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Abstract. This study presents a simple and efficient scheme

for Bayesian estimation of uncertainty in soil moisture simu-

lation by a Land Surface Model (LSM). The scheme is as-

sessed within a Monte Carlo (MC) simulation framework

based on the Generalized Likelihood Uncertainty Estima-

tion (GLUE) methodology. A primary limitation of using

the GLUE method is the prohibitive computational burden

imposed by uniform random sampling of the model’s pa-

rameter distributions. Sampling is improved in the proposed

scheme by stochastic modeling of the parameters’ response

surface that recognizes the non-linear deterministic behav-

ior between soil moisture and land surface parameters. Un-

certainty in soil moisture simulation (model output) is ap-

proximated through a Hermite polynomial chaos expansion

of normal random variables that represent the model’s pa-

rameter (model input) uncertainty. The unknown coefficients

of the polynomial are calculated using limited number of

model simulation runs. The calibrated polynomial is then

used as a fast-running proxy to the slower-running LSM to

predict the degree of representativeness of a randomly sam-

pled model parameter set. An evaluation of the scheme’s

efficiency in sampling is made through comparison with the

fully random MC sampling (the norm for GLUE) and the

nearest-neighborhood sampling technique. The scheme was

able to reduce computational burden of random MC sam-

pling for GLUE in the ranges of 10%–70%. The scheme was

also found to be about 10% more efficient than the nearest-

neighborhood sampling method in predicting a sampled pa-

rameter set’s degree of representativeness. The GLUE based

on the proposed sampling scheme did not alter the essential

features of the uncertainty structure in soil moisture simula-

tion. The scheme can potentially make GLUE uncertainty

estimation for any LSM more efficient as it does not impose

any additional structural or distributional assumptions.
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1 Introduction

In hydrology, uncertainty estimation techniques that are

based on fully random Monte Carlo (MC) sampling of

probability distributions are usually considered the preferred

method due to their lack of restrictive assumptions, com-

pleteness in sampling the error structure of the random vari-

ables, and the increasing availability of computational re-

sources (Beven and Freer, 2001; Beck, 1987; Kremer, 1983).

MC sampling can also bypass several limitations of analyt-

ical techniques (Bras and Rodriguez-Iturbe, 1993). An un-

certainty estimation technique called Generalized Likelihood

Uncertainty Estimation (GLUE) (Beven and Binley, 1992) is

one such MC based tool that can be employed to assess an en-

vironmental model’s predictive uncertainty. This method ex-

tends the type of Generalized Sensitivity Analysis (GSA) of

Spear and Hornberger (1980) by evaluating the simulation re-

sults for each randomly sampled model parameter set against

some observed data through a likelihood value. Because its

structure is rooted in Bayesian theory, GLUE also allows

blending of prior and current information for improved a pos-

teriori inferences. While GLUE is not the only uncertainty

assessment tool currently available (Misirli et al., 2003; Thie-

mann et al., 2001; Tyagi and Haan, 2001; Krzysztofowicz,

2000; Young and Beven, 1994), the simplicity of the the-

ory behind the technique is what makes it convenient and

very easy to implement (Beven and Freer, 2001). GLUE

has therefore found extensive application in the assessment

of predictive uncertainty of many hydrologic variables like

streamflow, flood inundation, ground water flow, land surface

fluxes, etc. (Schulz and Beven, 2003; Christaens and Feyen,

2002; Beven and Freer, 2001; Schulz et al., 2001; Romanow-

icz and Beven, 1998; Franks et al., 1998; Franks and Beven,

1997; Freer et al., 1996; among many others). Recently, the

GLUE technique has also proved to be a powerful tool in un-

derstanding the implications of remotely sensed rainfall error

adjustment on flood prediction uncertainty (Hossain et al.,

2004).
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However, the GLUE method has a major drawback. It

requires analysis of multiple simulation scenarios based on

uniform random sampling of the model parameter hyper-

space. This requirement can be computationally prohibitive

for physically complex models that are slow-running (Bates

and Campbell, 2001; Beven and Binley, 1992). Beven and

Binley (1992) have argued in detail that the assumption of

uniform distribution is unlikely to prove critical for GLUE.

Freer et al. (1996) have further justified uniform sampling

because it makes the GLUE procedure simple to implement

and avoids the necessity to sample from some multivariate

set of correlated distributions which is often very difficult to

justify from observed data. Nevertheless, the drawback of

uniformity assumption in GLUE magnifies tremendously for

physically complex Land Surface Models (LSM) that simul-

taneously balance water and energy budget across the land

surface. Thus, GLUE application for Bayesian estimation of

uncertainty in land surface-atmosphere flux predictions has

so far been limited to relatively simpler conceptualizations

of soil-vegetation-atmosphere transfer (SVAT) schemes (e.g.

Schulz and Beven, 2003; Schulz et al., 2001; Franks et al.,

1998; Franks and Beven, 1997). A more realistic Bayesian

assessment of uncertainty requires the application of GLUE

to physically complex operational LSMs such as Common

Land Model (CLM; Dai et al., 2003), NOAH-LSM (Pan and

Mahrt, 1987), BATS (Dickinson et al., 1986) or SiB (Sellers

et al., 1986). Uncertainty assessment of these models are

important because, despite their physical complexity, they

nevertheless suffer from parameter equifinality where a wide

range of parameter sets exhibit equally acceptable simula-

tions against data available.

In the last decade, researchers have strived to develop nu-

merical schemes for efficient sensitivity analyses of LSM pa-

rameters. Henderson-Sellers (1993) proposed a Factorial As-

sessment (FA) of sensitivity of model parameters that incor-

porates the multifactor interactions and tries to avoid the po-

tential weakness of the classical sensitivity analyses of per-

turbing one parameter at a time. However, the FA method

suffers from the following limiting requirements: 1) prior

knowledge of parameter variances; and 2) large number of

model perturbations (Gao et al., 1996). Collins and Avis-

sar (1994) proposed a Fourier Amplitude Sensitivity Test

(FAST) for land surface parameters. This method also has

drawbacks similar to the FA method with the additional re-

quirement that parameters be physically uncorrelated. Gao

et al. (1996) summarized that there was no perfect method

for characterizing parameter uncertainty of land surface sys-

tems and proposed a special form of the classical stand-alone

sensitivity analyses for land-surface schemes. Our qualita-

tive assessment of the techniques reported in literature and

alluded herein indicates that none of them are pertinent to

GLUE for making uncertainty estimation of LSMs computa-

tionally more efficient.

In recognition of the uncertainty due to input land sur-

face parameters and the ease of implementation of the GLUE

method, there is a need to develop a parameter sampling tech-

nique that can make the application of GLUE more efficient

for LSMs. Such a technique should not impose additional

structural or distributional assumptions that may otherwise

compromise the inherent simplicity of the GLUE method.

Kuczera and Parent (1998) and Bates and Campbell (2001)

have already explored the use of Markov Chain Monte Carlo

(MCMC) methods for more efficient parameter uncertainty

analyses. Bates and Campbell (2001) however reported that

MCMC methods cannot be used as a black box – consider-

able care is required in its implementation when models have

large number of parameters. A further criticism made by

Beven and Freer (2001) was that MCMC methods can rarely

be useful in making considerable savings in computing time

when the model response surface with respect to parameters

is not well defined and has the presence of multiple local

maxima or plateau. Christaens and Feyen (2002) employed

the Latin Hypercube Sampling (LHS) method to accelerate

parameter sampling for the MIKE-SHE hydrologic model.

However, LHS is based on the assumption of monotonicity of

model output in terms of input parameters, in order to be un-

conditionally guaranteed of accuracy with an order of mag-

nitude fewer runs than uniform random sampling (McKay et

al., 1979; Iman et al., 1981). Recent study by Hossain et

al. (2004a)1 has clearly shown that the use of LHS method is

not always effective and that it requires care in planning an

effective sampling strategy. Consequently this study is moti-

vated by the need to develop a simple but efficient parame-

ter sampling technique that can make GLUE computationally

more efficient for slow-running LSMs.

In the current state of the art, GLUE for such models

would require an interpolator for the model parameter-output

response surface. This interpolator could then act as a fast-

running proxy to the slow running model and potentially

identify the regions of high likelihood values (i.e. regions of

high degree of representativeness of the hydrologic system)

on the parameter-output response surface. In this study we

have chosen to develop a stochastic interpolator based on the

“Theory of Homogeneous Chaos” (Wiener, 1938) (hereafter

called “interpolator”). We do not demonstrate the presence

or absence of chaotic behavior of simulations in this study.

However, we are encouraged by the recent well-documented

discovery of chaos in hydrologic systems (Sivakumar et al.,

2001a and 2001b; Sivakumar, 2000; Jayawardena and Lai,

1994; Rodriguez-Iturbe et al., 1991). Essential concepts of

the interpolator are inferred from an uncertainty estimation

tool originally developed by Isukapalli et al. (2000). How-

ever, the critical evaluation presented herein of the interpo-

lator within the GLUE framework for improving parameter

sampling is considered a relatively unexplored topic. In this

study we make an evaluation of the interpolator on a dif-

ferent surface hydrologic variable – soil moisture – which

is simulated by the physically-based NOAH-LSM (Pan and

Mahrt, 1987). The interpolator is also compared with the

1Hossain, F., Anagnostou, E. N., and Bagtzoglou, A. C.: On

Latin Hypercube Sampling for Efficient Uncertainty Estimation of

Satellite-derived runoff predictions. J. of Hydrology, in review,

2004.
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Fig. 1. NOAH-LSM vegetation parameter and bias adjustment for soil moisture simulation. Upper panel – monthly accumulated precipitation

(mm) for 1998. Middle panel – observed soil moisture measurements (mean monthly) at 5 cm depth compared with simulations with

adjustments and no adjustments. Lower panel – the monthly multiplicative bias in simulation with adjusted and unadjusted vegetation

parameters. Effective study period was 1 March – 30 November 1998.

fully random MC sampling technique (the norm for GLUE)

and the nearest-neighborhood parameter sampling technique

originally proposed by Beven and Binley (1992).

The study is organized in the following manner. In Sect. 2,

a brief description of the study region and data are provided.

Section 3 describes the LSM part a and its readjustment part

b that were found necessary to make the model representa-

tive of the study region. In Sect. 4, we describe the GLUE

method based on fully random uniform parameter sampling.

Section 5 provides description of the algorithm for the inter-

polator for parameter sampling. Section 6 describes the sim-

ulation framework for assessment of the interpolator. Sec-

tion 7 discusses the results, while Sect. 8 presents the con-

clusions and further extensions that can potentially extend

the capabilities of the interpolator.

2 Study region and data

Our study region was Northern Illinois (USA) in a farmland

in Champaign located 40.01◦ N and 88.37◦ W. The site char-

acteristics were typical of those found throughout Midwest-

ern US with most of the land in agricultural production. The

soil was silt loam with a bulk density of 1.5 gm/cm3. The

year under study was 1998 when soybeans were planted in

the farm. Atmospheric and radiation forcing data from a

flux measuring system installed in the farm was recorded ev-

ery 30 min for that year. The major atmospheric data com-

prised precipitation, temperature, humidity, surface pressure

and wind. The radiation forcing data pertained to down-

ward solar (short-wave) and downward long-wave radiation

flux measurements. This data is public domain and avail-

able as part of standardized testing protocols for simulation

codes of the NOAH-LSM (discussed next). To reduce the im-

pact of snow and sensitivity to initial conditions in our study,

we chose an effective study period ranging from 1 March –

30 November 1998. For more information on the study re-

gion and data measurement protocols the reader is referred

to the User’s Guide, Public Release Version 2.5 available at

ftp://ftp.emc.noaa.gov/mmb/gcp/ldas/noahlsm/ver 2.5.

3 The land surface model

3.1 Model description

The LSM used in this study was NOAH-LSM (also known as

The Community NOAH-LSM) (Pan and Mahrt, 1987). We

chose NOAH-LSM as it is a popular operational model and

insights into this study could prove beneficial in understand-

ing the utility of the proposed sampling technique for uncer-

tainty prediction of land surface variables in general. This

LSM is a stand-alone, uncoupled, 1-D column version used

to execute single-site land surface simulations. In this tra-

ditional 1-D uncoupled mode, near surface atmospheric and

radiation forcing data are required as input forcing. NOAH-

LSM simulates soil moisture (both liquid and frozen), soil

temperature, snow pack, depth, snow pack water equivalent,

canopy water content and the energy and water flux terms

in terms of the surface energy balance and surface water

balance. A four-layer soil configuration (comprising a to-

tal depth of 2 m) is adopted in the NOAH-LSM for captur-

ftp://ftp.emc.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.5
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Fig. 2. Readjustment of monthly Fraction of Vegetation parameters for NOAH-LSM to make them more representative of the study region and

point-scale simulation of soil moisture for the upper 5 cm layer. Unadjusted parameters are derived from Normalized Difference Vegetation

Index (NDVI; Gutman and Ignatov, 1998). The growth sequence applies for soybeans that were planted during 1998.

ing daily, weekly and seasonal evolution of soil moisture and

mitigating possible truncation error in discretization (Srid-

har et al., 2002). The lower 1 m acts as gravity drainage at

the bottom, and the upper 1meter of soil serves as root zone

depth. Since this study concerns the assessment of a param-

eter sampling technique, we have considered soil moisture

observations and simulations only at the 5 cm depth for the

sake of simplicity. For more details on the physical descrip-

tion of the model, one may refer to Sridhar et al. (2002).

3.2 Model readjustment

Our preliminary investigation with NOAH-LSM revealed

significant underestimation of soil moisture simulation at the

5 cm depth. This thereby indicated an overestimation of

Evapotranspiration (ET) process that magnified further dur-

ing the soybean growing season (see Fig. 1, lower panel). We

therefore found it necessary to adjust some of the NOAH-

LSM vegetation parameters to make the model more rep-

resentative of the point-scale soil moisture flux simulations

at the farm. We reduced the number of root layers from

3 (100 cm of deep roots) to 2 (40 cm of deep roots). This

reduction was justified for our study period, as soybeans

do not typically grow roots beyond 30 cm depth (Norman,

1978; Liu, 1997). We found Leaf Area Index (LAI) to be

an insensitive parameter to the bias in soil moisture simula-

tion. We further hypothesized that a typical soybeans lateral

spacing of 80 cm (inferred from: Norman, 1978) should not

yield the fraction of green vegetation greater than 0.5 dur-

ing the growing months. The vegetation fraction parame-

ters used in LSMs are derived from the NDVI (Normalized

Difference Vegetation Index) proposed by Gutman and Ig-

natov (1998). Because NDVI as derived from the NOAA

AVHRR are typically representative for the 15×15 km2 res-

olution (see Gutman and Ignatov, 1998), we argue that they

may require minor adjustment for the point scale study con-

ducted herein. The use of high resolution LANDSAT data

(30 m) could perhaps address this limitation. However, the

non-availability of such higher resolution data prompted us

to assume an adjusted set of fraction of vegetation parame-

ter for a 1-D (point) investigation scenario. We argue that

this assumption is acceptable as the objective of this study is

confined to the exploration of sampling efficiency of our pro-

posed scheme. Based on knowledge of the soybean growth

sequence (i.e. plant in May; flower in July and harvest in

October) (Liu, 1997), we adjusted the vegetation fraction pa-

rameters as shown in Fig. 2. It is seen that the bias is now

reduced after this adjustment for the growing season (May–

July). The mean multiplicative bias (ratio of simulated to ob-

served) for the effective study period (1 March – 30 Novem-

ber 1998) was found to be 0.868 (Fig. 1, lower panel). We

therefore applied a final multiplicative bias adjustment fac-

tor to the NOAH-LSM soil moisture simulations of 1.15 (i.e.

1/0.868). The effect of bias adjustment after the vegetation

parameter fine-tuning is shown to improve simulations sig-

nificantly (see Fig. 1, middle panel, dashed line).

3.3 Model parameter uncertainty

NOAH-LSM parameter uncertainty was accounted for the

following five soil hydraulic parameters that we consid-

ered most sensitive to soil moisture simulation: 1) max-

imum volumetric soil moisture content (porosity) (SMC-

MAX, m3/m3); 2) saturated matric potential (PSISAT, m) (3)
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Table 1. Uncertainty ranges for soil hydraulic parameters of NOAH-LSM.

Parameter Minimum value Maximum value Sampling strategy

1. SMCMAX (m3/m3) 0.05 0.50 Uniform

2. PSISAT (m) 0.01 0.65 Uniform

3. SATDK (m/s) 1.00×10−6 1.77×10−4 Log (uniform)

4. BB 2.00 15.00 Uniform

5. SMCWLT (m3/m3) 0.01 0.20 Uniform

saturated hydraulic conductivity K (SATDK, m s−1); 3) pa-

rameter ‘B’ of soil-water retention model of Clapp and Horn-

berger (1978) (BB); and (4) soil moisture wilting point at

which ET ceases (SMCWLT, m3/m3). The parameter un-

certainty ranges are shown in Table 1 and were based on

the empirical study of Clapp and Hornberger (1978) and the

sampling requirements of GLUE (Beven and Binley, 1992)

(discussed next).

4 The GLUE methodology

GLUE is based on MC simulation: a large number of model

runs are made, each with random parameter values selected

from uniform probability distributions for each parameter.

The acceptability of each run is assessed by comparing pre-

dicted to observed hydrologic measurement through some

chosen likelihood measure. Runs that achieve a likelihood

below a certain threshold may then be rejected as non-

behavioral. The likelihoods of these non-behavioral param-

eters are set to zero and are thereby removed from the sub-

sequent analysis. Following the rejection of non-behavioral

runs, the likelihood weights of the retained (i.e. behavioral)

runs are rescaled so that their cumulative total is one (Freer

et al., 1996). In this study the GLUE method was applied to

uncertainty estimation of soil moisture simulation by NOAH-

LSM at the 5 cm depth. Thus at each time step (at 30 minute

intervals), the predicted soil moisture from the behavioral

runs are likelihood weighted and ranked to form a cumula-

tive distribution of soil moisture simulation from which cho-

sen quantiles can be selected to represent model uncertainty.

While GLUE is based on a Bayesian conditioning approach,

the likelihood measure is achieved through a goodness of fit

criterion as a substitute for a more traditional likelihood func-

tion. We have considered two specific likelihood measures

in this study: 1) the classical index of efficiency, ENS (Nash

and Sutcliffe, 1970) (Eq. 1), and 2) the exponential index of

efficiency,EEXP (Eq. 2).

ENS =

[

1 −
σ 2

e

σ 2
obs

]

(1)

EEXP = exp

[

−σ 2
e

σ 2
obs

]

, (2)

where σe is the variance of errors and σobs, the variance of

observations. These two likelihood measures are consistent

with the requirements of the GLUE method, as both increase

monotonically with the similarity of behavior. The purpose

of using two different likelihood measures was to demon-

strate that the applicability of the interpolator was not sensi-

tive to the subjective choice.

Now, to implement the GLUE methodology, each param-

eter of NOAH-LSM was specified a range of possible values

shown earlier in Table 1. Constant (calibrated) values for

all other NOAH-LSM parameters were used. Model predic-

tions of soil moisture were carried out, and the model likeli-

hood measure was calculated using the efficiency indices of

Eqs. (1) and (2). From the specified parameter ranges, MC

simulations were conducted that allowed the selection of a

large number of behavioral parameter sets characterized by

a simulation efficiency index value greater than an assigned

minimum threshold value. For further details on GLUE im-

plementation, one is referred to Beven and Binley (1992),

Freer et al. (1996) and Beven and Freer (2001).

5 Algorithm of the inperpolator

The principle of the interpolator is founded on the “Theory

of Homogeneous Chaos” (Wiener, 1938). Wiener (1938) has

shown that if deterministic dynamical model is highly non-

linear (with a tendency to exhibit chaotic behavior), then it is

possible to approximate both inputs and outputs (treated here

as random processes) of the uncertain model through series

expansion of standard random variables using Hermite Poly-

nomials. Although the presence of chaotic behavior in the

hydrologic system under study is not addressed herein, re-

cent literature supports the wisdom of choosing the “Theory

of Homogeneous Chaos” as a basis for formulation of the

interpolator (Sivakumar, 2000; Sivakumar et al., 2001a, b;

Rodriguez-Iturbe et al., 1991). Rodriguez-Iturbe et al. (1991)

has demonstrated chaotic behavior of soil moisture dynamics

at seasonal time scales. Since our effective study period was

seasonal (from March to November 1998), this observation

by Rodriguez-Iturbe et al. (1991) therefore justifies the use of

a chaotic approach for our methodology. Furthermore, the re-

quirement of multiple ordinary non-linear differential equa-

tions as the necessary condition for chaotic behavior in soil

moisture dynamics has also been noted by Rodriguez-Iturbe
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Fig. 3. Flow-chart for the algorithm of the interpolator.

et al. (1991). The physical formulation of NOAH-LSM indi-

cates that there are sufficient physical sub-models linking the

5 soil hydraulic parameters (of Table 1) to intuitively expect

a chaotic behavior relationship (between soil moisture pre-

diction the hydraulic parameters). These notable sub-models

are as follows: 1) The prognostic equation for volumetric

soil water content (Richards Equation) (Sridhar et al., 2002);

2) The diffusion equation for soil temperature (Sridhar et

al., 2002); 3) The Penman-based energy balance approach

for potential evaporation (Sridhar et al., 2002); and, 4) The

Mahrt and Ek (1984) formulation of surface skin tempera-

ture. There are three major steps involved in the algorithm

formulation of this interpolator. We describe these steps be-

low. For more details the reader is referred to Isukapalli and

Georogopolous (1999) and Isukapalli et al. (2000).

5.1 Step one: transformation of parameter distributions

Our NOAH-LSM model input parameter uncertainty domain

is represented by a 5-D hypercube (Table 1) with the distribu-

tion of each parameter being uniform (the norm for GLUE).

It is defined as follows,

Xi∼U(pi, qi), i=1, . . . . . ., 5, (3)

where p and q form the lower and upper parameter ranges

(column 1 of Table 1). Subscript i refers to the specific pa-

rameter type (from 1 to 5 as listed in Table 1). X represents

the parameter value. These uniformly distributed parameters

are then expressed as a series of a standard normal random

variable (srv) as,

xi,j=pi + (qi − pi)(
1

2
+

1

2
erf (εi,j /

√

2)) , i=1, . . ., 5, (4)

where ε is a srv∼ N(0,1) and j denotes the index for a ran-

dom realization. erf (xx) is the error function defined by the

following integral,

erf (xx)=
2

√
π

xx
∫

0

e−w2

dw. (5)

In Eq. (5), xx is the srv and w an intrinsic independent vari-

able of the error function.

We have now expressed the random inputs (uniformly dis-

tributed model parameters) via srv’s as {ε}ni=1 (where, n=

5). The choice of transforming the model parameters to

the normal srvs is justified by mathematical tractability of

functions of these srv’s (Devroye, 1986).For example, other

common univariate distributions such as gamma, exponen-

tial, Weibull, log-normal can all be transformed explicitly to

normal srv’s.

5.2 Step two: polynomial chaos expansion

Next, we represent our uncertain model output, L – the like-

lihood measure (left-hand side of Eqs. 1 or 2), as an n-th

order expansion of a Hermite Polynomial of srv’s. This

step, called “Polynomial Chaos Expansion”, follows from

Ghanem and Spanos (1991). In this study we have consid-

ered second order expansion which is defined as follows,

L2=a0,2+
∑n

i=1
ai,2 εi+

n
∑

i=1

aii,2(ε
2
i −1)+

n−1
∑

i=1

n
∑

j>1

aij,2εiεj , (6)

where the subscript after L represents the order of the expan-

sion.

5.3 Step three: calibration of coefficients of the Interpola-

tor

From the above Eq. (5), it can be seen that the number of un-

known coefficients (the a’s in the right hand side) to be deter-

mined for second order polynomial chaos expansion are 21.

These unknown coefficients are now identified by generating

the same number of model data points and solving the sys-

tem of linear algebraic equations. Isukapalli and Georgopou-

los (1999) provide guidelines on choosing model points for

robust calibration of coefficients. The choice of the model

points in this study is, however, left open to the user depend-

ing on the nature of the problem. We investigated this issue

herein and report our findings in the next section. For calibra-

tion of polynomial coefficients we used the Singular Value

Decomposition (SVD) (Press et al., 1999) because of its abil-

ity to handle ill-conditioned matrices (Press et al., 1999; Hos-

sain and Anagnostou, 2004).

In Fig. 3 we summarize the algorithm for the interpola-

tor. First, we generate a set of uniformly distributed model

parameter sets from srvs (using Eqs. 3, 4 and Table 1). 21

points on the NOAH-LSM’s parameter-output (E) response

surface are then chosen. The interpolator is then calibrated

for its 21 coefficient values by solving the system of 21 lin-

ear algebraic equations. For a more global selection of cali-

bration points, we derive 3 different sets of calibrated poly-

nomials for the interpolators. The mean E value predicted

by the 3 calibrated interpolators is then defined as the most

likely E value for a sampled parameter set. The total num-

ber of different sets of calibration points required is consid-

ered subjective and depends on the nature of the sampling
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Fig. 4. General comparison of interpolator with Nearest-neighborhood (NN ) method and uniform random sampling as a predictor for

sampled parameter sets in terms of Success Ratio.

problem. Herein we consider 3 sets as sufficient to yield ef-

fective results for a 5-D parameter hyperspace. Once the in-

terpolator(s) is calibrated for NOAH-LSM on data available,

we test its efficiency in parameter sampling in the follow-

ing 4 steps: (i) sampling N (0, 1) srvs; (ii) generating the

corresponding family of uniformly distributed NOAH-LSM

parameters from Eq. (4); (iii) computing the mean of the 3

interpolator-predicted E values from Eq. (6); (iv) if the in-

terpolator predicts a sampled parameter set to be behavioral,

then testing its accuracy by actual execution of NOAH-LSM

for that sampled parameter set. Note that the use of the inter-

polator in this fashion within the GLUE framework does not

violate the fundamental requirement that parameters be sam-

pled uniform distributions. It only helps to make an informed

decision on sampling by providing an indication of whether

the sampled parameter set is behavioral or non-behavioral

before making the actual NOAH-LSM model run.

6 Simulation framework

The interpolator (which is now a simple algebraic equation)

is potentially a 5–6 orders faster in computation than NOAH-

LSM and can therefore serve as a fast-running proxy for

making Bayesian decisions on the degree of representative-

ness of sampled parameter sets for GLUE analysis. In al-

most all previous GLUE applications, behavioral and non-

behavioral parameter sets were identified through the actual

time-consuming execution of the physically-complex model.

This often resulted in high wastage of computational time

as the majority of the runs were found to be non-behavioral

(see Christaens and Feyen, 2002, for example). In this sim-

ulation framework we tested the accuracy of the interpolator

in stochastic modeling the parameter-output response surface

for GLUE and assessed its potential in reducing the wastage

of computational time due to the non-behavioral runs.

We conducted a total of 500 000 NOAH-LSM simulations

by sampling the same number of parameter sets randomly

from the ranges in Table 1. This ensemble was further di-

vided into 100 sub-divisions each containing 5000 parameter

sets. Each of these sets had its respective “true” model re-

sponse in terms of likelihood measures (ENS and EEXP from

Eqs. (1) and (2), respectively) determined from actual execu-

tion of NOAH-LSM. We then evaluated the sampling accu-

racy of the interpolator calibrated within each of these 100

sub-divisions to make generalizations on the mean and vari-

ability of its performance as a fast-running proxy. We first

present a confusion matrix for sampled parameter sets be-

low for the interpolator to define the performance measures

whose description follows next.
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To define the probability of interpolator to successfully

predict whether a sampled parameter set is behavioral or non-

behavioral (based on a given threshold for likelihood mea-

sure L) we define Success Ratio (SR) as,

SR =
NA

NA + NB

(7)

The SR indicates only a partial assessment of sampling ef-

ficiency. There can be instances where the interpolator is

overly conservative in predicting a set as behavioral and

thereby achieves a spuriously high SR over very small sam-

ples of model executions. Thus, another measure, (BS,

Eq. 8) was also defined. BS quantifies the propensity of the

interpolator to predict the behavioral sets as non-behavioral

or missing regions of high likelihood values on the response

surface.

BS =
NA + NB

NA + NC

(8)

A BS value of less than 1 would indicate that the interpolator

has a tendency to be conservative in predicting correctly a

sampled parameter set’s likelihood value. A BS value greater

than 1 would indicate the interpolator’s propensity to predict

samples as behavioral. An ideal interpolator should therefore

have a BS of near 1.0 and SR that is higher than that for

uniform sampling.

Performance of the interpolator was compared with the

fully uniform sampling of parameter sets using the above 2

measures (Eqs. 7 and 8). The Nearest-Neighborhood (NN )

search for interpolating parameter set’s likelihood value was

also compared herein (hereafter called NN method). This

type of sampling method was first introduced by Beven and

Binley (1992) to address the computational concerns of the

GLUE method. In the NN method, a sampled point in pa-

rameter hyperspace is searched for the “n” nearest neigh-

boring points in a model’s response surface that is pre-

constructed from a finite number sample points (=1000 pre-

constructed model points in this study). The probable like-

lihood value is then interpolated by the inverse squared dis-

tance technique. We have considered 6, 12 and 24 neigh-

bors for the NN method. A point to note is that the NN

method requires a computationally intensive sorting algo-

rithm to rank all the distances from a sampled point in param-

eter hyperspace. The computing time for sorting increases as

N2 where N is the size of the pre-constructed model points

(Press et al., 1999). Hence a compromise is needed with the

size of the pre-constructed model points when the dimension

of the parameter hyperspace is high. This is considered a

major weakness of the NN method when compared to the

interpolator.

7 Results and discussion

In Fig. 4 we show the mean SR values of the 100 sub-

divisions (comprising the total 500 000 sets) for the interpo-

lator, NN method (6 neighbors) and uniform random sam-

pling for two different likelihood measures (Nash-Sutcliffe

Table 2. Mean Bias Score (BS) values for the interpolator and NN

scheme.

Interpolator Nearest neighborhood

interpolator (6 neighbors)

> Threshold E

(Nash-sutcliffe) BS BS

0.1 0.812 1.07

0.2 0.858 1.21

0.3 0.894 1.19

0.4 0.808 1.09

0.5 0.800 0.950

0.6 0.867 0.700

0.7 0.818 0.501

efficiency – upper panel; Exponential efficiency – lower

panel). Note that the (1−SR) value actually represents the

wastage of computational time due to non-behavioral runs

of NOAH-LSM. This is because the sampled parameter sets

were evaluated of their degree of representativeness by run-

ning the NOAH-LSM only after the prediction by the inter-

polator or the NN method gave a strong indication of the set

to be behavioral. The interpolator in Fig. 4 was calibrated

with sample points that had a minimum E value of 0.7. We

observe that the fully uniform random sampling can be very

inefficient and result in high wastage of computational time

(ranging from 50%–80%) as the acceptance criterion for be-

havioral parameter sets increases (ENS>0.4, upper panel;

EEXP>0.5, lower panel). This observation justifies the wis-

dom of using a more efficient parameter sampling scheme

for GLUE based on interpolation of the parameter response

surface. The interpolator is able to demonstrate sampling ef-

ficiency in predicting correctly the nature of a sampled set

(behavioral or non-behavioral?) even at high degrees of ac-

ceptance criterion. For Nash-Sutcliffe efficiency likelihood

measure, the SR value for interpolator is always found to be

above 0.90 and about 0.10 higher than that of NN method

(Fig. 4, upper panel). The SR value of the interpolator

for Exponential efficiency likelihood measure appears to de-

crease moderately to 0.80 at the high acceptance criterion of

EEXP>0.60 (lower panel, Fig. 4), and become less than that

of the NN method. However, for this case, the interpolator

versus NN method difference is found to be small (less than

15%). Overall, when compared with the uniform random

sampling, we note that the interpolator is able to reduce the

wastage of computational time due to non-behavioral runs

in the ranges of 10%–70%.

Table 2 summarizes the mean values (of the 100 sub-

divisions of the 500 000 sets) for BS values for the interpola-

tor and NN method using the Nash-Sutcliffe efficiency as the

likelihood measure. Similar statistics were observed for the

Exponential efficiency likelihood measure, and is therefore

not reported herein. We observe that the interpolator is mod-

erately conservative (BS<1.0) compared to the NN method

in accepting a sampled parameter set as behavioral. This is
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5000 NOAH-LSM simulations). One standard deviation of variability is indicated by the vertical error bars (dashed).
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Fig. 5. (b) Same as in (a), but for exponential efficiency likelihood measure.

not necessarily considered a drawback of the interpolator as

it can be executed as many times as needed to generate the

desired sample size of behavioral parameter sets. The more

qualifying aspect is whether the interpolator exhibits regions

of local attractions in the response surface that are inconsis-

tent with the uniform random sampling (discussed next).

In Figs. 5a and 5b, we explore certain calibration aspects

of the interpolator and the NN method for Nash-Sutcliffe

and Exponential efficiency likelihood measures, respectively.

The upper panels show the effect of choice of calibration

sample points for interpolator for three different criteria (se-

lection of points based on a minimum Efficiency value of

0.3, 0.5 and 0.7). The lower panels show the effect of the

“n” – the number of nearest neighbors – in interpolating the

likelihood value by the NN method for 6, 12 and 24 nearest

neighbors. We observe that the choice of calibration points

can have an impact on the efficiency (SR value) of the inter-

polator with the best performance achieved when the choice



436 F. Hossain et al.: A non-linear and stochastic response surface method

−6 −5.5 −5 −4.5 −4

Parameter value

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n

c
y

0.15 0.25 0.35 0.45
0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n

c
y

2 4 6 8 10 12 14

Parameter value

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.5

0.6

0.7

0.8

0.9

1

SMCMAX
PSISAT

BB
Log10 (SATDK)

Fig. 6. (a) Dotty plots obtained from uniform random sampling of GLUE model parameters with Nash-Sutcliffe efficiency likelihood measure

>0.4. The plots represent an ensemble of 5000 parameter sets.
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Fig. 6. (b) Same as in (a), but for the interpolator.

of points are highly behavioral (i.e. Emin>0.7). For NN

method, the choice of n appears to have a negligible impact,

although for both schemes, we observe that the variability

in prediction increases as the acceptance criterion increases.

Furthermore, the sampling efficiency (in terms of SR) of the

NN method appears to decrease in the moderate likelihood

measure ranges (0.2<ENS<0.5; 0.4<EEXP<0.6). We hy-

pothesize that the simple inverse squared distance interpola-

tion for NN method is not universally effective for improved

parameter sampling for LSMs because the response surface

does not vary isotropically in a linear fashion with respect to

parameters.

In Figs. 6a, b and c we compare the dotty plots obtained

from the interpolator sampling and the random uniform sam-

pling of GLUE model parameters. Dotty plots were first pro-

posed by Beven and Binley (1992) as a simple way to demon-

strate the parameter equifinality of a model. Against the like-

lihood value presented along the y-axis, the scatter of the pa-
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Fig. 6. (c) Same as Figs. 6a and 6b, but for the fifth NOAH-LSM parameter of SMCWLT.

rameters along the x-axis is accepted as a qualitative measure

of parameter equifinality. If the dotty plots derived from uni-

form random sampling are assumed as the reference, then the

parameters sampled as behavioral via the initial screening of

the interpolator should show similar scatter to represent con-

sistent equifinality. This is an important aspect to assess for

any parameter sampling scheme, which otherwise may ren-

der itself unsuitable for GLUE analysis. The dotty plots for

the two likelihood measures were found to be similar. Hence

we only show herein dotty plots pertaining to 5000 parameter

sets sampled as behavioral for the Nash-Sutcliffe efficiency

likelihood measure ENS>0.4. As seen by comparing Fig. 6b

(interpolator dotty plots) with Fig. 6a (uniform random sam-

pling) for the four NOAH-LSM parameters, we observe that

the behavioral parameters sampled by interpolator represent,

at least qualitatively, the same degree of equifinality as the

reference (uniform) dotty plots. The fifth parameter compar-

ison is shown in Fig. 6c (also found to be similar). The inter-

polator has no specific regions of local attraction of uneven

sampling inconsistent with the uniform random sampling.

Finally, in Figs. 7a and 7b, we show a typical GLUE anal-

ysis with 90% confidence limits in soil moisture simulation

uncertainty obtained from the aforementioned 5000 behav-

ioral parameter sets – one ensemble sampled by uniform

random sampling and the other ensemble sampled via the

interpolator. The prediction quantiles produced by uniform

random sampling are assumed as the reference for compari-

son here. For both likelihood measures (Nash-Sutcliffe ef-

ficiency likelihood measure – Fig. 7a lower panel; Expo-

nential efficiency likelihood measure – Fig. 7b, lower panel)

we observe negligible difference in the uncertainty estima-

tion at the 90% confidence limits. However, a more quali-

fying test for the preservation of the uncertainty structure in

simulation is provided in Fig. 8 where we compare the Ex-

ceedance Probability (EP ) against the width of confidence

limits (from 10% to 90%). EP is defined as the number of

times the observation (i.e. soil moisture measurement) is not

enveloped by the predicted confidence limits normalized by

the total number of timesteps in simulation. EP would typ-

ically decrease monotonically with increasing width of the

limits. A similarity of the monotonic decrease at high and

low widths (>80% and <40%) is observed in Fig. 8. Since

GLUE is typically used for uncertainty analyses at high con-

fidence limits (Freer et al., 1996; Beven and Freer, 2001) this

observation indicates that the interpolator is able to preserve

sufficiently accurately the uncertainty structure of soil mois-

ture simulation as would have been typically identified with

random uniform sampling of the GLUE parameters. How-

ever, the use of the current formulation of the interpolator

seems most accurate at high confidence limits ranging from

70%–90% for NOAH-LSM soil moisture simulations.

8 Conclusions

This study has presented a simple and efficient scheme for

Bayesian assessment of uncertainty in soil moisture simula-

tion by a Land Surface Model. The scheme was assessed

within a MC simulation framework based on the GLUE

methodology. Parameter sampling was improved in the pro-

posed scheme by stochastic modeling of the parameter re-

sponse surface that recognizes the inherent non-linear deter-

ministic behavior of physically complex models. Uncertainty

in soil moisture simulation was approximated through a poly-

nomial chaos expansion of normal random variables that rep-
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Fig. 7. (b) Same as (a), but for Exponential efficiency likelihood measure >0.4 as the acceptance criterion for behavioral parameter sets.

resented the model’s parameter uncertainty. The calibrated

polynomial (interpolator) was then used as a fast-running

proxy to the slow-running model to predict the degree of rep-

resentativeness of a randomly sampled model parameter set.

The sampling scheme based on the interpolator was able to

reduce computational burden of uniform random MC sam-

pling for GLUE by about 10%–70%. It was also found to

be 10% more efficient and an order faster than the Nearest-

neighborhood sampling method. The GLUE based on the

proposed sampling scheme preserved the uncertainty struc-

ture in soil moisture simulation at moderate to high confi-

dence limits.

Because our proposed interpolator does not impose ad-

ditional structural or distributional assumptions on GLUE

method that could otherwise compromise its simplicity, it can

readily apply to make GLUE parameter sampling for slow-

running models more efficient. Some of the natural exten-

sions of this work include: (i) application of the interpolator
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to other physically-complex models and hydrologic variables

within the GLUE framework; (ii) investigating the conditions

or assumptions that give rise to a chaotic and non-chaotic be-

havior in the hydrologic system and thereby attempt to con-

nect the relationship of the hydrologic variable to the order

of polynomial chaos expansions; and (iii) investigating the

effect of the dimensional size of the parameter hyperspace

on the sampling efficiency of the interpolator. It has also

been suggested that the gradient information of the param-

eters with respect to model output, when assimilated in the

polynomial chaos expansion, an increase in the prediction

accuracy of the interpolator can be expected (Isukapalli and

Georgopoulos, 1999). Another potential use of the stochas-

tic non-linear response surface sampling scheme would be

in applications to large-scale land surface simulations where

model parameters are distributed as a matrix (2-D spatial do-

main) over large areal scales (>10 000 km2) (note: in this

study the parameters were a vector). For such applications,

research is needed to explore convenient ways to mathemati-

cally reformulate the interpolator to handle such distributed

parameters in spatial format. Work is on-going on some of

the above aspects and we hope to report them in future.
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