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Abstract. Log-linear modeling is a popular statistical tool for analysing a contingency
table. This presentation focuses on an alternative approach to modeling ordinal cate-
gorical data. The technique, based on orthogonal polynomials, provides a much simpler
method of model fitting than the conventional approach of maximum likelihood estima-
tion, as it does not require iterative calculations nor the fitting and re-fitting to search
for the best model. Another advantage is that quadratic and higher order effects can
readily be included, in contrast to conventional log-linear models which incorporate lin-
ear terms only.

The focus of the discussion is the application of the new parameter estimation tech-
nique to multi-way contingency tables with at least one ordered variable. This will also
be done by considering singly and doubly ordered two-way contingency tables. It will
be shown by example that the resulting parameter estimates are numerically similar to
corresponding maximum likelihood estimates for ordinal log-linear models.
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1. Introduction

Log-linear modeling is a popular statistical tool for the analysis of a con-
tingency table and is especially popular in English speaking countries; see
Gower [18] and van der Heijden and de Leeuw [27]. From the analysis of
data using log-linear models, the researcher can determine important as-
sociations that exist in the data. The conventional method of estimating
parameters from a log-linear model has been to use the maximum like-
lihood estimation technique, such as the Newton-Raphson iterative pro-
cedure or iterative proportional scaling (see Agresti [1]). The advantage
of the technique lies in the ability to identify multi-level associations in
multi-way contingency tables. However, a problem with this approach, as
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Fienberg [13, p47] points out, is that while there are several authors who
have proposed techniques for selecting the optimum log-linear model:

Unfortunately, there is no all-purpose, best method of model selection.

This is because the selection of an optimum log-linear model requires a
trial and error approach of fitting and re-fitting a model until optimisation
is reached. For very large multi-way data sets, the choice of model can often
be very arduous and time consuming for the researcher. The comment of
Fienberg’s [13] is echoed in Dillon and Goldstein [11, p326] who say:

Unfortunately, no “best” selection strategy exists, since a choice
depends in large part on our a priori knowledge of the interrela-
tionships amongst the variables. In addition, without some means
of effecting a “guided” search, an extremely large number of mod-
els may need to be evaluated with no assurance that the selections
strategy will yield the best model.

This paper presents a method which relies on orthogonal polynomials
based on those in Emerson [12] and described in Beh [4] and Rayner and
Best [24]. We review the alternative approach introduced in Beh and
Davy [6, 7] which is applicable for ordinal multi-way contingency tables.
Parameter estimation using the technique described in this paper is also
discussed in Beh [5] where the Pearson chi-squared statistic for a singly
ordered two-way contingency table is partitioned using orthogonal polyno-
mials for the ordered variable and generalised basic vectors for the non-
ordered variable. The parameter estimation technique described in the
articles of Beh and Davy, and further elaborated on in this paper, show
that the log-linear model technique commonly employed in the analysis of
categorical data can be replaced by the new family of models discussed in
this paper.

In this paper we discuss and extend the Beh and Davy methodology in
the following seven sections. Section 2 defines the notation for two-way
and three-way contingency tables. Section 3 defines the orthogonal poly-
nomials that are used for an ordered variable, while Section 4 defines the
association models for a two-way table which form the foundation of our
method of parameter estimation. A doubly ordered two-way contingency
table is discussed where the row and column variables are of an ordinal na-
ture. A singly ordered table is also considered where only the set of column
categories is ordinal. Similar results can be established for the analysis of a
two-way contingency table with ordered row categories. These association
models are extended to three-way contingency tables in Section 5, where
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completely ordered tables are considered. Doubly ordered tables are also
investigated where only the row and column variables are ordered. Similar
results can be obtained for any combination of two ordered variables. Fi-
nally a singly ordered three-way contingency table is considered, where the
ordered categories are associated with the row responses. Similar results
can be obtained for the ordered column or ordered tube categories. The
alternative procedure to parameter estimation is made in Sections 6 and 7
which are applicable to two-way and three-way contingency tables respec-
tively and uses the association models described in Sections 4 and 5. The
calculation of the orthogonal polynomials used in this paper require a set
of scores that reflect the ordinal ordinal structure of the ordered variable.
In many cases natural scores, i.e. 1, 2, . . . , are the easiest set of scores
to use and give results that compare very well with those calculated using
more computationally intensive scores.

A comparison of results using the technique discussed in this paper with
those obtained using the conventional log-linear analysis approach is made
in Section 8. Two examples are presented - a doubly ordered two-way
contingency table and a completely ordered three-way table. It is shown
through these examples that the non-iterative parameter estimation ap-
proach is an easier and more informative procedure to implement than the
conventional maximum likelihood approach.

2. Notation

Consider an I × J two-way contingency table, N , where the (i, j)′th cell
entry is given by nij for i = 1, 2, . . . , I and j = 1, 2, . . . , J . It is assumed
that such a data set is randomly selected from a population. As the focus of
this paper is to consider an analysis of ordinal categorical data, we will be
considering situations when N has ordered rows and/or ordered columns.
Let the grand total of N be n and the probability matrix be P so that the

(i, j)′th cell entry is pij = nij/n and
I
∑

i=1

J
∑

j=1

pij = 1. Define the i′th row

marginal proportion as pi• =
J
∑

j=1

pij and define the j′th column marginal

probability as p•j =
I
∑

i=1

pij so that
I
∑

i=1

pi• =
J
∑

j=1

p•j = 1.

For the analysis of multi-level data, suppose we have a three-way contin-
gency table, N , consisting of I rows, J columns and, using the terminology
of Kroonenberg [22], K tubes. Kendall and Stuart [21] used the term layer.
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Let the grand total of N be n where the (i, j, k)′th element is denoted as
nijk. We denote the same element of the matrix P by pijk = nijk/n. The
i′th row, j′th column and k′th tube row marginal proportions are defined
as pi••, p•j• and p••k respectively.

The distinction between population (parameter) values and their esti-
mated (sample) values is made in the conventional way by the placement
of a ∧ over the estimated sample value, while the parameter has no ∧ in-
cluded. For example, the parameter value µ is estimated by the sample
value µ̂.

3. Orthogonal Polynomials

For the parameter estimation technique discussed in this paper, we make
use of orthogonal polynomials based on the ordinal nature of the categories
within a variable. The polynomials used as those considered by Beh [3, 4],
Beh and Davy [6, 7], and Rayner and Best [24].

For ordered column categories of a two-way contingency table, say, let
{bv(j)} be the set of orthogonal polynomials on {p•j}, for v = 1, 2, . . . , (J−
1) and j = 1, 2, . . . , J . These polynomials have the property

J
∑

j=1

p•jbv (j) bv′ (j) =

{

1, v = v′

0, v 6= v′

and are defined so that

bv (j) = Ac
v [(sJ(j) − Bc

v) bv−1 (j) − Cc
vbv−2 (j)] (1)

where

Bc
v =

J
∑

j=1

p•jsJ(j)b2
v−1 (j) (2)

Cc
v =

J
∑

j=1

p•jsJ(j)bv−1 (j) bv−2 (j) (3)

and

Ac
v =







J
∑

j=1

p•jsJ(j)2b2
v−1 (j) − (Bc

v)
2 − (Cc

v)
2







−1/2

(4)

Note that b−1(j) = 0 and b0(j) = 1 for all j. For the calculation of
(1), (2), (3) and (4), a set of scores is required to represent the ordinal
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nature of the categories. Scores may chosen subjectively, such as natural
scores where sJ(j) = j, or by more objective means, such as Nishisato
scores (Nishisato and Arri [23]), or midrank scores. Beh [4] shows that
often natural scores give very similar results to the more computationally
intensive scores. For the assignement of scores to ordinal log-linear models,
Ishii-Kuntz [20] views the use of natural scores as very simple and are
therefore an advantage of the procedure.

Row orthogonal polynomials can be calculated in a similar manner to
the column polynomials. For ordered row categories, let {au(i)} denote
the set of orthogonal polynomials on {pi•}, for u = 1, 2, . . . , (I − 1) and
i = 1, 2, . . . , I. These polynomials have the property

I
∑

i=1

pi•au (i) au′ (i) =

{

1, u = u′

0, u 6= u′

When a third variable is included, consisting of K tubes, the set of tube
orthogonal polynomials of order w, {cw(k)}, are defined so that they are
orthogonal across the tube marginal probabilities {p••k} subject to the
constraint

I
∑

k=K

p••kcw (k) cw′ (k) =

{

1, w = w′

0, w 6= w′

4. Two-Way Contingency Tables

The RC canonical correlation model can be used to measure the depar-
ture from independence of two ordered variables from a two-way cross-
classification and has been extensively investigated. See for example Gilula
[14], Gilula and Haberman [15, 16], and Gilula and Ritov [17]. In this sec-
tion we consider the correlation models for two-way ordinal cross - classifi-
cations as seen in Beh [3], Beh and Davy [6, 7], Rayner and Best [24] and
Best and Rayner [8].

4.1. Doubly ordered two-way contingency tables

The RC bivariate correlation model for a doubly ordinal two-way cross-
classifications has been discussed by Rayner and Best [24] and Beh [3].
These authors demonstrate that pij can be reconstituted by the saturated

model

pij = pi•p•j

(

1 +
I−1
∑

u=1

J−1
∑

v=1

au (i) θ̂uvbv (j)

)

(5)
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where

θ̂uv =
I
∑

i=1

J
∑

j=1

au (i) bv (j) pij

The
√

nθ̂uv values are asymptotically standard normally distributed ran-
dom variables and are asymptotically independent, and are calculated using
the set of row scores sI(i) and the set of column scores sJ(j). To determine
significant association values we can compare each of these terms with what
is expected under the standard normal distribution. Rayner and Best [25]

showed that when natural scores are used, θ̂11 is the Pearson product mo-
ment correlation. They also showed that when midrank scores are used to
calculate this quantity, then it is equivalent to Spearman’s rank correlation.

When model (5) is unsaturated, it can sometimes give negative pij val-
ues. In this case, Rayner and Best [24] suggested the following alternative
exponential model

pij ≈ pi•p•j exp

{

I−1
∑

u=1

J−1
∑

v=1

au (i) θ̂uvbv (j)

}

(6)

It is with this and similar exponential approximations that we establish
a parallel between our non-iterative approach and conventional log-linear
models.

4.2. Singly ordered two-way contingency tables

Suppose now we consider a singly ordered two-way contingency table, where
the columns are of an ordinal nature. The saturated bivariate correlation
model discussed in Beh [3] and Rayner and Best [25] is

pij = pi•p•j

(

1 +
J−1
∑

v=1

θ̂(i)vbv (j)

)

(7)

where

θ̂(i)v =
J
∑

j=1

pij

pi•
bv (j) (8)

The exponential approximation of model (7) is

pij ≈ pi•p•j exp

(

J−1
∑

v=1

θ̂(i)vbv (j)

)
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5. Three-Way Contingency Tables

For the analysis of three-way ordinal contingency tables, Beh and Davy [6, 7]
presented some models which are extensions of the bivariate models pre-
sented in the previous section. These trivariate models can be used to
estimate the parameter values from a log-linear model of the data.

5.1. Completely ordered three-way tables

Suppose that a three-way contingency table consists of three variables
which have an ordered categorical responses. Beh and Davy [6] show that
the saturated RC model can be defined by

pijk=pi••p•j•p••k

(

1 +
I−1
∑

u=1

J−1
∑

v=1
θ̂uv0au (i) bv (j)

+
I−1
∑

u=1

K−1
∑

w=1
θ̂u0wau (i) cw (k) +

J−1
∑

v=1

K−1
∑

w=1
θ̂0vwbv (j) cw (k)

+
I−1
∑

u=1

J−1
∑

v=1

K−1
∑

w=1
θ̂uvwau (i) bv (j) cw (k)

)

(9)

where

θ̂uvw =
I
∑

i=1

J
∑

j=1

K
∑

k=1

au (i) bv (j) cw (k) pijk

Beh and Davy [6] showed that θ̂uv0, θ̂u0w and θ̂0vw are bivariate row-
column, row-tube and column-tube correlation values respectively. The
θ̂uvw are extensions of the Pearson product moment correlation when nat-
ural scores are used for trivariate data. When midrank scores are used,
they are extensions to the Spearman rank correlation for the same data
structure.

The term θ̂uvw is a measure of the deviation of the rows, columns and
tubes up to the (u, v, w)′th trivariate moment in the data from might be

expected under complete independence. For example, θ̂111 is the linear-by-
linear-by-linear association and can be used to assess the trivariate location
of the three variables. Refer to Davy, Rayner and Beh [10] for information

on the interpretation of θ̂uvw.
The unsaturated form of model of (9) can sometimes calculate negative

values in much the same way as the bivariate models can. To avoid this,
the value of pijk can be approximately reconstituted by the exponential
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model

pijk ≈ pi••p•j•p••k exp

(

I−1
∑

u=1

J−1
∑

v=1
θ̂uv0au (i) bv (j)

+
I−1
∑

u=1

K−1
∑

w=1
θ̂u0wau (i) cw (k) +

J−1
∑

v=1

K−1
∑

w=1
θ̂0vwbv (j) cw (k)

+
I−1
∑

u=1

J−1
∑

v=1

K−1
∑

w=1
θ̂uvwau (i) bv (j) cw (k)

)

(10)

5.2. Doubly ordered three-way tables

For a three-way contingency table with ordered row and column categories,
Beh and Davy [7] showed that the saturated model associated with such a
data structure is

pijk = pi••p•j•p••k

(

1 +
I−1
∑

u=1
θ̂u0(k)au(i) +

J−1
∑

v=1
θ̂0v(k)bv(j)

+
J−1
∑

u=1

J−1
∑

v=1
θ̂uv(k)au(i)bv(j)

) (11)

where

θ̂uv(k) =
I
∑

i=1

J
∑

j=1

pijk

p••k
au (i) bv (j) (12)

The value of θ̂uv(k) is the (u, v)′th bivariate association between the rows

and columns at the k′th tube. For example, θ̂11(2) is the linear-by-linear
association between the rows and column at the second tube category. Beh
and Davy [7] defined the (u, v)′th bivariate association for the ordered rows
and ordered columns of the three-way contingency table as

θ̂uv(•) =
K
∑

k=1

p••kθ̂uv(k) (13)

The value of the (i, j, k)′th cell proportion can be approximately reconsti-
tuted using the exponential form of (11)

pijk ≈ pi••p•j•p••k exp

(

I−1
∑

u=1
θ̂u0(k)au(i) +

J−1
∑

v=1
θ̂0v(k)bv(j)

+
J−1
∑

u=1

J−1
∑

v=1
θ̂uv(k)au(i)bv(j)

) (14)
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5.3. Singly ordered three-way tables

For the analysis of a three-way table with ordered row categories only
(singly ordered), Beh and Davy [7] used

pijk = pi••p•j•p••k

(

1 +
I−1
∑

u=1

θ̂u(jk)au (i)

)

where

θ̂u(jk) =
I
∑

i=1

pijk

p•j•p••k
au (i) (15)

The value of the (i, j)′th cell proportion can be approximately reconstituted
using the exponential model

pijk ≈ pi••p•j•p••k exp

(

I−1
∑

u=1

θ̂u(jk)au (i)

)

(16)

6. Two-Way Log-linear Models

Log-linear models are a popular way to determine if there is any relation-
ship between any sets of variables of a cross-classification. In this section
we look at a new method of calculating the parameters of a log-linear
model and show that it is a far more versatile approach than the con-
ventional maximum likelihood approach discussed in Agresti [1, p80] and
Fienberg [13, p54].

6.1. Doubly ordered two-way contingency tables

Suppose that we wish to conduct a log-linear analysis on a two-way con-
tingency table with ordered rows and ordered columns. Agresti [1] showed
that the most applicable theoretical log-linear model is

lnmij = µ + αi + βj + φ [sI (i) − µI ] [sJ (j) − µJ ] (17)

where µI and µJ are the mean row and column scores respectively and
∑I

i=1 αi =
∑J

j=1 βj = 0. The value of mij is the expected value of the
(i, j)′th cell entry in N .

The value of φ in (17) describes the association between the two ordinal
categorical variables. Note that, just as described by Agresti [1, p77],
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when φ = 0, this leads to the independence model, while the quantity
φ [sI (i) − µI ] [sJ (j) − µJ ] measures the deviation from independence for
lnmij . Haberman [19] proposed a method of estimating this parameter
value using maximum-likelihood estimation, which Agresti [1] describes.

Now, consider the exponential form of the RC canonical correlation model
given by (6). Multiplying this model by n and taking the natural logarithm
of both sides yields

lnnij ≈ µ̂ + α̂i + β̂j +
I−1
∑

u=1

J−1
∑

v=1

au (i) θ̂uvbv (j) (18)

where

µ̂ = lnn +
1

I

I
∑

i=1

ln pi• +
1

J

I
∑

j=1

ln p•j ,

α̂i = ln pi• −
1

I

I
∑

i=1

ln pi• and β̂j = ln p•j −
1

J

I
∑

j=1

ln p•j

so that
∑I

i=1 α̂i =
∑J

j=1 β̂i = 0 and (18) is the ordinal form of the log-linear
model presented in van der Heijden et al. [28].

6.1.1. Linear Terms

If only the linear terms of the row and column categories are considered,
that is when u = v = 1, then (18) simplifies to

lnnij ≈ µ + α̂i + β̂j + θ̂11
[sI (i) − µ̂I ]

σ̂I

[sJ (j) − µ̂J ]

σ̂J
(19)

where µ̂I =
∑I

i=1 sI (i) pi• and σ̂2
I =

∑I
i=1 sI (i)

2
pi•− µ̂2

I . The parameters
µ̂J and σ̂2

J are defined similarly.
Comparing model (17) with (19) we obtain an estimate of the parameter

φ

φ̃ =
θ̂11

σ̂I σ̂J
(20)

6.1.2. Quadratic Terms

Suppose now we wish to include the quadratic terms with the linear terms
in (18) so that we may determine the quadratic nature of the variables and
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be more precise with our estimate of φ. Then the conventional log-linear
model is

lnmij = µ + αi + βj + φ [sI(i) − µI ] [sJ(j) − µJ ]

+ φ12 [sI(i) − µI ]
2
[sJ(j) − µJ ] + φ12 [sI(i) − µI ] [sJ(j) − µJ ]

2

Therefore, considering the linear and quadratic terms in (18), we obtain,

lnnij = µ̂ + α̂i + β̂j + θ̂11a1 (i) b1 (j)

+ θ̂12a1 (i) b2 (j) + θ̂21a2 (i) b1 (j)

After a little algebra, the parameters φ, φ12 and φ21 can be estimated by

φ̃12 = Ac
2

θ̂12

σ̂I σ̂J
, φ̃21 = Ar

2

θ̂21

σ̂I σ̂J
and

φ̃ =
θ̂11

σ̂I σ̂J
− σ̂J γ̂J φ̂12 − σ̂I γ̂I φ̂21 (21)

where Ar
2 and Ac

2 are the values of (4) for the row and column categories
respectively and γ̂I and γ̂J denote the (standardised) skewness coefficients
for the row and column scores respectively.

Observing the above equations, if the quadratic terms do not contribute
to the association in the contingency table, then (21) reduces to (20).

Alternatively, the orthogonal polynomials are constructed to include a
(standardised) linear, quadratic and higher order vector and could be in-
cluded instead. In this case, the log-linear model with the quadratic terms
included becomes

lnmij = µ + αi + βj + φa1(i)b1(j) + φ21a2(i)b1(j) + φ12a1(i)b2(j)

If the researcher was interested in expressing the model in the conventional
form, the row (and column) orthogonal polynomials can be regressed such
that

au(i) =
u
∑

g=0

Aug

(

sI(i) − µ̂I

σ̂I

)g

where Aug are unknown constants. For example, a2(i) can be expressed as

a2(i) = A20 + A21

(

sI(i) − µ̂I

σ̂I

)

+ A22

(

sI(i) − µ̂I

σ̂I

)2

Thus, we can model the saturated version of the log-linear model by con-
sidering all terms in (18). But for the sake of approximation, it is practical
to only consider the first few terms; the linear and quadratic terms, say.

The investigation of quadratic terms will be left for future work.
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6.2. Singly ordered two-way contingency tables

The approximation of parameters for singly ordered two-way contingency
tables can be made in much the same way as discussed in the previous
section.

Suppose that we have a two-way table with ordered column categories.
The log-linear model presented in Agresti [1] which is applicable to this
table is

lnmij = µ + αi + βj + τJ(i) [sJ (j) − µJ ] (22)

where
∑I

i=1 αi =
∑J

j=1 βj = 0.

The value of τJ(i), such that
∑I

i=1 τJ(i) = 0, can be calculated using max-
imum likelihood estimation, and is the measure of linearity if the ordered
column categories on the j′th row category. This quantity is shown to be
related to θ̂(i)1 as seen in (8).

Consider the exponential two-way model of (7). Multiplying it by n and
taking the natural logarithm of both sides of the expression yields

lnnij ≈ µ̂ + α̂i + β̂j +
J−1
∑

v=1

θ̂(i)vbv (j) (23)

Consider the linear component of the ordered column categories. Then (23)
reduces to

lnnij ≈ µ̂ + α̂i + β̂j + θ̂(i)1
[sJ (j) − µ̂J ]

σ̂J
(24)

Comparing (24) with the classical log-linear model of (22), shows that the
parameter τJ(i) can be approximated by

τ̃J(i) =
θ̂(i)1

σ̂J

7. Three-Way Log-Linear Models

Beh and Davy [6, 7] described a method of parameter estimation for three-
way contingency tables with any number of the variables ordered. In this
section, we provide some of the derivations in their papers and extend them.
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7.1. Completely ordered three-way contingency tables

For a three-way contingency table, where all three variables are ordered,
Fienberg [13] and Agresti [1] offer the following log-linear model:

lnmijk = µ + αi + βj + γk + φIJ [sI (i) − µI ] [sJ (j) − µJ ]

+ φIK [sI (i) − µI ] [sK (k) − µK ]

+ φJK [sJ (j) − µJ ] [sK (k) − µK ]

+ φIJK [sI (i) − µI ] [sJ (j) − µJ ] [sK (k) − µK ] (25)

where
I
∑

i=1

αi =
J
∑

j=1

βj =
K
∑

k=1

γk = 0. The value of sK(k) is the score asso-

ciated with the k′th ordered tube category. The values φIJ , φIK and φJK

describe the bivariate association for each pair of variables. These values
correspond to the linear-by-linear associations for each pair of variables,
while φIJK is the association term and corresponds to the linear-by-linear-
by-linear association. To show this, consider the exponential model (10).
Taking the natural logarithm of both sides after multiplying by n yields

lnnijk = µ̂ + α̂i + β̂j + γ̂k +
I−1
∑

u=1

J−1
∑

v=1

θ̂uv0au (i) bv (j) (26)

+
I−1
∑

u=1

K−1
∑

w=1

θ̂u0wau (i) cw (k) +
J−1
∑

v=1

K−1
∑

w=1

θ̂0vwbv (j) cw (k)

+
I−1
∑

u=1

J−1
∑

v=1

K−1
∑

w=1

θ̂uvwau (i) bv (j) cw (k)

where

µ̂ = lnn +
1

I

I
∑

i=1

ln pi•• +
1

J

J
∑

j=1

ln p•j• +
1

K

k
∑

k=1

ln p••k,

α̂i = ln pi•• −
1

I

I
∑

i=1

ln pi••,

β̂j = ln p•j• −
1

J

J
∑

j=1

ln p•j• and

γ̂k = ln p••k − 1

K

k
∑

k=1

ln p••k

so that
∑I

i=1 α̂i =
∑J

j=1 β̂j =
∑K

k=1 γ̂k = 0.
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If only the linear components for each variable are considered then (26)
simplifies to

lnnijk = µ̂ + α̂i + β̂j + γ̂k + θ̂110
[sI(i) − µ̂I ]

σ̂I

[sJ(j) − µ̂J ]

σ̂J

+ θ̂101
[sI(i) − µ̂I ]

σ̂I

[sK(k) − µ̂K ]

σ̂K

+ θ̂011
[sJ(j) − µ̂J ]

σ̂J

[sK(k) − µ̂K ]

σ̂K

+ θ̂111
[sI(i) − µ̂I ]

σ̂I

[sJ(j) − µ̂J ]

σ̂J

[sK(k) − µ̂K ]

σ̂K

Comparing (25) and (26) using natural scores, the parameters from the
log-linear model of (25) can be approximated by

φ̃IJ =
θ̂110

σ̂I σ̂J
, φ̃IK =

θ̂101

σ̂I σ̂K
,

φ̃JK =
θ̂011

σ̂J σ̂K
and φ̃IJK =

θ̂111

σ̂I σ̂J σ̂K
(27)

7.2. Doubly ordered three-way contingency tables

Suppose now that we are interested in the log-linear model for a three-
way contingency table with ordered row and column categories. Then, the
theoretical log-linear model for the table is

lnmijk = µ + αi + βj + γk + τIK(k) [sI (i) − µI ] (28)

+ τJK(k) [sJ (j) − µJ ] + φIJ(k) [sI (i) − µI ] [sJ (j) − µJ ]

In model (28), τIK(k) is the effect the linearity of the row categories has
on the k′th tube profile while τJK(k) is the effect of the linearity of the

columns on the k′th tube category. These values correspond to θ̂10(k) and

θ̂01(k) respectively from (12). The value of φIJ(k) is related to the linear-by-
linear association of the ordered rows and columns at the k′th non-ordered
tube category. This value differs slightly from the parameter in the model
presented in Agresti [1], φIJ , which is the overall linear-by-linear association
value. To verify these results, consider the exponential model of association
(14). Taking the natural logarithm of this model after multiplying by n



ORDINAL LOG-LINEAR MODELS 81

yields

lnnijk = µ̂ + α̂i + β̂j + γ̂k +
I−1
∑

u=1

θ̂u0(k)au (i)

+
J−1
∑

v=1

θ̂0v(k)bv (j) +
I−1
∑

u=1

J−1
∑

v=1

θ̂uv(k)au (i) bv (j) (29)

Consider the linear terms in model (29). Then the linear model is

lnnijk = µ̂ + α̂i + β̂j + γ̂k + θ̂10(k)
[sI(i) − µ̂I ]

σ̂I
(30)

+ θ̂01(k)
[sJ(j) − µ̂J ]

σ̂J
+ θ̂11(k)

[sI(i) − µ̂I ]

σ̂I

[sJ(j) − µ̂J ]

σ̂J

Therefore, comparing models (28) and (30), the parameters τIK(k), τJK(k)

and φIJ(k) can be approximated by

τ̃IK(k) =
θ̂10(k)

σ̂I
, τ̃JK(k) =

θ̂01(k)

σ̂J
and φ̃IJ(k) =

θ̂11(k)

σ̂I σ̂J
(31)

The overall linear-by-linear association between the rows and column of
the doubly ordered three-way contingency table, using (13) and (31), is

Ũ11(•) = σ̂I σ̂J

K
∑

k=1

p••kφ̃IJ(k),

while the parameter φIJ from the model of Agresti [1] and Fienberg [13]
can be approximated by

φ̃IJ =
Ũ11(•)

σ̂I σ̂J
=

K
∑

k=1

p••kφ̃IJ(k)

7.3. Singly ordered three-way contingency tables

Consider now a three-way contingency table with ordered row categories.
The theoretical log-linear model for such a table is

lnmijk = µ + αi + βj + γk + τIJ(j) [sI (i) − µI ] (32)

+ τIK(k) [sI (i) − µI ] + τIJK(jk) [sI (i) − µI ]

where
I
∑

i=1

αi =
J
∑

j=1

βj =
K
∑

k=1

γk = 0. The value τIJ(j) is a measure of the

linearity of the rows and its effect on the j′th column category. Similarly,
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τIK(k) is the measure of linearity of the rows and its effect on the k′th tube
category while τIJK(jk) is the measure of linearity of the rows upon the

j′th column and k′th tube category. Therefore, τIJK(jk) is related to θ̂1(jk)

using (15). To show this, taking the natural logarithm of both sides of (16)
after multiplying by n yields

lnnijk = µ̂ + α̂i + β̂j + γ̂k +
I−1
∑

u=1

θ̂u(jk)au (i) (33)

When the linear component of the rows is considered (33) becomes

lnnijk = µ̂ + α̂i + β̂j + γ̂k + θ̂1(jk)
[sI(i) − µ̂I ]

σ̂I
(34)

Comparing models (32) and (34), τIJK(jk) can be approximated by

τ̃IJK(jk) =
θ̂1(jk)

σ̂I

8. Examples

8.1. Example 1 - A doubly ordered two-way table

Consider the following data set of Table 1 first seen in Srole et al. [26] which
is a cross-classification of 1660 patients from mid-town Manhattan accord-
ing to mental health status and parental socio-economic status. Authors
such as Best and Rayner [8], Beh [3, 4] and Weller and Romney [29] have
cited this example in their analyses. The parental socio-economic status is
designated A through to F in a sequence from highest to lowest position.
Therefore, Table 1 is a doubly ordered two-way contingency table, so the
log-linear analysis described in sub-section 4.1 is applicable.

Haberman [19] analysed Table 1 by estimating the linear by linear associ-
ation of the data. Using row scores 3, 1, -1, and -3 and column scores 5, 3, 1,
-1, -3 and -5, Haberman [19] concluded that an estimate of the correlation
between mental health status and parental socio-economic status is 0.02081,
suggesting that as the parental socio-economic status improves, so too does
the patient’s mental health, although this association is not statistically
significant. This is the same conclusion reached in Best and Rayner [8]
and Beh [3, 4]. Agresti [2] also analysed Table 1 using unit length natural

scores, and obtained an estimate equivalent to φ̂ = 0.091/4 = 0.02275 for
Haberman’s scores. Using equation (20), with Pearson product moment



ORDINAL LOG-LINEAR MODELS 83

Table 1. Cross-classification of 1660 Patients from Mid-town Manhattan
According to Mental Health Status and Parental Socio-Economic Status.

A B C D E F

Well 64 57 57 72 36 21
Mild Symptom Formation 94 94 105 141 97 71

Moderate Symptom Formation 58 54 65 77 54 54
Impaired 46 40 60 94 78 71

correlation 0.14965, σ̂I = 2.0873 and σ̂J = 3.2230, the non-iterative esti-
mate φ̃ = 0.0222584 is obtained for Haberman’s scoring scheme. Therefore
the estimate of the log-linear parameter φ using the non-iterative method-
ology presented in this paper is very close to the estimate obtained using
maximum likelihood estimation.

A comparison of the estimates obtained by Agresti, Haberman and equa-
tion (20) can be made in terms of the fitted values. A goodness-of-fit
test is performed using only the above first order parameter estimates by
calculating the chi-squared statistic for each of the three methods. Do-
ing so yields the goodness-of-fit chi-squared statistic using the Haberman
and Agresti estimates, X2

HAB = 11.51938 and X2
AGR = 11.44213 respec-

tively. Using the estimate obtained from the non-iterative procedure out-
lined here, X2

NI = 11.40662. The p-values associated with these statistics,
and (I − 1) (J − 1)− 1 = 14 degrees of freedom are 0.645, 0.651 and 0.654
respectively. This suggests that the non-iterative approach for Table 1
produces estimates which are slightly better than those obtained from the
iterative methods. This single parameter also explains nearly three quar-
ters of the total variation from independence for each of the three estimates,
since the Pearson chi-squared statistic is X2 = 45.98526.

8.2. Example 2 - A completely ordered three-way table

Consider Table 2 which is a 4 × 5 × 3 contingency table classifying 1517
people according to the number years of completed schooling, their number
of siblings and their general level of happiness. Clogg [9] and Beh and
Davy [6, 7] considered this contingency table for their analyses. The three
variables can be seen to be of an ordinal nature, and so the log-linear
analysis of sub-section 7.1 can be applied. Beh and Davy [6,7] showed
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that the the three bivariate relationships were highly significant and that
the trivariate was not. Therefore, we only need to concern ourselves with
estimating the parameters φIJ , φIK and φJK . Table 3 gives a comparison
of each of the parameters calculated using maximum likelihood estimation,
denoted by φ̂, and those estimates obtained using (27), denoted by φ̃.

Table 2. Cross-classification of 1517 People According
to their Happiness, Schooling and Number of Siblings.

Number of Siblings
Years of Schooling 0-1 2-3 4-5 6-7 8+

Not too Happy

<12 15 34 36 22 61
12 31 60 46 25 26

13-16 35 45 30 13 8
17+ 18 14 3 3 4

Pretty Happy

<12 17 53 70 67 79
12 60 96 45 40 31

13-16 63 74 39 24 7
17+ 15 15 9 2 1

Very Happy

<12 7 20 23 16 36
12 5 12 11 12 7

13-16 5 10 4 4 3
17+ 2 1 2 0 1

Table 3. MLE and Alternative Val-
ues of Parameters for Table 2.

φ φIJ φIK φJK

φ̂ -0.3468 -0.2188 0.0726

φ̃ -0.3298 -0.2140 0.0725
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The maximum likelihood estimates compare very well with the alternative
values using (27). Thus instead of selecting a log-linear model by “trial
and error” as is the case using the conventional approach of parameter
estimation for log-linear models, the alternative approach offers an accurate
method of parameter estimation.
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