replaced by seco
iola Kirchoff stress:

PK = l0

l

F

A
, (5)

hereσ is the stress,F the force andA the surface. This mod
as been used for the whole structure, even for the part
re subjected to small deformation: this because the
eflections model is valid with a good approximation a

or small displacement. By means of static simulations
tresses on the membranes have been calculated. As
e better explained in the following paragraph, the va
btained by simulation indicate the necessity to enrich
odel with viscoelastic behavior. To this aim, a time dep
ent large deflections FEM model has been made, usin
xponential in time modulus of elasticity. As second s
or any deformed geometry obtained by mechanical F
nalysis, the Poisson equation

(∇2V = − δ
ε

)
in the interna
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iors is that the stress–strain characteristics can not be rig-
orously considered a static (i.e. memory-less, though non-
linear) relationship as depicted in Section3.2. Conversely,
the stress–strain characteristic exhibits behaviors that appear
highly non linear, even for small deformations, and that, most
important, depends on the derivatives of the stress and strain
functions. This phenomenon is well evidenced by the analy-
sis of a sample case: if a stress function step is applied to a
sample of material subject to creep, a sudden elastic strain is
followed by a viscous and time dependent strain with an in-
creasing trend. Conversely, if a strain step is applied, the stress
decreases as a monotonic function. This type of behavior is
usually present in polyimides at ambient temperature and for
stress bigger than 1 MPa[14] and is conventionally known
ascreep. Surprisingly, creep affects the proposed structure
and creep-caused membrane deflections of some�m should
be expected, manifesting themselves in time-scales of tens of
minutes. First of all, observe that the mechanical deformation
of a body subject to creep phenomena is a function of the en-
tire loading history of the body itself. In other terms, thanks to
viscoelasticity the system gains memory: each loading step,
appended in the past, contributes to the final response. The
Boltzmann superposition principle is a useful means of ana-
lyzing the creep deformation resulting from several distinct
loading or unloading steps of strain or stress[15]. The above
observation implies that in order to know the exact response
o ould
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tion. In practice, it is generally convenient not to do so. In
many conditions it is handier to model creep by using equa-
tions where time-varying parameters take care of describing
the dynamical effects. A particularly effective way of doing
so is by the introduction of a time dependent modulus of
elasticity, obtained starting from Kapton® data sheets[14].
As shown inFig. 6a, from strain versus time curves, given by
different applied stresses, the corresponding time dependent
modulus of elasticity have been calculated, interpolating the
strain curves, as:

Ei(t) = σi

εi(t)
, (7)

where εi(t) is the time dependent strain,σi is the corre-
sponding stress and the indexi represents different values
of stresses and temperature conditions. The approach is
convenient because it leads to equation sets which fit more
easily into conventional FEM simulation framework than
models with explicit time derivatives. In other terms it allows
creep to be simulated by a sequence of static simulations
referring to different time instants. These curves (Fig. 6b)
have been fitted minimizing the root mean square difference

Fig. 6. Kapton creep: (a) strain versus time Kapton® creep behavior from
datasheet for particular temperature and stress conditions, (b) time dependent
modulus of elasticityE(t), as described in Section3.3Eq.(7) for particular
temperature and stress conditions.
f a structure subject to creep, a model of its excitation sh
e available, describing the evolution in time of input st
or strain). This is normally not possible in fluid dynam
pplications where the input loading and its dynamic is
nown. In this case, the best that can be achieved is a bou
he maximal deviation that creep may introduce with re
o static models such as those in Section3.1. Such bound ca
e roughly interpreted as an uncertainty that should be

nto account when using the sensor as a measurement
n a dynamic environment. A convenient way to obtain s
ound consists in realizing that creep can be approxim
lassified as a low-pass phenomenon, so that a typica
eriment to estimate its extent consists in applying, att = 0,
step-like excitation in stress spanning the whole allow

tress range and in evaluating the difference between t
ponse att = 0+ and the response att → ∞. Intuitively, any
tructure subject to a slowly varying load will deform de
ting from a non-viscoelastic response by no more than
uantity (the slower the load dynamics, the lower the de

ion). The major reason to practice this kind of analysis
nderstand how actions on the geometry and materials
loyed in the sensor fabrication can reduce the extent o
iscoelastic response and thus tightening the error bo
n the modeling of creep[16], one should consider that
aking into account the viscoelastic phenomena, the defo
ion model of a membrane changes from a static, non-li
ime-invariant model to a dynamic, non-linear, time-invar
odel. In other terms, one could in principle model the

oelastic behavior by introducing time derivatives into
ystem of partial equations that rule the membrane defo
n
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between Eq.(7) and sum of exponential and a constant,
truncating the series at the fourth term:

Ei(t) =
∑

j

(
Aij expBij t

)+ ki, (8)

whereAij , Bij andKi parameters are representative of the
elastic and viscous behavior of the membrane in particular
condition of exerted stress and temperature. The expressions
obtained in Eq.(8) have been used for time dependent
mechanical simulations. The approach followed in this work
is an alternative and easier way to reproduce creep behavior
without differential equation, basing the estimation of
coefficients of Eq.(8) by means of interpolation, depending
upon the stress and the temperature. Since the maximum
membrane relaxation, due to creep, is obtained for the
maximum pressure value, a time dependent capacitance
variation has been calculated until the transient response can
be considered finished. The goal is to predict the viscoelastic
behavior in order to fix the sensor response. In fact, once the
time dependent and the static behaviors have been accurately
modeled, sensor design allows the sensitivity and accuracy
to be defined for the targeted application.

4. Experimental setup and results
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Fig. 7. Membrane capacitive response to an applied pressure step of 300 Pa.
Two superimposed dynamic are distinguished: one, faster, representative
of the elastic behavior of the membrane and one representative of the vis-
coelastic behavior of the membrane (enlarged in the bottom). Test is relative
to prototype with a 510�m spacing layer thickness.

Fig. 8. Capacitive response due to membrane viscous behavior: comparison
between experiment and simulation.
Experiments have been performed for testing the sim
ions accuracy on the sensor prototypes. Two types of an
ave been set up. A first one to reproduce and to measu
reep behavior and a second one to obtain the static char
stic of the sensors. The first experiment has been perfo
y applying a step of pressure of 300 Pa over the membr
btaining a capacitance variation, measured with an Ag
284A Precision LCR meter. As represented inFig. 7, it is
ossible to distinguish two superimposed dynamics: a
tantaneous response due to the elasticity of the mem
nd a slower one due to the viscoelastic behavior. In ord
imulate the latter phenomenon, a time dependent mo
f the elasticity has been used, as described in Sectio3.2.
ith this approach any experimental testing or feedbac

lytical procedures is needed to find out FEM model pa
ters: any coefficient can be extracted directly from mat
ata sheets with a good approximation. For this test, in o

o apply several constant pressure values on the strip m
ranes, a chamber with different cavities has been use
hown inFig. 8, the simulation fits to the experimental v
oelastic behavior with a 1% error. For determining the s
ensor characteristic, the creep behavior has been igno
he FEM simulations. A set of different constant pressure
es have been exerted on the sensor membrane, bein
alue applied for about 60 s. The experimental charac
ic has been obtained and compared with static simulat
s represented inFig. 9. In order to test the performance

he strip and its functionality, a modular decomposable P
ectangular wing based on NACA 0015 profile has been b
s a first aerodynamic test to be analyzed. Experiments
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Fig. 9. Sensor characteristic curve. Data are relative to prototype with a
770�m spacing layer thickness.

been made in the wind tunnel for different angle of attack in
a ±10◦ range and for different free stream velocities up to
45 m/s. The sensors strip is positioned on wing profile sur-
faces (Fig. 10) and data can either be acquired by a readout
circuit that can be placed inside the profile, or by an Agi-
lent 4284A Precision LCR meter providing direct measures
of capacitance variation. To compare the polyimide sensors
measurements with respect to a conventional technique, an
orifice array has been drilled on the profile along the sensor
strip and pneumatically linked to aScanivalve® differential
pressure transducer. The advantage in using this type of aero-
dynamic body lies in the fact that, at small angle of attack, the

F tronic
r

Fig. 11. Pressure distribution over the wing profile: comparison between
conventional pressure transducer and the propose architecture.

results coming from the two experimental techniques can be
compared and validated with the results of numerical simu-
lations. Experimental wing profile pressure distribution data
have been acquired from both the proposed and conventional
sensors, as reported inFig. 11.

5. Discussion

As shown inFigs. 8 and 9, experimental results have shown
very good agreements with FEM simulations of pressure-
capacitance static function and creep behavior. As expected,
the experimental results, as forecasted by simulations, have
shown a large dynamic range of electrical capacitance, in the
range of 2 pF, however, creep phenomenon could decrease
sensitivity for large time scales. For example, the device un-
der test has shown creep dependent variations of about 100 fF
resulting in a 10% of degradation of dynamic scale in 20 min
of time scale for a pressure of 300 Pa. However, for shorter
time scales, of about 1 min, the dynamic range degradation is
about 2%. This problem points out the strong need of multi-
physics simulations of the device: this approach greatly helps
in finding the best trade-offs of the geometry before fabrica-
tion thus saving time and money. Two kinds of devices have
been fabricated and placed under test, using different thick-
n sitiv-
i 5 up
t )
a
s the
s pends
u range
o pli-
c t char-
a ation
o per-
a uracy
ig. 10. Decomposable wing profile (top) and test-board for the elec
ead-out circuitry (bottom).
ess of the spacing layers. They have shown different sen
ty and characteristic shapes, showing sensitivity from 0.
o 2.5 fF/Pa for the thicker sample (770�m of spacing layer
nd from 0.67 up to 5 fF/Pa for the thinner one (510�m of
pacing layer) in a± 2000 Pa range. As pointed out before,
ensor accuracy, neglecting the electronic readout, de
pon the viscoelastic behavior that can be estimated in a
f 20–200 fF of variation depending upon the time of ap
ation and upon the pressure exerted. Device under tes
cteristics would result in a worst case accuracy degrad
f ±60 Pa, resulting in an error of about 10% at room tem
ture. From the experimental results of the devices acc
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within this work and starting from the sensitivity and the ac-
curacy required by the targeted application, different param-
eters can be trimmed for achieving best performance. First,
the geometry of the membranes can be modified to achieve
maximum deflection. Then, the spacing layer thickness can
be changed to increase the sensitivity by way of the non linear
capacitance relationship and taking into account viscoelastic
degradation. Finally, the membrane thickness and materials
can be chosen for reducing the time dependent effects for
the targeted accuracy. As a result, the sensitivity that can be
achieved with polyimide pressure sensors is comparable with
that related to MEMS[17,18] at lower costs in spite of the
spatial resolution and pressure dynamic range.

6. Conclusions

The paper has introduced polymer based non-invasive sen-
sor strip designed for acquiring pressure profiles over surfaces
of aerodynamic bodies. The physical design has been assisted
by multiphysic FEM simulations to better trim mode and
range of operation to the application. Then, time-dependent
effects of polymers has been taken into account in simulations
to forecast reduction of overall sensitivity.

Two kind of experimental results have been discussed and
compared to multiphysics simulations and state-of-the-art
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