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ABSTRACT

This report describes a newly developed non-isotropic multiple-scale turbulence model

(MS/ASM) for complex flow calculations. This model focuses on tile direct modeling of

Reynolds Stresses and utilizes split-spectrum concepts for modeling multiple-scale effects

in turbulence. Validation studies on free shear flows, rotating flows and recirculating flows

show that the current model perform significantly better than the single-scale k - e model.

The present model is relatively inexpensive in terms of CPU time which makes it suitable

for broad engineering flow applications.

INTRODUCTION

Presently the great majority of engineering flow computations are based on an eddy

viscosity linkage through Reynolds-stresses/Meau-strain rate constitutive relationship, the

most often used version being one in which the eddy viscosity is obtained from local

values of the turbulence kinetic energy (k) and its dissipation rate (e) [1]. The k and e

are obtained from transport differential equations solved simultaneously with the mean

momentum equations. Some of the shortconfings iuherent iu this type of k - e models are

: (a) the use of one set of characteristic scales to represent a spectrum of eddy sizes and,

(b) the isotropic assumption of the gradient type eddy viscosity Reynolds-stress/strain

rate constitutive formulation. Experimental observations indicate that energy-containing,

turbulence generating eddies are larger and exhibit a different rate of development than

do smaUer turbulence energy dissipating eddies. Iu the classical turbulence models such

as the k - e model and the Reynolds stress models [2], only the generation and dissipation

of turbulent kinetic energy are considered while the cascading processes are assumed to be

in equilibrium.

Besides, the effect of rotation on the turbulence, especially through the modifica-

tion of the turbulent energy cascading process, has not been explored by the conventional

single-scale models. Experimental data shows that the predominant effect of rotation is
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to decrease the rate of dissipation of the turbulence and increase the lengthscales, espe-

cially those along the axis of rotation. Due to the generation of inertial waves, tile net

energy transfer from large eddies to smaU ones was reduced. To account for the different

mechanisms involved in the evolutions of different eddies, the generation, cascade, and

dissipation of turbulent kinetic energy have to be considered.

In this study, we have developed a multiple-scale turbulence model based on the

split-spectrum methodology of Hanjalic et al [3]. This model is derived by partitioning

the turbulent kinetic energy spectrum into a set of wave number regions, by integrating

the partitioned energy spectral density equation to obtain the energy evolution for each

wave number region, and by considering the energy transfer rate between the adjacent

wave number regions. Recent developments including the rotation effect and anisotropy

effect will be described. Model validations including homogenous rotating flows, free shear

flows and recirculating flows will be compared with available experimental data and other

single-scale turbulence models.

THE TURBULENCE MODEL

The underlying idea of the multiple-scale model has been described in [3,4]. To sum-

marize, tile closures and the convection-diffusion equations for the model are described

below. The turbulent kinetic energy and the energy transfer rate equations for the energy-

containing large eddies are given as

Okp _ Okp 0 ut Ok v

Ot + Ui _ - Ox i ( $k, Oxj ) + P_ - ev (1)

2
Oep Oev 0 ut Oep Prep %

Ot q- Uj Oxj -- oqxj (_,,, Oxj ) + Cp, kp Cp: kp

where /9, is the energy production rate represented by /9,

-- - C'p_Flep (2)

=-_tiufOUi/Oxj. The

turbulent kinetic energy equation and the dissipation rate equation for the fine scale eddies

are given as

Okt Okt 0 ut Okt

O---t-+ Uj Ozj - Ozj ( ,Sk, Ozj ) + % - et (4)
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In tile above equation, fl is the local mean vorticity or angular velocity of tile rotating

frame. The model constants in equations (1) - (4) have been determined by transform-

ing the modeled turbulence equations into asymptotic turbulence decay rate equations

of grid-generated homogeneous turbulence and other simplified flow situations. Detailed

derivation of the system of equations for the model constants which is similar to that in

Ref. [4] can be found in Appendix A. These model constants are given in Table 1.

If the above turbulence model equations are used to construct an eddy viscosity based

on Boussinesq assumption, the eddy viscosity formula proposed here is given as

kt) 2
_, = C. (kp

+
(6)

_p

and the Reynolds stress tensor is expressed as

2

uiuj _- Rij -= -utSij + -_6ijk (7)

in which

1 ( OUi OUj
s,j = + -SZ)

1

(s)

(9)

As discussed widely in the literature, the linear isotropic constitutive relationship

used in equation (7) yields highly inaccurate predictions for the normal Reynolds stress

differences. For example, in a fully developed turbulent channel flow, equation (7) predicts

that the normal Reynolds stresses are all equal, i.e., that

RaI=Rn=R33 (_=u_,t2=_)

which indicates isotropic turbulence and is in contradiction to experimental observation.

In this study, the non-isotropic aspect of the turbulence will be modeled based on simpli-

fication of the second-moment closure methodologies. In the second-moment closure, the



transport equation for Reynolds stress components Rij was derived [5,6] :

D R (10)
-_(p ij) - Dij = Pij -4- _2ij -- _ij

in which the terms on the left hand side of (10) represent the convective and diffusive trans-

port of Rij, respectively, and the terms on the right hand side represent the production,

pressure-strain (redistribution), and viscous dissipation tensors of Reynolds stress. Among

these terms, closure assumptions are required for Dij, ¢ij and eij. To date, equation (10)

still represents the most complex turbulence models used in engineering calculations for

which the non-isotropy and extra complex strains can be automatically accounted for.

However, the extra Reynolds stress differential transport partial differential equations (six

of them for 3-D flows) required to be solved introduce severe computer cost penalty. As

a result, the approach used in this study to retain the advantages of this level of model-

ing is to simplify the differential transport equations such that they reduce to algebraic

expressions, the so called Algebraic Stress Model (ASM)[7].

There are several approaches for algebraic stress model formulations. The one adopted

here is the similitude analysis proposed by Mellor and Yamada [ 8]. Their fornmlation leads

to linear algebraic equations for the stresses based on a rigorous similitude analysis of the

transport equation for anisotropy (u--7_- 2/36_jk). This approach does not subject to the

limitation that _/k = constant assumption invoked by Rodi [2]. Equation (10) was

thus simplified to :

P_ - 3_ijPk + g'i_ 0 (11)

It should be noted that the model for _ij should be consistent with the order of magnitude

analysis which leads to equation (11). The model proposed in this study has the following

form :

and

et__ _ 2'_ij = -cxp_(uiuj - 5ij(kp + k,)) - c._(Pij - -35,jPk)
(12)

OUi (13)
Pij = uiuj Ozj
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Pk = _P, (14)

The first term on the right hand side of equation (12) contains only turbulent velocities

and is formulated after Rotta's linear return-to-isotropy model [6]. Note that the thne scale

used in the turbulence time scale associated with the high frequency eddies in the nmltipte-

scale model. Detailed derivations can be found in Appendix B. The above model causes

a tendency towards isotropy if ca is greater than unity. In this study, cx is chosen to be

1.8 - 0.5 / in which f is a wall correction term affecting the normal redistribution actions

of the pressure-strain correlation. This "echo" effect has been discussed extensively in the

literature [5,6]. We use the following simple proximation function :

Y )2/=1-(- 5

where y is the distance from wall and D is the half width of the duct passage.

The second term on the right hand side of equation (12) is referred to as the "mean-

strain" part of the pressure-strain tensor. We model this term based on the "isotropization

of production" of Ref. [5]. As seen from the formulation, this term associates with the

production of turbulent kinetic energy and thus links with the time scale of the energy

containing eddies. The constant used here is c2 = 0.85 - 0.06f.

For wall bounded flows, a ratio of kt/kp was derived based on the wall function ap-

proach [2]. For practical purposes, these wall functions were derived from the near-wall

equilibrium assumptions and logarithmic velocity profiles. Detailed derivations and for-

mulations can be found in Appendix C.

RESULTS AND DISCUSSIONS

For model validations, several testing cases including grid-generated turbulence with

rotation, free shear flows and two-dimensional as well as axi-symmetric recirculating flows

are calculated.



Grid-Generated Rotating Flows

The structure of the turbulence is changed through the action of the C,oriolis forces :

the turbulent length scales are increased in the rotation axis and the energy cascading from

larger toward smaller dissipative eddies is inhibited [9]. Figure 1 compares the numeri-

cal predictions of the multiple-scale model with corresponding experimental conditions of

Wigland and Nagib [10] as fisted in Table 2. The model provides quite accurate predictions

of the decay of turbulence intensity at different rotation rates and different flow conditions.

The agreement is good for all cases, even when in case (2) the turbulence decays faster for

= 20s -I due to different initial time scales. Under the same initial conditions, the model

predicts slower decay of the turbulence with increasing rates of rotation, in agreement with

the data. It should be noted that the standard k - e model is insensitive to changes in

rotation rates because it has no provision to account for this effect.

Free Shear Flows - Jets

The necessary step in turbulence model development is to use the model to predict

free shear flows. Here, three different jet flows in the fully developed region (self-similar

regions) are calculated using an accurate finite different scheme based on Keller's Box

method. The set of governing partial differential equations were transformed to a set of

coupled ordinary differential equations. Such as the final coupled ordinary differential

equations for the round jet is shown in Appendix D. Details of the numerical scheme and

the method of calculating sharp boundaries between turbulent shear flows and irrotational

ambient fluid can be found in [11]. The multiple-scale model used here is the one associated

with an eddy viscosity formulation of equation (6) (the MS/EV model).

The computed values of the spreading rates of the plane jet, round jet and radial jet

using the MS/EV model are given in Table 3. Also shown for comparison are the computed

spreading rate using various single-scale models as welt as the experimental values for these

quantities. The spreading rate of the round jet is experimentally observed to be about 20

9



% less than that of the plane jet. The inclusion of the rotation time scale in the MS/EV

model has the effect of increasing the energy transfer rate from energy-containing eddies

down to the dissipative eddies due to the vortex stretching mechanism and produced less

spreading for the round jet. The MS/EV model gives the best overall predictions in terms

of spreading rate for these jet flows.

In Figure 2-4, the dimensionless mean velocity of the three jets are plotted versus tile

similarity coordinates in which the transverse locations are normahzed with the velocity

half-width. The mean velocities calculated using various models are all in reasonable

agreement with the data over the central position of the jet but deviates towards the edge of

the jets. This is due to the intermittence close to the free turbulent/non-turbulent interface

and the turbulence models do not model these unsteadiness explicitly. Tile MS/EV model

appears to give better predictions than the others and gives a tittle wider jets.

2D Backward-Facing Step Flow

For this and the following case, the governing partial differential equations were solved

in the fully elliptic form. The differential equations were discretized based oil tile control-

volume approach with a non-staggered grid arrangement. A second order upwind dif-

ferencing scheme is employed for convection terms. A time-marching sequence employs

the PISO[12] algorithm to resolve the momentum equation using the pressure incremental

equation which enforces continuity at each time step. Calculations are carried out until

steady state solutions are reached. Details of tile numerical method can be found in [13].

The predicted values of the reattachment length of the recirculation zone behind the

step were made using the standard k - e model, the single- scale Algebraic Stress Model

(k - _ / ASM), the multiple-scale model with eddy viscosity formulation (MS/EV) and the

most recent non-isotropic multiple-scale model (MS/ASM) are listed in Table 4. It can be

seen that the single scale models (k - e and k - e /ASM) underpredict the reattachment
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length while both the multi-scale models give good predictions of the reattachment length

compared to the experimental data.

In terms of turbulence quantities, comparisons of the predicted streamwise and lateral

turbulence intensities as well as the Reynolds stress component h-F obtained from both the

k - e/ASM and the MS/ASM are shown in Figure 5. The results were normalized with the

inlet centerline velocity. Non-isotropic turbulence structures are predicted by both models

with the MS/ASM doing a better job with exceptions of near-wail regions. The inability

of the models to reproduce the near-wall turbulence correctly behind the step is traced to

the weakness of the wall proximate term of the pressure-strain model.

Axisvmmetric Pipe Expansion Flow

The 1:3 pipe expansion flow of [14] is selected for model validations. Again, the

reattachment length predictions from the four models are listed in Table .5. Both the

MS models give satisfactory results. The M$/ASM actually predicted a slightly shorter

reattachment length in comparison with the MS/EV model. The results of the k - e/ASM

and the MS/ASM predictions of streamwise and radial turbulence intensities are illustrated

in Figure 6. It is interesting to note that the strength of longitudinal and radial intensities

(just after the pipe expansion ._/H = 2 ) are very well predicted by the MS/ASM model.

Within the recirculation regions, both models gave reasonable features of nonisotropic

turbulence with the MS/ASM doing better performance. After the flow reattachment, the

models have the tendency to predict the "return to isotropy" faster than the experiments.

In the MS/ASM model, although a different turbulence time-scale is used to model this

mechanism, the coefficient is not returned, i.e., the coefficient used in the conventional

Rotta model is adopted without change. This aspect of modeling requires further research.

The predicted turbulent shear stress from the two non-isotropic models are compared with

the measurements in Figure 7. Overall, the MS/ASM model does a better job of predicting

the Reynolds stress component.

11



CONCLUSIONS

Validation studies of the newly developed turbulence model have been presented for

rotating flows, free shear flows and recirculating flows. It is evident that in general the

MS models perform better than various single-scMe models. The MS/ASM model also

shows good capability of giving quite accurate predictions even in second order turbulence

quantities for the engineering calculations. Besides, the CPU time and Computer storage

for tile present model are relatively inexpensive (about 20 % more for 2-D backward-

facing step flows) compared to the k - e model. Some discrepancies between the data

and the MS/ASM solutions can be related to the pressure-strain models, especially the

wall-damping model. Further validations are required to further develop the model.
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NOMENCLATURE

jet exit diameter or width

diffusion term of Reynolds stress flow

wall proximation function

step height in backward-facing step flow or expansion

turbulence kinetic energy in the production range

turbulence kinetic energy in the dissipation range

production term of Reynolds stress

kinetic energy production rate

Reynolds stress tensor

mean centerline velocity of jets

zj component of mean velocity
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xj
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y

,5_j

77

vt

O"kI, _ O'k t

O',E1, , _r_ t

,'rj component of velocity fluctuation

coordinate direction, 1 - streamwise, 2 - transverse

streamwise coordinate direction

transverse coordinate direction

kronecker delta function

viscous dissipation tendor

transfer rate of kinetic energy

dissipation rate of kinetic energy

similarity coordinates

turbulent viscosity

constants in model equations

constants in model equations

pressure-strain tensor
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APPENDIX A. THE TURBULENCE MODEL CONSTANTS

Determinatiou of the turbulence model constants is based on the assumption that the

ratio kt/kp will asymptotically approach constant values in simple homogeneous turbulent

flows such as the decay of grid turbulence, a nearly homogeneous shear flow, and the near

wall equilibrium turbulent flows. The model constants also need to satisfy the reallzability

conditions (i.e., the turbulent kinetic energies, energy transfer rate, and dissipation rate

cannot become negative). This procedure is described as following.

At hight Reynolds number, the multiple-scale model equations (1)-(4) for the homo-

geneous flow will be deduced as follows:

Ok,,
cOt - -ep (A - 1)

C&v
- -Cp_ - Cp312e p (A 2)Ot

Ok,

Ot - eP - et (A - 3)

&' _/, 4
Ot-Ct, k----(--C,,_-Ct, aet (A-4)

The above set of equations can be solved analytically. The final results are given as

where

kv - [1 + epo 1 1 - e,'cp(-Cp312t )

eto

k, eto l (1- ezp(-Otant ) -m(,--_,)--[1 + _ rn Ct,- )1

ev --[I + epo I(I-ezp(-Cp, flt))]_cn+,,ezp(_Cp_flt )

_, 1 - _p(- c,, f_,,))i-ira('-_)+_lezp(-C,,U_)
Ct, f_

1 1

Cp, - l ' m- Ct, - Ct,

ep

£t

(A -5)

(A -6)

(A-7)

(A-S)
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For the grid turbulent flow without rotation, the results become

kvo -(1+to (A-9)

kto (,4 - 10)

cp _ (1 + (d- 11)
%0 to

cA - (1 + _)-[_(i-,_)+1] (A - 12)
Cto t o

where

n kpo, , ktoto = -- t o = rn
6pO CtO

t0 and t_ stand for the time scale of large eddies and small eddies, respectively. It can

be seen from equation (A-9) that the value of n is the decay rate of kinetic energy kp.

According to the experimental data, rt = 1.11 --_ 1.25, hence C)_ = 1.8 -,_ 1.9. To account

for the characteristics of the energy spectrum kt/kv, Cp, is set to be the function 1.90. (1 -

0.2 kt/kp+0.2. 2 2• k t/kp), In this function, the value of Cp2 is always within the experimental

range if kt/k r, is less or equal to one. The functional form of Cp2 is equivalent to tile variable

energy transfer function proposed by Hanjelic et al.

To recover the k - c model, the constant Cp_ is given as conventional value 1.42. If the

partition is moved to too high wave numbers, i.e., kt _- 0, then the multiple-scale model

may reduce to k - e model.

In order to keep the same decay rate of cp as that of ct, we set Cp_ = Ctz. The value

of Cv_ and Ct_ is determined as 0.042 by the computational results to fit the experimental

data for homogeneous rotating flow. In this study, Ct_ is chosen as a function of 0.042 •

(1 + 0.08. ct/%). The ratio of et and % is a characteristics for degree of spectral imbalance.

Inclusion of et/ep into the functional form of Ct_ (and Ct, ) allows the "inter-talk" between

the large eddies and small eddies.

The values of Ct_ and Ct2 were optimized to give good agreement of the computational

results with the experimental data for the free shear flows and 2D recirculating flows.
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According to the observation the effect of rotation on the turbulence is to decrease the

rate of dissipation of the turbulence and increase the lengthscale, especially those along

the axis of rotation. Due to the generation of inertial waves, the energy transfer from large

eddies to small eddies is reduced. Then the additional time scale to account for the effect of

rotation is introduced in the equations of et and ep, respectively. _ is the angular velocity

of tile rotating frame and the local mean vorticity, that is defined as following form:

OU_ OU_
f_ = (s2_jf_j)l/_, fl_J = ( Ox_ Ozj )

Finally, it is mentioned that the prandtl numbers for turbulence quantities are set

following [4], they are

(rk,, = o'k, = 0.75, _r,,, = _r_, = 1.00
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APPENDIX B. THE ALGEBRAIC STRESS MODEL FORMULATIONS

The transport equation for Reynolds stress components l_ij is given as

D

-_(pRij) -- Dij = Plj + rbij -eij (B - 1)

in which the terms on the left hand side of equation(B-I) represent the convective and

diffusive transport of Rij, respectively, and the terms on the right hand side represent the

production, pressure-strain and viscous dissipation tensors of Reynolds stress. Using the

similitude analysis proposed by Mellor and Yamada [8], equation (B-l) can be simplified

to

and

or

2
P_J- -_qP_ + ¢_s= o (B - 2)

3

The model presented in this study has the following form:

_t -- 2

(B-3)

OU_
Pq = u_u_ Ozj (B - 4)

1p
P_= _ . (B - 5)

Then equation (B-2) can be written as

Pij - _gijPl¢--clp_. (uiu---_ -- _'ij(kp + kt))-cz(Pij - _'ijPk) =o (B-6)

2 _t 5t

(I -e_)Plj + -_6ii(c2P_ + c,p_(kp + k,) - Pk) = C,P k '.....u,us (B-7)

For 2D turbulent flow, final Reynolds stress components u_, u_, and ulu__ were ob-

tained as following:

_ = 2k[e,/3. (c_. et/e, + c_. kt/k - kt/k) - kt/k. (1 - c_)_._,,_. 0U_/0z_ 1
Clf.t + 2kt(1 - c2) " OUx/Ozl

(B-8)
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(B - 9)

where

ttlU 2 = k,t (c 2 1 _'20U2 --_OU,.
_, - )(_b--_-_+_7 )

k = kp + kt

(B - lo)
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APPENDIX C. WALL FUNCTION BOUNDARY CONDITIONS

To avoid the need for detailed calculations in the nearwall regions, equations are

introduced to link velocities, kp, kt, %, and e_ on the wall to those in the logarithmic region.

In this region, the flow is dominated by a one-dimensional Couette flow characterization of

the flow diffusion perpendicular to the wall. Also it provides a way around this region of

steep nonlinear and variation of the variable and the fact that laminar and turbulent effects

become of the same order of magnitude. The new equations introduced in the momentum

equations and the turbulence model equations are used in the finite difference calculations

at nearwall points.

(1). The universal velocity profile

U 1
ln(Ey +) (C- 1)

where

= (c- 2)U,-

U,- is the friction velocity; Tw is the wall shear stress; y+ = yu,-/u is the non-dimensional

wall coordinate; _ is the Von Karman constant, _ = 0.4187; E is a experimentally deter-

mined constant coefficlent, E = 9.0.

(2). The wall shearing stress

Assuming rk is an approximation for r_ very near the wall. The rk is formulated by

observating that convection and diffusion of turbulence kinetic energy are nearly always

negligible in this region. Deleting these terms from the k-transport equation and invoking

isotropic viscosity leads to

= c l pk (C - 3)

From equations (C-l) and (C-2), thus we obtained

v_, = -[px_C_/4k 1/21 ln(Ey + )]. U (c-4)
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where the negativesign is inserted since rw and Unmst have opposite directions.

(3). The total kinetic energy

From equation (C-2), the total kinetic energy very near the wall is given as

-1/2 2 (C 5)k = C u U,.

(4). The energy dissipation

As for energy dissipation near a wall, the length scale is assumed to be proportional

to the normal distance from the wall, that is

k3/2
- Cz.y (C - 6)

which leads to

1 (73/4]e3/2 (C - 7)

t_y

This is the effective wall boundary condition on e.

(5). The kinetic energies kp and kt

k = kp + kt (C - 8)

If deleting convection and diffusion of turbulence kinetic energy and assunfing P. =

% = et in the region very near the wall , from equations (2) and (4) the ratio of kt

and kp is derived

when fl _ O,

kt C_, - Ct_ - C_.f_k_/et
(C-9)E = c,,, - -

kt Ct, - Ct.

kp Cp, - Cv2
(C- i0)

Equations (C-8) and (C-9) or (C-10) provide two constraint conditions for the kinetic

energies kp and kt.
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6). The Transfer rate ep and dissipation rate et

In the near wall region, where the turbulence is in equilibrium (the production rate is

approximately equal to the dissipation rate), it can thus be assumed that

P,- = % = et (C - 11)
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APPENDIX D. SIMILARITY EQUATIONS FOR THE ROUND JET

The free jet flow becomes self-preserving at some distance away from its origin, sim-

ilarity solutions for mean quantities and turbulence quantities exist. By proper choice of

local length scale and velocity scale, the set of momentum and turbulence quantity equa-

tions can be transformed to a set of coupled non-llnear ordinary differential equations.

The resulting equations are quite lengthy and only the case of a round jet is summarized

below.

Similarity equations for the round jet

_ , + ] _ --ru :ru
,7

-¼(2f'p + fp')=(/')' 1 ,T u -- m + --'rkp 4- Tkp
q- rI

-- 2 f'q + f q') =m -- n + -rkt + rkt
rl 77

2rn
-_(4f'm,1 + fro'):Cplr_ p (_-_)' - Cp2(1 -0.2 qp + 0.2pq_ ) m2p

f',] 1- + (-{) +

-A-(4f'n+fn')=Ct_(1 + 0.01n) mn C n2
q m q q

1
- Ctz(1 + 0.08 n )n[A2qf '' + (/')'] 4- -r,t

m q- "7

)l =0

(D-l)

(V-2)

(D-3)

(D -4)

(D-5)

(D-6)

Boundary conditions:

l

at rI=0: 1; f =p' ' ' ' "-- =q =m =n =f =0
q

at ,7=1: m'=0; p=q=m=n=O

(D-7)

(D -8)

Definition of variables:

/(Xl) ---- _1, =C_
(p 4- q)2

m

24



!

kp k_ q,l( x l )
P- q- U2 '

Tkp --

C,_ , _'_ , C"t , _ _ ,
p _ Tkt -- --q _ Tep : _rrl,_ Tet = --11 .

O'k p O"let O'e p O'_t

It would suffice to say that due to the complete neglect of molecular diffusion, the

choice of the characteristic length scale corresponds to the locus of points where the tur-

bulent diffusivities are zero. The location of these points must be calculated as part of the

solution to the problem. The existence of this sharp boundary is insured by requiring the

turbulent diffusivity (vt) to be zero there.
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TABLE 1

Constants and Functions of Multiple-Scale Model

Constant or Function Value or form

Cp_ 1.42

2 2
Ca 1.90(1 - 0.2k_/kp + 0.2k t/kp)

Cr,_ 0.042

Ctt 0.96(1 + O.Olet/%)

Ct_ 1.12

Ct_ 0.042(1 + O.08et/%)

o'_ 0.75

_rk, 0.75

o',,, 1.00

o'_, 1.00



TABLE 2

Experimental data of Wigeland and Nagib (1978) at initial

time (Ut/m--20) and parameter ranges covered

Case (1): M=0.0039 (m)

_2 (s -1 ) 0 20 80

U (re�s) 8.69 8.66 8.82

U, (m/s) 8.69 8.67 8.96

k (m:/s:) 0.10625 0.10105 0.1157

e (m:/s 3) 17.67 16.45 18.19

Case (2): M=0.00625 (m)

_2 (s -1 ) 0 20 80

U (re�s) 5.33 .5.45 5.48

U, (re�s) 5.33 5.46 5.71

k (m"/_" ) 0.0425 0.0453 0.04975

e (m"/s 3) 2.649 3.591 3.300

Case (3) : M = 0.00254 (m)

f_ (s -1 ) 0 20 80

U (re�s) 8.51 8.58 8.79

U, (re�s) 8.51 8.59 8.93

k (m2/s 2) 0.0885 0.0887 0.09845

e (m2,/s 3) 24.27 22.56 22.42



TABLE 3

Spreading Rate Predictions Versus Experiments

Model Plane Jet Round Jet Radial 3et

k - E [3] 0.110 0.125 0.094

Morese [5] 0.102 0.085 0.099

Pope i2] 0.110 0.091 0.042

Hanjalic & Launder !6] 0.119 0.107 0.077

Chen & Guo 0.111 0.084 0.094

Experiment 0.100 - 0.110 0.086 - 0.09 0.098 - 0.110



TABLE 4

Reattachlnent length for Backward facing step turbulent flows

9:1 Experiment Driver and Seegmiller(1986)

Experiment k- e Multiple-Scale k- e/ ASM MS / ASM

-_6.1 4.76 5.94 4.65 5.70

TABLE 5

Reattachment length for Axissymatrical Recirculating turbulent flows

3:l(Axis.) Experiment Najed(1987)

Experiment k - _ Multiple-Scale k - _/ASM MS / ASM

--_ 9 7.10 8.82 6.80 8.70
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