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A Non-Laboratory Gait Dataset 
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In this manuscript, we describe a unique dataset of human locomotion captured in a variety of out-of-
the-laboratory environments captured using Inertial Measurement Unit (IMU) based wearable motion 
capture. The data contain full-body kinematics for walking, with and without stops, stair ambulation, 
obstacle course navigation, dynamic movements intended to test agility, and negotiating common 
obstacles in public spaces such as chairs. The dataset contains 24.2 total hours of movement data from 
a college student population with an approximately equal split of males to females. In addition, for one 
of the activities, we captured the egocentric field of view and gaze of the subjects using an eye tracker. 
Finally, we provide some examples of applications using the dataset and discuss how it might open 
possibilities for new studies in human gait analysis.

Background & Summary
Gait analysis is a fundamental tool that is used broadly. Motion capture can be used for clinical gait analysis, 
with real implications for prescription of interventions, functional classification, and prescription of assistive 
devices. For basic science, motion capture provides a window into how the brain generates movement, captures 
sensation, and how neural operations interact with the biomechanics of the body.

Practical considerations have generally restricted gait analysis to within-laboratory experiments. Motion 
capture has required controlled conditions and apparatus, and this has resulted in relatively controlled and 
restricted movement datasets. In order to make justifiable comparisons, we have generally narrowed the scope 
of movement analysis into that which was reasonably measurable given the technology of the time. This has 
proven fruitful. We now understand a great deal about movement in laboratory conditions. What is less clear is 
how different movement is outside of those conditions. Are movements generated by people in their daily lives 
significantly different than those they perform in laboratory experiments?

In other words, those studying movement intuit that outside of laboratory conditions, behavior is likely to be 
less clean and of greater complexity. The precise nature of this complexity, and a quantitative understanding of 
it, remains open. In addition, there is evidence that artificial environments can compromise ecological validity. 
For example, it has been shown1 that how participants walk changes by a small but significant amount depend-
ing on the number of researchers present during the experiment. With the dataset we present here, we intend 
to contribute data captured outside of the lab to enable comparative analyses with in-laboratory activities. This 
kind of data can be used to train data-driven predictive models of human movement2,3, or activity4,5 or terrain6 
classification.

In this manuscript we describe a multi-subject full body kinematics dataset that captures diverse movements 
including forward walking, backward walking, side stepping, avoiding obstacles by stepping over them, navi-
gating around obstacles in controlled environments as well as in uncontrolled and unrestricted natural environ-
ments like classrooms, atrium and staircases. For the unrestricted activities, we also present the corresponding 
egocentric video and gaze data captured using an eyetracker. These data provide a window into the role that the 
environment plays in determining how we move.
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On the uniqueness of the dataset.  Most gait datasets currently available fall under the following catego-
ries: (1) Full-body kinematics or kinetics from level-ground walking or running in a lab environment, comprised 
of straight walking (~10 m) at different self-selected speeds7–11, (2) full-body kinematics or kinetics from treadmill 
walking or running at pre-defined speeds7,11–13, (3) standing data collected on perturbation platforms14,15, and (4) 
staircase walking on in-lab staircases with 4–7 steps11,16. For a more comprehensive review of stair ambulation, 
please refer to17. These datasets were collected using in-lab motion capture systems and collectively comprise 
most of the publicly available gait datasets.

Recently, several gait datasets of diverse and more complex activities have been made publicly available11,18–22. 
HuGaDB18 is a dataset collected from 18 participants performing several activities. The data include inertial 
measurement unit (IMU) recordings from sensors strapped to the thigh, shank and feet, and don’t include full 
body joint kinematics19. captured full-body kinematics from different activities in a lab environment. Most of 
the activities included data from 1–2 subjects (maximum 27 subjects for walking). In that dataset, most subjects 
performed 1–2 trials (maximum 27 trials from 1 subject, for walking) where each trial consisted of 7–10 seconds  
of walking20. captured full-body kinematics on a ramp, level ground, and stairs. Data were collected from 10 
subjects, with 2 trials from each subject. A ramp and an 8-step staircase were replicated inside the lab. The 
exact dimensions of the course are not specified, but from the provided image of the environment, we estimate 
that each trial consisted of 60–70 steps21. collected data in a natural out-of the lab environment in 3 different 
terrain types. However, movement captured is mostly straight-line walking, and the data size is relatively small 
(6 subjects with 5–6 minutes or 500–600 steps of walking data per subject). In this dataset, we present full body 
kinematics data from multiple activities, with at least 5 minutes of data per subject for each activity.

Usually, human movement datasets focus on capturing several instances of a narrow activity or a specific 
maneuver. However, humans perform high-level tasks like going into a room or moving towards a goal, and 
select the lower level maneuvers instinctively, as per the moment to moment requirements. In order to best 
replicate this kind of behavior, in the dataset we present here, specific paths were not prescribed to subjects. The 
subjects were only given ‘high-level’ instructions like ‘go into that classroom’ or ‘Walk up that stairwell’ or ‘Walk 
towards and sit on that chair’. Then, the ‘lower-level’ movements were decided by the subject. We expect this to 
have captured more natural movements as well as variability in movement strategies.

In this dataset, subjects naturally transition between different classrooms, an atrium, and stairwells. These 
transitions include opening doors, changing between flat ground and stair walking, and performing sit to stand 
and stand to sit movements.

In addition, few datasets include full body motion capture along with the egocentric vision and gaze of the 
subjects. This limits our understanding of how environments affects human gait from moment to moment. We 
are aware of only one dataset21 that captures full body motion capture and egocentric vision data in natural 
environments. Here, we provide another, in an effort to enable improved understanding of how movement is 
conditioned on the environment.

Methods
Experiments and participants.  The dataset is comprised of 6 activities: (1) Level-ground obstacle-free 
walking, (2) Level-ground walking with random stops, (3) Staircases spanning a 6-storey building, (4) The 
Comprehensive High-Level Activity Mobility Predictor (CHAMP) activity set, (5) Controlled obstacle course, 
and (6) Unrestricted walking in public spaces. What we mean by controlled, as well as detailed descriptions of the 
activities, are presented in the Methods section. Numbers of participants and demographic information for each 
of the activities is shown in Table 1. The IDs column shows the subject naming convention for the activity i.e. data 
for a given activity can be found in the directories with the corresponding subject ID.

Subjects were recruited through campus email and social media. All activities were approved by the 
Institutional Review Board at University of Washington (STUDY00004707 “Smart Step”).

Equipment.  Subjects’ joint kinematics and center of mass positions were recorded using an Xsens full body 
motion capture system23, using IMUs, recorded at 60 Hz for all the activities. For activity 6, egocentric vision and 
gaze data were collected using a binocular eye tracker from Pupil Labs24 recorded at 30 Hz.

Description of activities.  As listed in Table 1, we collected data from 6 activities. These activities were 
recorded in out-of-the lab environments. The environments include a long corridor, staircases spanning 6 floors 
of building with flat sections the middle, Classrooms, an Atrium. The environments are not controlled, with large 

Activities Sensory Modalities IDs # subjects Age (yrs) Height (cm) Duration

Level-ground obstacle free Full-body kinematics xMF* 5 females 6 males 26.2 ± 2.7 174 ± 10.9 2.19 hrs

Level-ground walking with 
random stops Full-body kinematics xMF* 5 females 6 males 26.2 ± 2.7 174 ± 10.9 2.48 hrs

Staircases spanning a 6-storey 
building Full-body kinematics xMF* 5 females 6 males 26.2 ± 2.7 174 ± 10.9 2.11 hrs

Modified CHAMP Full-body kinematics xOA* 5 females 5 males 21.5 ± 2.4 173.4 ± 6.9 2.36 hrs

Controlled obstacle course Full-body kinematics xOA* 5 females 5 males 21.8 ± 2.2 172.8 ± 6.8 3.16 hrs

Unrestricted walking in public 
spaces

Full-body kinematics 
egocentric vision and gaze xUD* 12 females 11 males 22.8 ± 2.7 171.2 ± 9.7 11.8 hrs

Table 1.  Activities and Subject Details.
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number of people using the atria and classrooms in some instances, and several encounters with unexpected peo-
ple while turning are present in the dataset. Here, we describe each of these activities in detail.

Activity 1: Level ground walking in an obstacle free environment.  This activity involved walking on flat ground 
in a long corridor (see Fig. 1) in the Paul Allen Building at University of Washington. Subjects were requested to 
walk along the corridor back and forth, at a self-selected pace. Each trial took approximately 2.5 minutes, with 
4–5 rounds of the corridor. The duration of data per subject is 11.97 ± 6.66 minutes (mean ± std).

Activity 2: Level ground walking with random stops.  This activity was performed in the same corridor as activity 
1 (Fig. 1). For this activity, subjects followed instructions to stop and start walking at random. The instruction 
were provided using a voice recording, which was repeated across users. Subjects were not given any instructions 
on how fast to start or stop. The duration of data per subject is 13.55 ± 5.70 minutes (mean ± std).

Activity 3: Staircases spanning a 6-storey building.  This activity consisted of stair ascent and descent in a 
6-storey public building. This included sections of flat ground transitions in between levels (see Fig. 1). There are 
13 consecutive stairs between flat sections and 26 stairs between 2 floors. The data was collected during regular 
work hours and there are other people using the stairs. The duration of data per subject is 11.52 ± 3.92 minutes 
(mean ± std).

Activity 4: Modified CHAMP.  This data was collected as part of an experiment inspired from the standard 
Comprehensive High-Level Activity Mobility Predictor (CHAMP) test25,26, which is used to assess the agility 
of athletes and non-athletes. For the standard CHAMP test, the subject is asked to perform the task as fast as 
possible, and the time they take is used to assess their agility. We instructed the subjects to perform the task at 
a self-selected pace, with no requirement to finish the task as fast as possible. It is comprised of the following 
sub-activities:

•	 Modified Edgren Side-step Test: The subject started at rest with arm to the side. When cued by the experi-
menter, they side-stepped to the left for 10 seconds, stopped, and then side-stepped to the right for 10 seconds. 
This was repeated 3 times in each trial. The dataset includes 4 trials of the Edgren test per subject. The dura-
tion of data per subject is 4.48 ± 0.38 minutes (mean ± std).

•	 Modified Illinois Agility Test: The Illinois obstacle course is depicted in Fig. 2a. The subject began behind 
the start line with arms to the side and facing forward. When cued by the experimenter, the subject walked 
forward along the 10 m stretch, and then turned around and started walking towards the middle cone at the 
start line, then weaved up and down through the 4 center cones. Following this, they moved towards the 
center of 2.5 m line on the top-right side of the course, and touched the line. Lastly, they turned around and 
walked straight to the finish line. Five trials were collected from each subject. The duration of data per subject 
is 4.60 ± 0.41 minutes (mean ± std).

•	 Modified T-Test: Fig. 2b shows the activity course for the T-Test. Before beginning, subjects were asked 
to decide if they would first go left, or right. The subject started with walking forward for 10 meters, then 
stopped and started side-stepping to the right (or left) for 5 m, followed by side-stepping to the left (or right) 

Fig. 1  (left) Corridor for flat ground walking, and (right) Staircases spanning 6 floors.
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for 10 m, and then returned to the middle cone. Lastly, they started backward walking, and stopped at the 
start position. The T-Test activity set consisted of 7 trials per subject. The duration of data per subject is 
5.06 ± 0.49 minutes (mean ± std).

Activity 5: Controlled obstacle course.  The obstacle course is depicted in Fig. 3. The subject started with arms 
at rest to the sides. On ‘Go’ command, the subject started weaving up around the cones and was commanded at 
random to shift towards the left of the course and step over the boxes or to turn around and weave around the 
cones. Each trial consisted of the subject performing 5–7 rounds (some clockwise, some counter-clockwise) of 
the obstacle course. The duration of data per subject is 18.95 ± 4.54 minutes (mean ± std).

Activity 6: Unrestricted walking in public places.  The environment was comprised of 3 main types of obstacle 
courses (Fig. 4): (1) Classrooms with dense obstacle arrangement, (2) An atrium with sparse obstacle arrange-
ment, and (3) Two stairwells with a 33-step staircase each. The architectures for the classroom course and the 

Fig. 2  Modified CHAMP activities.

Fig. 3  Controlled Obstacle Course: Cones in Orange; Boxes in Green. Box positions were randomly shuffled. 
Subjects avoid boxes by stepping over them.
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atrium course are shown in Figs. 5, 6 respectively. The arrangement of obstacles was not controlled. Each trial 
consisted of the subject walking in each of the obstacle courses (except for subject xUD005, for whom there is 
no classroom data due to a scheduling conflict). An obstacle course from the three was randomly chosen and 
the subject was asked to go there and perform movements. Transitions while going from one obstacle course to 
another were also captured in the data. These included opening doors and flat ground to staircase transitions 
and vice-versa. Each subject’s movement speed and chosen path within an obstacle course was not constrained. 
Only which obstacle course to perform movements in was specified to them. If the subject started performing 
repetitive movements, e.g. always taking a left on encountering a particular obstacle or moving in a fixed loop 
several times, then they were instructed to vary their path by the experimenter. data per subject is 29.50 ± 5.40 
minutes (mean ± std).

Fig. 4  Environments: Classroom, Atrium and Staircases. Obstacles and other people using the spaces were not 
controlled.

Fig. 5  Classroom: Architecture of one of the classrooms. The arrangement of obstacles is not controlled and 
varies across subjects. The subject walks at self-selected speed and along self-selected path, The experimenter 
directed the subject to change their path only if the subject repeated the same path more than 2 times.

Fig. 6  Atrium: Architecture of the Atrium. The arrangement of obstacles is not controlled and varies across 
subjects. The subject walks at self-selected speed and along self-selected path, The experimenter directed the 
subject to change their path only if the subject repeated the same path more than 2 times.
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Protocol.  For each data collection session, the subject was briefed about the task to be performed and the 
equipment to be donned. Then, informed consent was obtained and documented. The participants then wore the 
Xsens suit and performed the standard n-pose calibration routine from Xsens. For activity 6 (unrestricted walk-
ing in public places), each subject also wore the pupil eye-tracker. Then, a pupil screen-marker calibration routine 
was performed, in which the subjects are instructed to gaze at several bullseye markers displayed on a laptop 
screen (https://docs.pupil-labs.com/core/software/pupil-capture/#calibration). Following this, the data collection 
began. The duration of each trial is described in the Tasks section above. Participants were encouraged to take 
breaks after each trial. The duration of the entire setup and data collection was around 1.5–2 hours.

Data processing and synchronization.  For activity 6, the vision and kinematics data was synced in 
post-processing using the timestamp data. Since the visual data frame rate is 30 Hz while the kinematics frame 
rate is 60 Hz, each vision frame was assigned a kinematics frame that was within 10 ms of it. The rest of the 
kinematics frames were dropped. All post-processing, including extraction of kinematics data from raw Xsens 
files and syncing with vision data, is done using a custom MATLAB script. Image frames from the videos were 
extracted using FFMPEG. Raw gaze coordinates are available in a csv file generated by the Pupil Player Software. 
These processes are described in more detail in the documentation provided with the data.

Data Records
Raw data.  The raw data files are available on figshare27,28. The xsens motion capture files are available in 
‘*.mvn’ file format. These files can be used for visualization using the MVN analyze software by Xsens29. This 
requires an Xsens license to be able to use the software. The corresponding xml files (‘*.mvnx’) are also available. 
These files contain the sensor position, segment orientation and joint angle data. An example MATLAB script is 
provided demonstrating how to read these raw data files. The corresponding raw eye-tracker data has also been 
uploaded. These files can be analyzed using the freely available Pupil Player software30.

Processed data.  In addition to the raw data files, we have also uploaded the processed motion capture and 
egocentric vision data. The kinematics data is available in csv file format. Each trial is stored in a separate csv file. 
The raw unnormalized joint data is stored in ‘jointDataRaw.csv’ (See Fig. 7). The min-max normalized joint data 
is stored in ‘jointDataNorm.csv’ (See Fig. 7). In a csv file, each row represents a single time instant. The columns 
store the corresponding timestamps, the names of the corresponding vision frames, and joint angle, joint velocity 
and acceleration data from the 66 joints. The python code for loading these files is available on (https://github.
com/abs711/The-way-of-the-future). Vision frames are stored in the folder ‘frames’(See Fig. 7). The path to each 
vision frame is stored in the ‘jointDataRaw.csv’ and ‘jointDataNorm’ files.

Data storage format.  The dataset is structured in the format shown in Fig. 7. Each subject directory is com-
prised of raw data (mvn, mvnx, pupil) and processed files. The ‘raw_mvn’ folder contains all the trials for all the activ-
ities (named Activity-001). These files can be visualized using the MVN analyze software. The corresponding xml 
files are stored in the ‘raw_mvnx’ folder. The eyetracker and vision data is stored in the pupil folder. Each activity trial 
has a separate folder (named Activity-001), which can be dropped in the Pupil Player GUI (https://docs.pupil-labs.
com/core/software/pupil-player/) to generate the egocentric video and the overlapped gaze. The processed kinemat-
ics data is stored in ‘.csv’ files, with jointDataRaw.csv containing the raw joint angle data and ‘jointDataNorm.csv’ 
containing the normalized data. The data is normalized using min-max scaling based on the joint-wise minimum 
and maximum values for the given trial. The processed vision data is stored in the frames folder in form of ‘.jpg’ 
images. Each row in the kinematics ‘.csv’ file, stores the name of the corresponding vision frame.

Technical Validation
Sensor placement and calibration.  Subjects wore tight clothes provided by Xsens to prevent the slipping 
of IMUs. The sensors were placed as described in the Xsens Awinda documentation31 and the prescribed calibra-
tion procedure was followed. After the calibration, the body poses were verified manually in the MVN analyze 
software. This system has been validated using concurrent optical motion tracking and has been shown to be 
accurate, especially for sagittal plane movements32.

Fig. 7  The data is stored in a hierarchical structure. Each leaf node (green, far right) is a file, stored in folders 
and subfolders (blue boxes) as depicted here.
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For the eye-tracker, the screen marker calibration procedure was followed as described in the Pupil doc-
umentation (https://docs.pupil-labs.com/core/software/pupil-capture/#calibration). The quality of calibration 
was verified manually by having the subject track the moving fingertip of the experimenter.

Data synchronization.  The data from the motion capture and the eye tracker was synchronized using the 
UNIX timestamps. The synchronization was validated by recording the hands of a subject while clapping. The 
instant the hands join was visualized in the MVN analyze visualization and the corresponding vision frame was 
also inspected. Another custom MATLAB script ‘custom_humanoid.m’ is available for verification on (https://
github.com/abs711/The-way-of-the-future). The script generates a video which can be seen on the github 
repository.

Usage Notes
This dataset can be used to reason about human movement, and especially how movement relates to the visual 
data arising from the environment. Here we will provide a brief overview of four studies we have conducted 
that use this dataset, as examples of the kinds of analysis that are possible. These notes will also serve as exam-
ples of how the data can be used in supervised vs. unsupervised ways, and with or without including the visual 
modality.

Bootstrapping a visual classifier.  The first study33 is an approach for classifying ambulation modes, such 
as flat ground walking and stair ascent. Instead of defining these modes a priori, they are identified by clustering 
the movements of the knee joint. During different kinds of ambulation, the profile of knee movements is distinct. 
These clusters serve as pseudolabels of the terrain, requiring no human-annotated ground truth labels of terrain 
types. Figure 8 shows the clustered movement types and characteristic joint motions for each of the clusters.

The pseudolabels derived from kinematic clustering can then be used to train a supervised visual terrain 
classifier using the corresponding video data. The result is a visual terrain classifier with an accuracy of 96% that 
required no ground truth annotation. This kind of self-supervised bootstrapping is likely to become an impor-
tant tool as datasets become increasingly large and large models become desirable to train. Example scripts for 
performing this analysis are available on Github in the directory named “Bootstrapping the visual classifier.” The 
file “gaitsteps_dataprep.m” performs gait segmentation in Matlab. The file “cluster_kinematics.py” performs the 
clustering of kinematics using sklearn libraries and saves the resultant labels as a pickle format. Finally, “clus-
ter_classify_vision_train.py” and “cluster_vision_infer.py perform training and classification of images using 
the kinematic labels, based on transfer learning from the pretrained ResNet provided in the FastTorch library. 
These files may be used to reproduce the results33 and should serve as a basis for performing similar analysis.

Optical flow for kinematics prediction.  The second example analysis is using either the kinematic data 
alone2 or also combining the the visual data3 to predict knee and ankle motion. See Fig. 9 for a depiction of how 
the data types are processed and combined to generate predictions. The idea here is that the movement of par-
ticular joints is highly predictable from a time history of the rest of the body motion and the visual scene. These 
predictions could be used as a reference trajectory for controlling an assistive wearable robot such as a prosthetic 
limb.

Figure 9 depicts the flow of data used in a regressor neural network. Visual data is processed into optical flow 
features, and then both sensory modalities are initially processed by a Long Short Term Memory (LSTM) neural 
network that models temporal dynamics. These two sensory streams are then fused in a network that predicts 
the target joint movements. “Optical Flow” refers to the full network and “No Flow” is an ablation case with the 

Fig. 8  (left) Clustered gait types identified in33. Depending on how low in the hierarchy, the data could be 
divided into flat ground vs. stair walking, or further subdivided into turning gait, straight walking, and stair 
ascent and descent. (right) Mean knee angles for each of the clusters. The kinematic trajectories are distinct for 
different kinds of ambulation, leading to clusters that differentiate ambulation modes.
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visual data zeroed out, to show its relative contribution. An interesting feature of this approach is that the system 
can target either instantaneous joint angles2 or can predict into the future3. We expect that predicting further 
into the future should be more difficult, but this has yet to be systematically studied to our knowledge.

Figures 10, 11 show representative snippets of knee angle trajectories above, and three corresponding video 
frames. The actual measured trajectory of the participant (blue solid line) is somewhat estimable using only the 
kinematic measurements from the rest of the body (red square-dotted line). In general, however, additionally 

Fig. 9  The neural network architecture combining vision and kinematics data3. The performance of this 
network (named as ‘Optical Flow’) is compared with the optical flow features zeroed out (named as ‘No Flow’). 
We find that using egocentric optical flow helps improve prediction of knee and ankle joint ankles from the rest 
of the body. The prediction performance is measured in terms of the root mean squared error (RMSE) between 
the predicted trajectory and the actual measured trajectory using motion capture.

Fig. 10  Gait kinematics (above) and the first, 40th, and 80th vision frames (below) during the maneuver. The 
subject exited the classroom and executed a right turn while entering the atrium. Optical Flow RMSE = 0.082, 
No Flow RMSE = 0.110.

Fig. 11  Frames number 15, 60 and 100 are shown. The subject opened the door and entered the classroom. 
Optical Flow RMSE = 0.131, No Flow RMSE = 0.188.
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including the video data results in much better estimates (green circular-dotted line). More examples of this 
are provided in the manuscript3, including some examples of when visual data was not informative and did not 
improve predictions.

Complexity of movement.  The third example34 is an analysis of the relative complexity of various locomo-
tion activities. Forward walking, backward walking, sidestepping, and classroom walking were manually anno-
tated using the Xsens Analyze visualizer. These annotations are used to organize the activities in the processed, 
but not the raw, form of the dataset files (see Fig. 7.) These activity types were compared in terms of their apparent 
complexity using a variety of measures from statistics, information theory and dynamical system theory. While 
not exhaustive, the study raised the important question of how should we measure the complexity of human loco-
motion, particularly when some of the standard complexity measures in the gait literature give counterintuitive 
results. For example, we expect locomotion in tight spaces with obstacles like a classroom to be more complex 
than obstacle free sidestepping. However, our analysis shows otherwise (See Fig. 12). A commmon measure 
of complexity, the number of principal components necessary to express 95 percent of the variability, rates left 
and right sidestepping as the most complex. This analysis is especially important considering that the data is 

Fig. 12  Commonly used measures of complexity provide quantitative insight into differences in activity type 
or behavior in and out of the laboratory. (a) depicts the percent variance explained by an increasing number of 
principal components, and (b) depicts the number of components necessary to represent 95% of the variability. 
These are both commonly used quantitative measures of complexity, yet they indicate, counterintuitively, that 
left and right sidestepping are more complex than obstacle avoidance or backward walking.

Fig. 13  (left) Movements recorded from stair ambulation, in red, form a distinct cloud mostly separable from 
those recorded from flat ground walking, in blue. (right) Movements recorded from 8 individuals occupy 
distinct annular regions in the latent representation. In36 we show that a simple classifier can achieve 97% 
accuracy for distinguishing flat from stair walking, and 91% accuracy for discriminating amongst 8 individuals. 
These examples show that dimensionality reduction can assist in visualization, interpretation, or creating 
representations suitable for classification.
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measured from movement outside of an artificial laboratory environment. Although there has previously been 
some comparative analysis of treadmill walking and overground straight line walking, eg.35, this dataset provides 
the opportunity to analyze and compare more diverse activities outside of the lab.

Dimensionality reduction and movement representations.  The final usage example is a means for 
representing the full-body kinematic data using a dimensionality reduction technique36. We compare principal 
component analysis (PCA) with two styles of autoencoding neural networks, dubbed Pose-AE and Move-AE. 
The Move-AE network uses recurrent neural network components to represent temporal dynamics, leading to 
higher Variance Accounted For (VAF) than the “snapshot” methods. We also show that the geometry of the 
low-dimensional latent space has human-interpretable structure, with different kinds of movement and different 
individuals occupying distinct regions (Fig. 13). This allows for simple classification of movement type and indi-
vidual in the latent representations. Scripts demonstrating these techniques are made available in the directory 
named “Dimensionality reduction and movement representation”.

Code availability
We provide an example python script for loading the processed motion capture and vision data, named ‘main.
py’ in the directory ‘data_loading_example’ on the Github repository. In addition we provide scripts for 
synchronization and frame-dropping, and examples of loading into pytorch machine learning pipeline. All code 
is available on (https://github.com/abs711/The-way-of-the-future).
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