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SUMMARY 

 

Implementation of performance-based design procedures for pile-supported 

waterfront structures involves estimation of the dynamic wharf response for hazard 

scenarios that include liquefaction of the backfill. In these cases, empirical techniques 

based on quasi-static observations and widely implemented in practice for the analysis of 

dynamic soil-pile interaction problems, may not be used to address the role of critical 

parameters such as soil permeability, rate of loading and residual soil strength in the 

wharf performance, nor simulate radiation damping phenomena for liquefiable soils in 

transient loading. On the other hand, very few experimental results exist on dynamic soil-

pile interaction effects in liquefiable sites to justify the development of generic 

mechanical elements for this class of problems. 

As part of this research, a macroelement is developed for soil-structure interaction 

analyses of piles in liquefiable soils, which captures efficiently the fundamental 

mechanisms of saturated granular soil behavior. The mechanical model comprises a 

nonlinear Winkler-type model that accounts for soil resistance acting along the 

circumference of the pile, and a coupled viscous damper that simulates changes in 

radiation damping with increasing material non-linearity. Three-dimensional (3D) finite 

element (FE) simulations are conducted for a pile in radially homogeneous soil to 

identify the critical parameters governing the response. The identified parameters, i.e., 

hydraulic conductivity, loading rate of dynamic loading, dilation angle and liquefaction 

potential are then expressed in dimensionless form. Next, the macroelement parameters 



 xxi

are calibrated as a function of the soil properties and the effective stress. A semi-

empirical approach that accounts for the effects of soil-structure interaction on pore 

pressure generation in the vicinity of pile is used to detect the onset of liquefaction. The 

predictions are compared with field data obtained using blast induced liquefaction and 

centrifuge tests and found to be in good agreement. 

Finally, the macroelement formulation is extended to account for coupling in both 

lateral directions. FEM simulations indicate that response assuming no coupling between 

the two horizontal directions for biaxial loading tends to overestimate the soil resistance 

and fails to capture features like ‘apparent negative stiffness’, ‘strain hardening’ and 

‘rounded corners’.  
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CHAPTER 1  

INTRODUCTION 

 

 Smooth and efficient transportation of goods is vital both for the development and 

competitive strength of trade and industry and for society in general. Among the 

alternative modes of transportation, naval route is perhaps the most economical one for 

international trade, a fact that renders ports as a critical link in the transportation chain. 

Indeed, forty percent of the value of U.S. international trade passes through ports, more 

than any other mode (Bureau of Transportation Statistics [1]). Furthermore, maritime 

trade value has nearly doubled in the last decade, from $434 billion in 1990 to $811 

billion in 2003, and is likely to increase further given the expected growth in trade with 

Asia and Pacific-Rim nations and growing traffic congestion within land-based transport 

services. Clearly, these ‘gateways for international trade’ are ‘critical civil infrastructural 

systems’ indeed. Port components, however, are susceptible to significant damage from a 

variety of natural hazards, including earthquakes, tsunamis and hurricanes. In the life 

cycle of port structures, devastation by large earthquakes may be considered as a rare 

event, but with devastating magnitude of consequences nonetheless. As an example, the 

extensive damage caused by the Mw 6.9, 1995 Kobe earthquake to the port of Kobe 

required $8.6 billion and two years to repair, which caused the port to slip from the 6th to 

the 32nd largest in size in the world by 2003 along with long term loss in business. 

Extensive damage was caused at Derince and Akita ports during 7.4 Mw Kocaeli, Turkey 

earthquake of August 17, 1999. Recent examples of earthquake induced damage to ports 

include Port de Port-au-Prince during 7.0 Mw Haiti earthquake of January 10, 2010 and 

Port of Coronel, Port at Valparaiso and Port of San Antonio during 8.8 Mw Chile 

earthquake on February 27, 2010. As can be readily seen, earthquakes pose low 

probability-high loss risk to port structures, and in particular for the US, seismic hazard 
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maps by USGS (Figure 1.1) show that not only Western U.S. ports in Oakland, Los 

Angeles, Long Beach and Seattle but also Eastern U.S. ports in Charleston, SC and 

Savannah, GA are at high risk from earthquake damage. 
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Savannah
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Norfolk

New York
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Figure 1.1 Location of large US ports and seismic hazard by USGS (PGA with 2% PE in 
50 years) 

Seismic Vulnerability of Wharf Structures 

 Wharfs are an important part of the port system as they provide a work surface for 

port operations and support material handling equipment, such as container cranes, and 

storage facilities which are critical in determining the material handling capacity and 

overall performance of the port. The most common type of wharf structure at large U.S. 

ports is a pile-supported marginal wharf (Figure 1.2).  

 

 

Figure 1.2 Soil-foundation-structure system for pile supported wharf (not to scale) 
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Figure 1.3 Shearing (left) and damage (right) to pile by ground displacement in Kobe 
1995 and Niigata 1964 earthquakes, respectively (Finn & Fujita [2]) 

 
 

 

Figure 1.4 (a)-(b) Damage to fishermen’s wharf and broken pile-wharf connections at 
Port of Coronel and (c) broken connections at Port of San Antonio from Feb, 2010 Chile 

earthquake. (Courtesy: GEER, www. geerassociation.org) 
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 These structures consist of long, narrow pile-supported deck segments on sloping 

subsurface materials ranging from rock dikes to hydraulic fills. The wharfs are 

particularly vulnerable to damage during earthquakes caused by liquefaction of loose 

backfill soils. Liquefaction results in reduction in stiffness and strength of supporting 

soils and hence the loss of load carrying capacity of piles. Furthermore, the lateral 

spreading of liquefied soils exerts excessive forces often leading to shearing of piles and 

thus failure of the whole structure. 

 

Figure 1.5 Satellite image of Port de Port-au-Prince before and after the 2010 Haiti 
earthquake showing the collapsed wharf, submerged cranes and sand boils (Google [3]) 
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  Examples include failures prevalent during 1964 Niigata and 1995 Kobe 

earthquake (Figure 1.3) and more recently during 2010 Haiti and 2010 Chile earthquake 

(Figure 1.4). Figure 1.5 shows the satellite image at Port de Port-au-Prince before and 

after the January 10, 2010 Haiti earthquake. The image after the earthquake is missing a 

large section of jetty and the main wharf next to the warehouse that collapsed due to 

liquefaction and subsided later due to lateral spreading. Two of the cranes sitting on the 

wharf earlier can also be seen submerged in water. Extensive signs of liquefaction in 

form of sand boils are also visible.  

Reduction of Liquefaction Susceptibility 

 The liquefaction susceptibility of loose fills and liquefaction-related ground 

deformations may be reduced by a variety of soil improvement methods (e.g. PHRI [4]). 

Generally, these soil improvement methods rely on one or more of the following 

mechanisms to mitigate liquefaction hazards: (a) densification of loose soils, e.g., 

dynamic compaction (b) rapid dissipation of excess pore pressures via drainage so that 

the excess pore pressure ratio (�u/σ′v) remains below about 0.6, (c) stiffening of the soil 

mass to limit the development of strains and thus excess pore pressures within the soil 

mass, e.g., deep soil mixing or (d) reinforcement of the soil mass via stiff inclusions that 

limit ground deformations even if liquefaction occurs. NRC [5] has pointed out the need 

to develop quantitative, performance-based guidelines that reflect these mechanisms to 

advance beyond current heuristic approaches. At existing waterfront structures of ports, 

traditional soil improvement methods can be used to treat soils in the backland, but these 

methods are difficult, impractical, and expensive to be employed for the treatment of 

soils beneath existing wharf components due to lack of access or sufficient clearance. In 

addition, traditional soil improvement methods are often poorly suited for developed sites 

such as port facilities because of adverse effects on adjacent structures due to vibration, 

densification, or increased lateral stresses as well as the disruption of ongoing port 
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operations. However, two innovative soil improvement techniques that overcome these 

problems and are thus well suited for remediating hydraulic fills prone to liquefaction at 

port facilities have been suggested. The alternative remediation techniques comprise: (a) 

installation of prefabricated vertical drains (Rathje et al [6]; Chang et al [7]) and (b) 

colloidal silica grout (Gallagher & Mitchell [8]; Gallagher et al. [9]; Pamuk et al. [10]). In 

the first method, perforated, corrugated plastic pipes (75 to 200 mm diameter) encased in 

a geotextile are installed at regular spacing (1-2m). Depending on their spacing, these 

pipes reduce the free drainage length significantly and hence are able to drain and rapidly 

dissipate excess pore water pressures thereby reducing the lateral spread by a 

considerable amount (Figure 1.6). 
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Figure 1.6 (a) Structure of prefabricated drain (b) its zone of influence and (c) reduced 
free drainage length for liquefied soil 

 
 Colloidal silica on the other hand is permeated into sand and it displaces water 

and fills up void space. The silica particles form a matrix that suppresses the dilation of 

sand and increases the liquefaction resistance as shown in Figure 1.7. Being a non-toxic 

and environmentally benign material with low viscosity and controllable gel times allows 

it to treat areas that are usually inaccessible to conventional methods (Figure 1.8). 
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Figure 1.7 Increase in axial strain during cyclic loading (CSR 0.27) for Monterey sand (a) 
untreated and (b) treated with 10% colloidal silica (Gallagher and Mitchell [8]) 

 

 

 

Figure 1.8 Passive site remediation for mitigation of liquefaction risk (Gallagher and 
Mitchell [8]) 
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 To evaluate the cost effectiveness of the new remediation techniques and 

determine an optimal remediation plan, one needs to estimate the reduction in risk 

achieved by different remediation options in a chosen configuration. Current engineering 

practice for seismic risk reduction for port facilities is typically based on design or retrofit 

criteria for individual physical components (e.g., wharf structures) expressed in terms of 

levels of force and/or displacement. However, the viability of a port following an 

earthquake depends not only on the performance of these individual components, but on 

their locations, redundancy, and physical and operational connectivity as well, i.e., on the 

port system as a whole. For example, if the operational capacity of a port system is 

controlled by the capacity of cranes, a higher reduction in risk may be possible by a 

combination of ground remediation and structural retrofitting than either of these two 

alone. Statistically sound risk assessment studies for such systems are based on a large 

number of alternative hazard analyses. Given the large number of components in the 

system, the total computational time required for assessment of response of all 

components under all possible hazard scenarios can be excessively large. Thus 

computational efficiency plays a big role in ultimate success of such comprehensive risk 

analyses programs. 

 As part of a multi-disciplinary project focusing on the seismic risk mitigation of 

port structures, scope of the proposed research is the development of simplified methods 

for the numerical simulation of pile-supported port waterfront structures subjected to 

earthquake loading. The target models will capture the important components of soil-

structure interaction in an optimal computationally-efficient formulation to allow their 

implementation for multiple hazard realizations in an integrated risk analysis of port 

systems. The broad range of technical research issues addressed in this program, 

including liquefaction remediation, structural retrofitting options, and their integration in 

an efficient and effective prediction framework for soil-structure interaction are 

considered to be the most challenging and timely in the field of earthquake engineering 
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(NRC [5]). The development of the target soil-structure interaction models based on 

physical principles, validated via small and full scale experiments and coded into a 

broadly used finite element platform will contribute to the development of novel risk 

assessment methodologies for port structures, while being applicable for the seismic 

analysis of pile-supported structures beyond the scope of this project. 

 The thesis layout consists of nine chapters. Chapter 2 discusses the mechanisms 

of soil structure interaction along with its importance for pile supported wharves. A 

description of different methods available for soil-structure interaction along with their 

advantages and disadvantages is also presented. Chapter 3 presents the numerical 

framework used for simulations and parametric analyses along with detailed description 

of non-linear soil model. The parametric analyses are next presented in Chapter 4 along 

with the important observations. The critical governing parameters are identified and 

expressed in dimensionless form. Based on the observation in Chapter 4, a macro-

mechanical model is proposed in Chapter 5. The different components are described first 

followed by the overall numerical scheme. The macroelement parameters are calibrated 

next as a function of soil properties in Chapter 6. Finally, the calibration is verified with 

3D FEM simulations in Chapter 7 and benchmarked against field tests with blast induced 

liquefaction and centrifuge tests. Chapter 8 presents the extension of drained loading 

model to account for coupling in both horizontal directions. Due to lack of field or 

centrifuge biaxial lateral loading data, the model is verified by comparison with 3D FEM 

data. The conclusions and scope for future work is discussed in Chapter 9. 
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CHAPTER 2  

SOIL STRUCTURE INTERACTION 

 

 Soil-structure interaction is the set of mechanisms that account for the flexibility 

of the foundation support beneath a given structure, and result in altering the motion in 

the vicinity of the foundation compared to the free-field. It determines the actual loading 

experienced by the structure-foundation-soil system resulting from the free-field seismic 

ground motions. 

 

 

 

Figure 2.1 Context of SSI in engineering assessment of seismic loading of a structure 
(Stewart et al. [11]) 

 

Components of Soil Structure Interaction 

During a dynamic loading like ground shaking during an earthquake, the 

deformations of a structure are affected by interactions between three linked systems: the 

structure, the foundation, and the geologic media (soil and rock) underlying and 

surrounding the foundation. A soil-structure interaction (SSI) analysis evaluates the 

collective response of these systems to a specified free-field ground motion. Two 
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physical phenomena comprise the mechanisms of interaction between the structure, 

foundation, and soil as shown in Figure 2.2: 

a) Inertial interaction: This mechanism refers to the response of the complete 

structure-foundation-soil system to excitation by D’ Alembert forces associated 

with the acceleration of the super-structure due to kinematic interaction. 

b) Kinematic interaction: Even if the mass of super-structure is zero or there is no 

super-structure present, the presence of stiff foundation elements either on the 

formation or embedded in the underlying soil, result in the deviation of the 

foundation motion with respect to the corresponding motion of the so-called free-

field, namely the response of the soil formation in absence of the structure. Three 

prominent mechanisms contributing to such deviations, according to Stewart et al. 

[11] are  

a. Base-slab averaging: Free-field motions associated with inclined and/or 

incoherent wave fields are “averaged” within the footprint area of the 

base-slab due to the kinematic constraint of essentially rigid-body motion 

of the slab.  

b. Embedment effects: Since the foundation is rigid and cannot deflect in 

exactly the same shape as far-field, the far field motion is filtered by the 

foundation depending on the wavelength of excitation. This is similar to 

‘Base Slab’ averaging effect but is observed in case of coherent wave 

fields as well.  

c. Wave Scattering: Scattering of seismic waves off of corners and asperities 

of the foundation. 

In the case of linear elastic or moderately nonlinear soil-foundation systems, 

inertial interaction analysis may be conveniently performed in two steps (Kausel & 

Rosset [12]) as shown in Figure 2.3. The foundation dynamic impedances (springs and 

dashpots) associated with each mode of vibration are computed first and then used to 
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evaluate the seismic response of structure and foundation supported by these springs and 

dashpots and subjected to the kinematic accelerations of the base. 

 

 

Figure 2.2 Components of Soil-structure Interaction 
 

 

Figure 2.3 Schematic representation of two step inertial interaction analyses 
 
 The dynamic impedance is a complex function, where the real and imaginary 

parts represent the dynamic stiffness and energy attenuation of the system, respectively. 

The attenuation represented by the imaginary part of the impedance function is a 
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consequence of hysteretic damping in the soil and foundation, and radiation of seismic 

energy away from the foundation through the soil. Generally it is the radiation damping 

that mostly dominates the imaginary part and in most cases the analytical expressions are 

derived for elastic medium with no damping and then the damping is taken into account 

using the correspondence principle by multiplying the impedance function with (1+i2D’), 

where D’ is the coefficient of material damping. However, hysteretic damping becomes 

more significant with increasing soil non-linearity. 

 As can be readily seen, accounting for the effects of soil-structure interaction may 

significantly alter the predicted response of the soil-foundation-structural system, a fact 

that renders these phenomena critical in engineering design. It should be also noted that 

for the fictional condition of an infinitely stiff soil, the amplitude of the transfer function 

for translational motion is unity and the phase is zero (i.e. the foundation and free-field 

motions are identical), and the impedance function has infinite real part and zero 

imaginary part. As a result, ignoring the effects of soil-structure interaction effects (which 

is common practice in structural design) inherently implies the unrealistic assumption of 

an infinitely rigid underlying soil medium. 

Methodologies for Soil-Structure Interaction Analysis 

 The general methods to quantify soil structure interaction effects are: 

a) Direct approach: In a direct approach, the soil and structure are simultaneously 

accounted for in the mathematical model and analyzed in a single step. Typically, 

the soil is discretized with solid finite elements and the structure with finite beam 

elements. Since assumptions of superposition are not required, true nonlinear 

analyses are possible in this case. Nonetheless, the analyses remain quite 

expensive from a computational standpoint. Hence, direct SSI analyses are more 

commonly performed for structures of very high importance and are not 

employed for the design of regular structures. 
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b) Substructure approach: In a substructure approach, the SSI problem is 

decomposed into three distinct parts discussed above which are combined to 

formulate the complete solution. The superposition principle is exact only for 

linear soil, foundation and structure behavior. Nevertheless, approximations of 

soil nonlinearity by means of iterative wave propagation analyses allow the 

superposition to be applied for moderately-nonlinear systems. The principal 

advantage of the substructure approach is its flexibility. Because each step is 

independent of the others, it is easy to focus resources on the most significant 

aspects of the problem. 

 For each one of the three analysis steps, several alternative formulations have 

been developed and published in the literature, including finite-element, boundary-

element, semi-analytical and analytical solutions, a variety of simplified methods, and 

semi-empirical methods. In addition to the dynamic finite element methods, the most 

popular approaches used in practice for the analysis of soil-structure interaction problems 

are briefly presented in the ensuing: 

a) Boundary element type methods: The methods of this class are essentially semi 

analytical in the sense that they use closed-form solutions to the pertinent wave 

equations for the soil domain, and discretize only the boundaries and interfaces of 

the system. These closed-form solutions (referred to as fundamental solutions or 

Green’s functions depending on the particular solution) have the ability to 

reproduce exactly the radiation of wave energy to infinity, without requiring 

special lateral boundaries, as is the case for the finite element methods. Evidently, 

this class of methods is the most versatile in treating a variety of incident wave 

fields (such as inclined body waves and Rayleigh waves, in addition to vertical 

waves). Usually however, they cannot accommodate material and interface 

nonlinearities associated with foundation seismic motion. Therefore in current 
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state of practice, such sophisticated tools are also used in conjunction with finite 

element methods, which can better model the nonlinear soil-structure response. 

b) Winkler models: Used primarily for the inertial interaction analysis, the 

foundation in these methods is supported by a series of independent vertical, 

rotational and horizontal springs and dashpots along the soil-foundation interface, 

which correspond to the different vibration modes.  

 Given the need for simplified computationally efficient models for risk analyses 

of port structures, we investigate state-of-the-art for existing formulations used for 

simulating soil-structure interaction for piles. Different methodologies to account for 

liquefaction effects and their merits and drawbacks are also presented.  

Soil Structure Interaction for Pile Supported Wharfs 

 The seismic response of pile-supported wharves is inherently a complex problem 

dominated by soil-structure interaction involving large ground displacements and pore 

pressure generation potentially leading to liquefaction of the backfill. In addition, coupled 

transverse, longitudinal, and torsional response of the wharf is a critical component for 

the damage state predictions of pile-supported waterfront structures. The unequal 

embedment of piles in sloping ground coupled with the differential ground motion (due 

to wave propagation effects), induces significant torsional effects that cause rocking and 

uplift of crane structures adding further complexity in the chain of soil-structure 

interaction effects. Figure 2.4 shows various mechanisms of pile damage during backfill 

liquefaction as reported by Tokimatsu et al. [13]. For a comprehensive assessment of the 

soil-structure system performance during seismic loading, detailed 3D finite element 

coupled solid-fluid simulations should be ideally conducted, where the soil and structural 

components would be represented by means of appropriate non-linear constitutive 

models.  
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Figure 2.4 Pile damage mechanisms in liquefied soils (Tokimatsu et al. [13]) 

 
 Inasmuch such analyses are feasible, however, they are associated with increased 

cost resulting from the input parameter acquisition for the constitutive models, and the 

engineering expertise necessary for the numerical modeling and the target result 

interpretation. Furthermore, the substantial computational effort involved in the 

realization of these analyses prohibits their use in statistically sound risk assessment 

studies mentioned above. Hence, simplified methodologies capable of capturing the 

important aspects of the problem at the optimal computational effort are required. The 

most common approach for simplified analyses is the use of Winkler spring models. 

According to this approach, the soil continuum is replaced by a series of independent 

springs in horizontal, rotational and vertical direction to represent soil resistance for each 

mode of vibration. The radiation damping due to waves emanating away from the 

foundation-soil interface is represented by means of corresponding dashpots along with 

the springs. The different approaches for analyzing soil structure interaction are shown in 

Figure 2.5. The state-of-the-art in all the methods is described below as well. 
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1. PSEUDO-STATIC ANALYSIS 2. SIMPLIFIED DYNAMIC ANALYSIS 

Developed via pushover loading  

 

Developed via cyclic (monochromatic) loading 

 

+ Correction factors for 2D support motion 

3. DYNAMIC ANALYSIS 

3a. Dynamic Macroelements 3b. Finite Elements 

Developed via dynamic soil-structure 
simulations  

 

 

+ Constitutive models for treated sites, 
+ Numerical modeling guidelines 

  

Figure 2.5 Different approaches for soil structure interaction of wharf structures 

Pseudostatic analysis or p-y approach:  

 As the name suggests, a static analysis is carried out to obtain the maximum 

bending moment and shear force developed in the pile due to earthquake loading. The 

soil resistance is represented by means of non-linear Winkler springs or p-y curves and 

the inertial force acting on the pile head is given by product of cap-mass and spectral 

acceleration (Dowrick [14]). The most popular p-y curves for nonliquefiable soils include 

those developed by Matlock [15], Reese et al. [16] and API [17]. However, these 

approaches are based on static and cyclic lateral load tests, and are not necessarily 

applicable to seismic loading conditions as the tests didn't necessarily excite the 

mechanisms involved in seismic loading (e.g. loads from the soil profile, local and global 

pore pressure generation). Since peak bending moments and/or peak superstructure 

displacements may occur before or after liquefaction develops and the p-y curves for both 

conditions are completely different, the accuracy for such methods largely depends on the 
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accuracy in selection of the correct curves and the material parameters for that instant of 

time. Furthermore, it has been observed from centrifuge experiments that the inertial 

forces and soil resistance are not always in phase and hence the maximum moments are 

generally over predicted (Brandenberg et al. [18]). These methods are thus attractive for 

design engineers because they do an acceptable job for providing the maximum moment 

envelope for design purposes but since development of fragility curves is based on 

damage states of different components and a higher accuracy is required, these methods 

are not expected to perform satisfactorily. Furthermore, these analyses fail to distinguish 

between ground motions on the basis of frequency content and hence are not able to 

capture resonance controlled phenomenon in soil structure interaction. 

Simplified Dynamic Analysis  

 These analyses account for both the stiffness of soil and radiation of energy away 

from the piles. The free field motion is first determined by means of 1D analysis and 

applied at the free-field end of Winkler springs. Both closed form and semi-empirical 

expressions for frequency dependent complex springs (both stiffness and damping) have 

been developed for pile foundations for elastic soil by Novak [19]; Dobry et al. [20]; 

Kaynia and Kausel [21] and Kavvadas and Gazetas [22]. However, since these are 

frequency dependent they are not suitable for time domain analyses. Approximate 

frequency independent models have been developed by Penzien [23]; Kagawa [24]; 

Kagawa and Kraft [25]; Norris [26]; Nogami and Konagai [27] and Tabesh & Poulos 

[28]. El Naggar and Novak [29]developed a model that takes into account the nonlinear 

soil behavior by splitting the domain in near field (frequency independent springs) and 

far-field (the spring values are determined by dominant frequency in input motion). But 

all such models lack the ability to predict pile behavior when the soil around the pile 

starts to liquefy. For the seismic analysis of piles in liquefying soil, Winkler type models 

have been developed by Kagawa [30]; Fuji et al. [31]; and Liyanapathirana & Poulos [32] 
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in which the strength and stiffness of the springs are degraded as a function of pore 

pressure which is calculated by a 1D analyses. However, these models still fail in 

medium dense sands when displacement hardening is observed and also fail to capture 

effects such as soil-pile gapping at the interface. 

Dynamic analyses using Macroelements 

 Macroelements are derived by integrating the material behavior over the locally 

affected volume and concentrating the global stress-strain response at representative 

locations of the soil-structure interface based on the externally applied loading. Bounded 

by limit equilibrium conditions, macroelements can simulate the coupled effects of soil 

plasticity and interface nonlinearities, anticipated to be substantially different for 

dynamic loading than those predicted for pushover or cyclic loading in simplified design 

procedures. Successively, decomposition of the far-field and near-field domain allows 

efficient frequency-domain methods to be employed in the far field, since analysis of the 

superstructure supported by macroelements incorporates nonlinear soil-structure 

interaction effects. The concept of macroelements has been investigated in the past, for 

the simulation of nonlinear phenomena in soil -structure interaction problems. In 

particular, material nonlinearities, associated with the nonlinear constitutive behavior of 

the supporting soil and components of the superstructure and the foundation, have been 

investigated in the context of nonlinear FE analyses (Borja et al. [33]), as well as 

experimentally (Funston & Hall [34]; Stokoe & Richard [35]; Gazetas & Stokoe [36]; 

Kim et al. [37]), and attempts have been made to develop physical spring-dashpot 

elements or introduce modification functions in the classical formulation of the 

foundation impedance matrix, to model the mechanical interaction between rigid body 

and ground. Nonetheless, results are mainly derived from curve fitting of the numerical 

or experimental results, and therefore are highly dependent on the constitutive soil model 

and loading path used to calibrate the input parameters (Finn & Yogendrakumar [38]), or 
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the mechanical properties of rigid body and ground respectively. Geometric 

nonlinearities, associated with void formation between the foundation and the soil, have 

been extensively studied (Wolf [39]; Wolf & Skriherud [40]; Kobori et al. [41]). 

Recently, quasi-static foundation macroelements have been developed to describe the 

geometrical nonlinearities at the soilstructure interface, expressed in global variables at 

the foundation level, for shallow foundations on cohesionless (Nova & Montrasio [42]; 

Paolucci [43]) and cohesive soils (Crémer [44]). For pile foundations, macroelements 

have been developed for quasi-static case by Taciroglu et al. [45], Rha and Taciroglu  

[46] and for dynamic case by Boulanger et al. [47], Curras et al. [48] and Gerolymos & 

Gazetas [49],[50]. 

p-y curves for piles in liquefiable soils 

 For pseudo-static analyses using the BNWF approach, there are multiple 

approaches to model the behavior of liquefied sand. The first approach uses limit 

pressures to represent the laterally spreading liquefied sand and any overlying non-

liquefied layers and p-y springs to model the layers below the lateral spreading zone. 

Recommendations for limit pressures include using 30% of the initial overburden 

effective stress by Japan Road Association (JRA [51]) based on analyses of case histories 

in 1995 Kobe earthquake; and a depth independent value of 10 kPa for the liquefied layer 

by Abdoun and Dobry [52] based on centrifuge tests. 

 Another approach is to treat liquefied sand as undrained soft clay and use the p-y 

curves for soft clay. The undrained shear strength to be used in this case is obtained as 

ratio of undrained shear strength to initial effective overburden stress using in-situ data 

and is a function of relative density and overburden stress. 

 The third and more widely employed approach that has been used in 

macroelements as well for the simulation of pile response in liquefiable soils is the use of 

load-displacement (referred to as p-y) curves developed by Matlock [15], Reese et al. 
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[16]and API [17] for non-liquefiable soils, scaled by factors referred to as p-y multipliers, 

which account for the effects of liquefaction by means of the pore pressure ratio expected 

to develop during the dynamic loading. Among others, multipliers have been suggested 

by the Japan Road Association (JRA [51]), the Architectural Institute of Japan (AIJ [53]), 

Liu & Dobry [54], Wilson et al. [55] and Brandenberg et al. [18] as shown in Figure 2.6.  

 
Figure 2.6 p-y multipliers recommended by AIJ [53] and Brandenberg [56]. (figure from 

Brandenberg et al. [18]) 
 

 Dobry et al. [57] and Liu & Dobry [54] showed that the pile bending moments 

could be reasonably predicted if the original non liquefied p-y curves were multiplied by 

an apparent p-multiplier that decreased more or less linearly with excess pore pressure 

ratio and reached a minimum value of about 0.1 when the excess pore pressure ratio was 

unity. While these recommendations were based on dynamic tests, or at least tests 

involving liquefied soil, the resulting p-y curves were still based on adjusting curves 

derived from static and cyclic loading tests. Wilson et al. [58] showed that the 
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dependence of p-y resistance on pore pressure is also a function of relative density of 

sand and the curves may not even look similar for different relative density. While the p-

y resistance of loose sand (e.g., Dr =35%) is much smaller and softer than for medium-

dense sand (e.g., Dr =55%), the p-y behavior in medium-dense sand progressively softens 

with time during shaking as pore pressures, strains, and number of load cycles increase 

and shows displacement hardening whenever the previous displacement values are 

exceeded. This behavior may be attributed to the nearly undrained loading conditions and 

the tendency for the soil to dilate under these loading conditions (i.e., large enough 

strains to move the sand through a phase transformation). Similar observations of strain 

hardening p-y behavior have since been reported based on the blast induced liquefaction 

testing at Treasure Island (Ashford and Rollins [59]; Ashford et al. [60]; Rollins et al. 

[61],[62]; Weaver et al. [63]) and based on large shaking table tests (Tokimatsu et al. [64] 

and Tokimatsu and Suzuki [65]).  

 Pore pressure observations near the pile during blast induced liquefaction tests 

also showed pore pressure buildup and degradation of response during cyclic pile loading 

due to compactive tendency of soil during shearing imposed by pile motion. This was 

followed by transient drops in excess pore pressure during later cycles when the shear 

strains imposed by the pile became large enough to push the soil above the phase 

transformation line and exhibit dilative tendency. The importance of soil structure 

interaction effects in near field have also been reported by Abdoun et al. [52] and 

Gonzalez et al. [66] where the shearing of pile caused reduction of pore pressure in a 

inverted conical zone around the pile and significantly affected the soil resistance as seen 

from pile. Furthermore, the formation of zone was controlled by the soil permeability, 

with lower permeability soils not allowing the smaller near-field pore pressures to 

equalize with the higher far-field ones and thereby exhibiting a stiffer response than 

higher permeability soil which is somewhat contrary to the expected response. 
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 Based on similar results observed in centrifuge experiments, Boulanger et al. [47] 

proposed a macroelement for soil-pile interaction, which combines scaled replicas of the 

original p-y curves for non-liquefiable soils with a dashpot to account for radiation 

damping, and a gap element to account for strain hardening. While this approach has 

been shown to predict pile response more realistically, however, the strain-hardening 

simulation capabilities of the macroelement are independent of soil properties. As a 

result, it is unable to distinguish the response of pile in soils that differ in terms of 

hydraulic conductivity, liquefaction resistance or dilation angle. Furthermore, while it 

does account for rate-dependence due to radiation damping, it doesn’t account for 

seepage effects (Kutter & Voss [67]; Palmer [68]; Yoshimine [69]). Thus, extrapolation 

of its predictive capabilities to configurations that deviate from the experimental setup, in 

terms of soil properties or foundation characteristics, may not be guaranteed.  
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CHAPTER 3  

DYNAMIC SOIL PILE INTERACTION SIMULATIONS 

 We investigate the soil parameters governing the response of soil-pile interaction 

problems in liquefiable soils by means of 3D finite element simulations, and propose a 

generic soil-pile interface macroelement formulation based on the parametric 

investigation results as a function of the critical soil properties. Numerical analyses were 

selected for the problem parameterization and subsequent calibration of the mechanical 

components due to the limited number of available physical tests. The latter, however, 

shall be used for validation of both the large scale FE simulations providing the 

“experimental” data, and of the performance of the macroelements for transient analyses 

of pile supported wharves in liquefiable soils. 

Numerical Framework 

Numerical simulations are performed using the finite element computer code 

DYNAFLOW (Prevost [70]). Parametric analyses are conducted for a single pile in 

homogeneous liquefiable soil, replicating the response of a slice of the full 3D numerical 

domain perpendicular to the cross section of the pile as shown in Figure 3. Both soil and 

pile are modeled as porous solids using four node quadrilateral elements. The pile is 

simulated as an elastic material with very low permeability to avoid coupling of structural 

non-linearity with the soil response. The soil is simulated by means of a pressure 

dependent multi-yield plasticity model with associative flow rule for the deviatoric 

(distortional) component and a non-associative flow rule for the volumetric component 

(Prevost [71]). Dynamic soil-fluid coupling in the soil material necessary for the 

simulation of liquefaction is achieved via extension of Biot’s theory (Prevost [72]). The 

range of parameters for the constitutive soil model used in this study is presented in Table 

3.1.  
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Figure 3.1 The 3D FEM model used for this study and the 3D slice (cross-section) at 
different depths which is equivalent of the macroelement in BNWF approach 

 

In the simulated numerical domain, the far-field lateral boundary is defined 10 

pile diameters away from the pile centerline. The element size in radial direction is 

smallest around the pile and increases geometrically away from the pile. The element size 

in vertical direction is constant throughout and is equal to one half of pile radius. The 

aspect ratio of element dimensions is kept less than 1:3 for all elements. At the boundary, 

both the solid and liquid phase are constrained from moving in radial direction.  Both the 

pile and soil elements are provided a depth dependant initial effective stress equal to the 

geostatic equilibrium stress state to avoid differential settlement between the structure 

and soil which leads to shearing of soil around the pile in the consolidation phase itself. 
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In the first phase, the whole model is initialized by allowing it to consolidate. This 

is achieved by using Newmark’s time integration with parameters α = 1.5 and β = 0.5 and 

results in a stress and pore pressure distribution as shown in Figure 3.2. 

In second phase, the pile is loaded in lateral direction by imposing prescribed 

displacements along the whole length of pile. For the second phase, the system of 

hyperbolic equations is solved using Newmark’s time integration scheme with α = 0.65, β 

= 0.33 which corresponds to some ‘numerical damping’. This combination was chosen 

over ‘no damping’ α = 0.5, β = 0.25 combination to damp out any high frequency 

numerical noise. Non-linear iterations were performed using Quasi-Newton technique 

with BFGS (Broyden, Fletcher, Goldfarb and Shanno) update formula where the updated 

Jacobian is approximated from previous one using “secant” equation rather than finite-

difference approximation at each time step. Reaction forces at all the center nodes of pile 

were recorded to compute p-y curves. Representative displacement field during loading 

are shown in Figure 3.3 (vertical) and Figure 3.4 (total). 

 

Table 3.1 Range of parameters used for soil model 
 

Property Symbol Range 
Elastic Parameters 

Shear Modulus Gs 2 MPa 
Bulk Modulus Ks 4 MPa 

Power Exponent n 0.5-0.7 
Yield Parameters 

Peak Friction Angle  φ 32-38° 
Max. shear strain γmax 0.04-0.08 

Dilation Parameters 
Critical state Friction angle φss 22-30° 

Liquefaction Strength χ  0.0-0.15 
State Parameters 

Porosity nw 0.2-0.4 
Hydraulic conductivity k 10-3-10-6 m/s 

Solid phase density ρs 2650 kg/m3 
Fluid phase density ρw 1000 kg/m3 
Fluid Bulk Modulus Kf 2 GPa 
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Figure 3.2 Effective vertical stress contours after consolidation phase 
 

 

Figure 3.3 Vertical displacement contours showing vertical settlement of soil due to 
shearing during loading 

 

 

Figure 3.4 Total displacement contours showing formation of active and passive wedges 
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The Soil Model 

The multi-yield constitutive soil model is a kinematic hardening model based on 

relatively simple plasticity theory (Prevost [71]) and is applicable to both cohesive and 

cohesionless soils. The concept of a “field of work-hardening moduli” (Iwan [73]; Mroz 

[74]; Prevost [75]) is used by defining a collection of nested yield surfaces in the stress 

space (figure). Von Mises type surfaces are employed for cohesive materials, and 

Drucker-Prager / Mohr-Coulomb type surfaces are employed for frictionless materials 

(sands).  

 
 

Figure 3.5 Field of yield surfaces in stress space - hardening rule 
 

The yield surfaces define regions of constant shear moduli in the stress space, by 

means of which, the model discretizes the smooth elastic-plastic stress-strain curve into n 

linear segments. When the stress point reaches the yield surface mf , all the yield surfaces 

1 2, ... mf f f are tangent to each other at the contact point M, as shown above. If a stress-rate 

ijσ is then applied to the material element such that the stress-vector σ points out of the 
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yield surface mf (.i.e. such that . 0mQ σ ≥ , where Q denotes a vector normal to the yield 

surface), the plastic-strain vector components are evaluated for the plastic Modulus 

'mH associated with the outermost yield surface. The plastic potential mg associated with 

mf is selected such that, in agreement with experimental observations, the plastic 

deviatoric strain vector remains normal to the projection of the yield surface onto the 

deviatoric stress subspace (Figure 3.5). The outermost surface pf corresponds to zero 

shear strength. 

For yield function for each yield surface is defined differently based on the type 

of material being simulated (pressure dependant or independent). For the pressure 

dependant model used in this study, the yield surface is given as  

( ) ( )
1/ 2

23
0

2
f tr s pa k pg θ = − + = 

 
     (3.1)  

where p p a= − , / tana c ϕ=  is the attraction and ( )g θ determines the shape of the 

cross-section on the deviatoric plane and is defined as follows: 

( ) ( )
2

1 (1 )sin 3
k

k k

M
g

M M
θ

θ
=

+ − −
     (3.2)  

where 3/ 2
3 2sin 3 6 /J Jθ = − , 

2

2J trs= , 3
3J trs= , s s p= −  and kM is a material 

parameter defined as 1.0kM = for Drucker-Prager cone and (3 sin ) /(3 sin )kM ϕ ϕ= − +  

for round-cornered Mohr-Coulomb cone.  

The plastic flow rule is defined as p Pε λ= ɺɺ , where pεɺ is the strain-rate, P is the 

plastic potential ( P P Pδ′ ′′′= + ), and λɺ is the plastic load factor and associative in the 

deviatoric component. To account for experimental evidence from tests on frictional 

materials, a non-associative flow rule is used for the dilational component: 

( )
( )

2

2

/ 1
3

/ 1
ppP

η η
χ

η η
−

′′′ =
+

       (3.3)  
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where η , ppχ are material parameters. This equation expresses the dependence of soil 

dilational behavior on the mobilized stress ratio 1/ 2(3 / 2 : ) /s s pη ′=  . 

The material hysteretic behavior and shear stress-induced anisotropic effects are 

simulated by a kinematic rule. Upon contact, the yield surfaces are translated in the stress 

space by a stress point, and the direction of translation is selected such that the yield 

surfaces do not overlap, but remain tangent to each other at the stress point. For the case 

of pressure-sensitive materials, a purely kinematic rule is adopted. The dependence of the 

moduli on effective mean normal stress is assumed to be of the following form  

0 1( / )nx x p p=         (3.4)  

where x  represents the shear (G), bulk (K) or plastic (H) moduli, and n is the power 

exponent which can be estimated as 0.5n ≈ for cohesionless soils and 1n ≈ for cohesive 

soils. 

The constitutive equations, : ( )pEσ ε ε′ = − ɺɺ , where εɺ is the rate of deformation 

tensor and E  is the fourth order isotropic elastic tensor, are integrated numerically using 

a stress relaxation procedure. 

Constitutive model parameters 

The required constitutive parameters of the multi-yield plasticity model are 

summarized in Table 1 along with the range and are described below. 

State parameters 

(a) Mass density of the solid phase sρ  

For the case of porous media,  

(b) Porosity wn  

(c) Permeability k  

(d) Fluid mass density fρ  

(e) Fluid Bulk Modulus fK  
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Low strain elastic parameters 

(a) Low strain reference Shear Modulus 0G  

(b) Low strain reference Bulk modulus 0B  

(c) Power exponent n  

(d) Reference effective mean normal stress 0p′  

The modulii are related through the Poisson’s ratio as 0 02 (1 ) / 3(1 2 )B G ν ν= + − .  

For pressure dependant materials, the moduli dependence on mean effective normal stress 

p′ is assumed to be of the form ( )0 0/
n

G G p p′ ′=  and ( )0 0/
n

B B p p′ ′= .  

Yield and failure parameters  

(a) Friction angle ϕ  

(b) Maximum deviator strain maxγ  

(c) Slope of stress path in p-q’ space S  

(d) Coefficient of lateral stress 0K  

These parameters describe the position ia , size iM and plastic modulus 'iH , 

corresponding to each yield surface if . For a given number of yield surfaces, these 

parameters can be evaluated based on experimental stress-strain curves obtained from 

triaxial or simple shear soil tests (Prevost [71]). Alternatively, generation of stress-strain 

curves may be based on field information (Prevost [76]). For pressure dependant 

materials, a modified hyperbolic expression proposed by Prevost [76] and Griffiths and 

Prevost [77] is used to simulate soil stress-strain relations. The necessary parameters are: 

(i) the initial gradient and (ii) the stress and strain levels at failure. The initial gradient is 

given by the small stain shear modulus 0G . The maximum strain level maxγ is estimated 

from laboratory soil test results and the stress level at failure is expressed as a function of 

the friction angle at failure (ϕ ) and the stress path slope (S). Finally, the coefficient of 
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lateral stress 0K is required to evaluate the initial positions ia of the yield surfaces. The 

material parameters necessary to describe shear stress-strain behavior are discussed in 

more detail in later section. 

Dilation parameters  

(a) Phase transformation angle ssϕ  

(b) Dilation parameter ppχ  

These are used to evaluate the volumetric part of the plastic potential 3P′′′ . The phase 

transformation angle ssϕ  is related to the parameter η as /

6sin

3 sin
ss

C E
ss

ϕη
ϕ

= ±
∓

 where C 

stands for triaxial compression and E for triaxial extension. For general three-dimensional 

stress state, Cη η= if 3 0trs < and Eη η= if 3 0trs >  

Dilation parameter (also called liquefaction resistance parameter) ppχ , which is a 

scaling parameter for plastic dilation and depends on relative density and sand type 

(fabric, grain size). 

With the exception of dilation parameter, all the required constitutive model 

parameters are traditional soil properties, and can be derived from results of conventional 

laboratory (e.g., triaxial, simple shear) and in-situ (e.g., cone penetration, wave velocity, 

etc) soil tests. The dilation parameter is evaluated based on results of liquefaction 

strength analyses. For further details, the reader is referred to Popescu [78]. 

Solid-Fluid Coupling 

Dynamic soil-fluid coupling in the soil material necessary for the simulation of 

liquefaction is achieved via extension of Biot’s theory by means of modern mixture 

theories (Prevost [72]). The soil skeleton is modeled as a piecewise-linear time-

independent porous medium. The field equations for non-linear case are given as follows: 

For the solid phase: 
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. ' (1 ) .( )se s s w s w sep v v bρ α σ ϕ ξ ρ= ∇ − − ∇ − − +    (3.5)  

For the fluid phase:  

( ). .( )w
we we s w w w s w we

dv
v v v p v v b

dt
ρ ρ ϕ ξ ρ= − ∇ − ∇ + − +   (3.6)  

where (1 )se sρ ϕ ρ= −  is the effective solid density, we wρ ϕρ=  is the effective fluid 

density and 
2

wg

k

ϕ ρξ =  is the drag coefficient. For compressible fluids, the pressure is 

calculated as 

( ). 1 .w w
s w

Dp
v v

Dt

λ ϕ ϕ
ϕ
 = − ∇ − + ∇       (3.7)  

In the field equations se sρ α  and we wρ α  represent the intertial forces whereas sebρ and 

webρ are the body forces for solid and fluid, respectively. 
( )

.
s ij

s
jx

σ
σ

∂
∇ =

∂
 represents the 

stress gradient for the skeleton. (1 ) wpϕ− ∇  and wpϕ∇  represent the effective fluid 

pressure gradient for solid and fluid case, respectively. .( )s wv vξ −  represents the viscous 

drag force due to relative movement between solid and fluid whereas ( ).we s w wv v vρ − ∇ is 

the convective force that appears due to material derivative. 

 



 34 

CHAPTER 4  

PARAMETRIC INVESTIGATION 

Parametric analyses were conducted for the following soil properties and loading 

characteristics: (a) dilation angle, δ (b) soil permeability, k; (c) initial overburden 

effective stress, σi’ or depth, D; (d) liquefaction resistance, χ ; (e) loading frequency, f 

and (f) displacement amplitude, u. The sensitivity of the macroscopic system behavior to 

the selected parameters was investigated by fixing all but one parameter, and monitoring 

the load-displacement response at the pile centerline. Unless specified otherwise, the 

results are presented for shear modulus (G = 20 MPa), Bulk Modulus (K = 40 MPa), 

power exponent (n = 0.5), solid phase density ( sρ =2650 kg/m3), friction angle (ϕ =32), 

phase transition angle ( ssϕ =30), porosity ( wn =0.4), max devaitoric strain ( maxγ =0.08) 

and liquefaction resistance parameter ( χ =0.15) which correspond to the properties of 

loose (Dr=40%) Nevada sand (Popescu and Prevost [79]). The soil permeability is set to 

10-9 m/s to simulate completely undrained loading. The pile diameter is 1 m and forced 

cyclic vibrations are applied with displacement amplitude of 20 mm at a frequency of 0.1 

Hz to avoid any significant contribution to response from radiation damping. The range 

of parameters implemented in the ensuing is also specified in Table 1. 

Effect of soil dilation angle (δ) 

The dilation angle (δ) is the soil parameter that indicates the potential of the 

material to develop positive (compression) or negative (dilation) volumetric changes 

when subjected to shearing, and is defined as the difference between the peak friction and 

critical state friction angles, ssδ ϕ ϕ= − . 
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Figure 4.1 (a)-(d) Variation of pile response with dilation angle (at depth 2m)
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 To investigate the sensitivity of the response to variations of the dilation angle, 

the critical state friction angle -a function of soil type, grain size, shape (Been & Jefferies 

[80]) - is fixed at 30° that is typical for uniformly graded sub-rounded quartz soil, while 

the peak friction angle is allowed to vary between 32-38°.  

The soil resistance vs displacement (p-y) curves at depth 2m are shown in Figure 

4.1(a)-(d). The pile response obtained at other depths is also similar. Initially, the p-y 

curves show strain-softening behavior with stiffness decreasing as displacement 

increases. Since, the soil has a tendency to contract for stress ratios / 'τ σ  below the 

phase transition line, the initial cycles of cyclic loading lead to accumulation of excess 

pore pressure and the response degrades with increasing number of cycles. However, 

after the effective stress in the vicinity of the pile reaches a lower-bound threshold, phase 

transformation is observed in the soil and strain-hardening response results from the 

dilating tendency of soil. For soil with low dilation angle (2-4 degrees), the degradation 

in response with number of cycles is quite severe compared to higher dilation angle (6-8 

degrees) that still retains more than 50% of their strength even after seven loading cycles. 

Effect of soil permeability (k) 

Figure 4.2 (a)-(d) shows the pile response in soils with hydraulic conductivity 

varying from 10-3 m/s to 10-5 m/s, which is representative of fine sands. The response 

shows a gradual variation from completely drained behavior for k=10-3 m/s to completely 

undrained behavior for k=10-5 m/s. For k=10-3 m/s, the rate of drainage of excess pore 

pressure is faster than rate of generation and hence the response shows almost no 

degradation; as hydraulic conductivity decreases, pore pressure generation starts 

dominating with the response for k=10-5 m/s being almost the same as the completely 

undrained response shown before. As can be seen from Figure 4.2, after a certain number 

of cycles, the pile response reaches a temporary steady-state condition, which is a 

function of the soil permeability. 
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Figure 4.2 (a)-(d) Variation of pile response with soil permeability 
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More specifically, during steady state, the rate of increase in pore-pressures 

equals the rate of dissipation causing the average soil effective stress in the immediate 

vicinity of the pile during a cycle of loading to remain constant. And while the rate of 

pore pressure buildup is a function of the amplitude and frequency of loading, the pore-

pressure dissipation is partially achieved via radial flow away from the pile, and this 

phenomenon is controlled by hydraulic conductivity of soil. This was verified by the fact 

that the same response was observed by keeping the ratio of permeability and frequency 

the same for very low frequencies, for which the effects of radiation damping are 

insignificant.  
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Figure 4.3 Normalized steady state response for different dilation angles as a function of 

soil permeability 
 

Furthermore, it is observed that the steady-state response depends on the dilation 

angle (δ) as well. Figure 4.3 shows the steady state response for a partially drained case 

normalized with respect to drained response ( / drainedp p ) as a function of soil 

permeability for different dilation angles. Soils with higher dilation angle retain higher 

percentage of their original strength at lower permeability compared to others. While at 

k=10-6 m/s, soil with 2δ = � looses 90% of its strength, soil with 6δ = � still retains around 
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20% of its original strength. This observation agrees well with those from centrifuge tests 

by Wilson at el. [55] where medium-dense sands were found to retain much higher (25-

30%) of their original strength compared to loose sands (10%) during liquefaction. 

Effect of Initial Effective Overburden Stress (σ’) 

The variation of pile response with increasing depth (in terms of pile diameter) is 

shown in Figure 4.4(a)-(d). While the liquefaction resistance parameter for all depths is 

the same ( χ =0.15), the soil at lower depth (0.5B) liquefies earlier (in about 3 cycles) as 

compared to soil at depth D=2B that reaches liquefaction after 6 loading cycles. For 

displacement levels between -5 mm to 5 mm, the soil resistance is attributed primarily to 

the drag force exerted by the liquefying soil flowing around the pile and is observed to be 

almost constant at 10p ≈ kN/m, irrespective of the depth. Given the pile diameter of 

B=1m in the model, this observation matches very well with Abdoun et al. [52] and 

Dobry et al. [81], who recommended a depth independent constant lateral pressure of 

10.3 kPa for liquefied sands based on centrifuge observations.  

However, once phase transformation takes place in the soil surrounding the pile, 

the residual resistance increases with increasing depth, an observation in agreement with 

the  recommendation by JRA [51] according to which lateral forces exerted by liquefied 

soils are proportional to the depth of soil below ground surface. The magnitude of 

residual resistance predicted in our simulations is quite high compared to 30% of 

overburden pressure recommended by JRA, which is attributed to the fact that: (a) excess 

pore pressure ratio falls below 1.0 once phase transition takes place, and the soil in the 

near-field is no longer completely liquefied, and (b) the soil in the far-field is also not 

liquefied in our parametric simulations, by contrast to an actual case of lateral spreading 

where both the near and far-field material are in liquefied state.  
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Figure 4.4 (a)-(d) Variation of pile response with depth (in terms of pile diameter) 
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Effect of Liquefaction Resistance Parameter (χ) 

The plastic potential function used for the non-linear soil model in our simulations 

is given as P P Pδ′ ′′′= + , where P′  is the deviatoric component (associative) and P′′′  is 

the volumetric component (non-associative) expressed in terms of mobilized stress ratio 

/q pη ′=  as 

( )
( )

2

2

/ 1
3

/ 1
P

η η
χ

η η
−

′′′ =
+

       (4.1)  

where η is a material parameter related to critical state friction angle ( ssϕ ) for triaxial 

compression (C) and triaxial extension (E) as / 6sin /(3 sin )C E ss ssη ϕ ϕ= ± ∓ . The 

liquefaction resistance parameter, χ  (also called dilation parameter), is a scaling 

parameter for plastic dilation, and depends on the relative density and sand type (fabric, 

grain size). Detailed description of the procedure to determine χ  using liquefaction 

resistance data (cyclic stress ratio vs. number of cycles to liquefaction) can be found in 

Popescu [82]; note that the liquefaction resistance curve may be obtained from laboratory 

testing of soil samples or estimated via correlations with field test data. 

The effect of liquefaction resistance of the soil directly translates to the 

liquefaction resistance of the macroscopic pile response as seen in Figure 4.5(a)-(d); 

results are shown for the liquefaction resistance parameter ranging between 0.0-0.15. The 

higher the liquefaction resistance parameter, the higher the rate of generation of excess 

pore pressure, and therefore the higher the degradation in pile response for each cycle. 
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Figure 4.5 (a)-(d) Variation of pile response with liquefaction resistance parameter 
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Effect of Displacement Amplitude of Cyclic Loading (u) 

We here investigate the effect of displacement amplitude of cyclic loading on the 

pile response. The pile was subjected to different loading amplitudes ranging from 10 

mm to 50 mm and the obtained response is shown in Figure 4.6(a)-(c). For u=10 mm, the 

imposed strain on the soil is low and the soil shows only contractive tendency up to 5 

cycles; subsequently, slight strain hardening is observed. On the other hand, for u=50 

mm, significant strain hardening due to dilatancy can be observed starting from the 

second cycle of loading. This phenomenon can be observed more clearly when the 

response is plotted as resistance normalized with initial vertical effective stress, 

/ vr p Bσ ′=  against resistance normalized with drained case, / drainedS p p= (Figure 4.7). 

It should be noted here that S  in this case represents the average effective confining 

stress in the vicinity of pile.  

Two important observations made from this plot are:  

(a) The load at which phase transition is observed is directly proportional to effective 

stress in vicinity of the pile (S). The slope of this phase transition line is 

independent of amplitude of loading; and 

(b) The rate at which the effective stress ratio (S) decreases with each loading cycle is 

different for different loading amplitudes, however it remains more or less the 

same for u=20mm and u=50mm. This implies that after the soil in vicinity of the 

pile has undergone phase transition into the dilative zone, further shearing doesn’t 

contribute much to accumulation of excess pore pressures. 
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Figure 4.6 (a)-(c) Variation of pile response with amplitude of cyclic loading 
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Figure 4.7 Pile response in normalized r-S domain as function of cyclic displacement amplitude.
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Effect of Frequency of Cyclic Loading 

The cyclic loading frequency has a two-fold effect on the macroscopic pile 

response. First, the rate of loading governs the rate of pore pressure generation and hence 

the steady state response as discussed in the permeability section. More importantly, 

however, the loading frequency controls the radiation damping, namely the energy 

propagating away from the soil-pile interface towards the far-field (i.e. energy 

redistribution in larger soil volume). To isolate the effects of soil non-linearity on 

radiation damping and avoid any interference due to difference in rate of pore pressure 

generation, the simulations for this section are performed in dry soil, i.e., without solid 

fluid coupling. Figure 4.8(a)-(d) shows the pile response for dilation angle δ=2, 

corresponding to loading frequencies f = 1, 2, 4 and 5 Hz, respectively.  

The following observations are made: 

(a) As the loading frequency increases, the amount of energy dissipated, i.e., the area 

enclosed by the loop also increases. This is expected since radiation damping 

increases with loading rate; 

(b) There are no clearly demarcated regions of unloading-reloading since the stiffness 

and damping response are 90 degrees out of phase. While one is decreasing 

(unloading), the other one is increasing (loading) and vice-versa; 

(c) The dynamic stiffness modulus is higher than the quasi-static, and increases with 

increasing frequency. This is also an observation expected, since for the dynamic 

case, the complex stiffness modulus is given as dynamic staticK K i Cω= +  which is 

higher in magnitude than the static stiffness modulus. 



 

47 

-200

-150

-100

-50

0

50

100

150

200

-0.025 -0.015 -0.005 0.005 0.015 0.025

u (m)

p
 (

k
N

/m
)

f=1Hz

-200

-150

-100

-50

0

50

100

150

200

-0.025 -0.015 -0.005 0.005 0.015 0.025

u (m)

p
 (

k
N

/m
)

f=2Hz

-150

-100

-50

0

50

100

150

-0.025 -0.015 -0.005 0.005 0.015 0.025

u (m)

p
 (

k
N

/m
)

f=4Hz

-200

-150

-100

-50

0

50

100

150

200

-0.025 -0.015 -0.005 0.005 0.015 0.025

u (m)

p
 (

k
N

/m
)

f=5Hz

 

Figure 4.8 (a)-(d) Variation of pile response with cyclic loading frequency
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CHAPTER 5  

MACROELEMENT FORMULATION 

Results of the parametric investigation suggest that the total resistance as seen 

from the pile centerline is a function of the effective stress distribution around the pile, 

which in turn is a function of permeability of the soil and the frequency of loading. Based 

on this observation, we propose a macroscopic constitutive model to capture pile 

response in dry soil. We next modify the response by means of a pore pressure generator 

to account for the response in drained and partially drained conditions. 

Drained / Dry Loading 

To model the response of a pile subjected to lateral loading in dry / drained soil 

conditions, a modified Bouc-Wen type hysteresis model (Bouc [83]; Wen [84]) is used. 

Similar models have been implemented in the past by Badoni & Makris [85] for 

modeling seismic response of pile foundations and by Gerolymos & Gazetas [49] for the 

lateral response of caisson foundations. The governing equation for the quasi-static case 

is given as:  

yp p ζ=           (5.1)  

where yp  is the ultimate lateral resistance andζ  is a hysteretic dimensionless quantity 

controlling the nonlinear behavior of the lateral soil reaction, computed incrementally by 

the following expression: 

[ ]{ }1 sign( . )
y

du
d f b g du

uζζ ζ= − +       (5.2)  

where /y yu p K= is the yield displacement, K  is the initial stiffness, du  is the 

incremental relative displacement between the pile and the free-field at the location of 

macroelement, 1b g= −  are parameters controlling unloading and reloading stiffness, 

( ) 1sign x = −  if x < 0 and +1 if x ≥  0 is the sign function, and fζ  is a monotonically 
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increasing function of ζ  such that ( ) 1f ζ = when 1ζ =  and ( ) 0f ζ = when 0ζ = . For 

the original Bouc-Wen model, ( ) n
f ζ ζ= . 

A dashpot is added to the model to simulate radiation damping caused by energy 

dissipation and redistribution effects. The dashpot can either be placed in “parallel” or 

“series” with the spring. However, Wang et al. [86] showed that parallel arrangement can 

result in excessive forces when loaded in highly non-linear range unless an upper bound 

is ensured for this case. For this purpose, Badoni & Makris [85] put a maximum limit 

equal to the value at yield displacement to avoid overestimating the response at large 

displacements. On the other hand, Boulanger et al. [47] used the “series” approach in 

their p-y element by putting the dashpot in “parallel” with elastic stiffness spring and in 

“series” with the plastic spring, so that the total response never exceeds the ultimate soil 

strength. A “parallel” approach would imply that at maximum displacement level during 

sinusoidal cyclic loading, the soil resistance should be almost the same for all loading 

frequencies since the loading rate at maximum displacement is zero and hence there is no 

contribution to resisting force from the dashpot. However, results from Figure 4.8 show 

that the soil resistance at maximum displacement level decreases as the loading frequency 

increases, which is something that is expected from “series” model instead. Therefore, a 

formulation similar to “series” arrangement is used in our model implemented as follows: 

The total resistance is calculated in an incremental fashion as 

s d y s y ddp dp dp p d p dζ ζ= + = +       (5.3)  

The quantity sdζ  is calculated as described by equation (3), and the incremental dashpot 

force is given as: 

d rdp c du= ɺ          (5.4)  

where rc  is the radiation damping coefficient; to account for the soil nonlinearity effects 

on radiation damping, rc   is approximated iteratively using an equivalent linear approach 
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(i.e. using the linear formulation in conjunction with the tangent modulus of the stress-

strain hysteresis loop instead of the elastic stiffness) by modifying the linear damping 

coefficient by Makris and Gazetas [87] as follows: 

  

c
r

= c 1− fζ b + gsign(du.ζ )( )





0.5

c = ρ
s
V

s
a

o
−0.25QB

      (5.5)  

where sρ  is the density of soil, sV  is the shear wave velocity in soil, B is pile diameter, 

/o sa B Vω=  is the normalized frequency of loading, and Q  is a shape factor that depends 

on the soil Poisson’s ratio but can be approximately set to 3Q ≈  for shallow depths 

(Badoni & Makris [85]). In case of transient loading, ω  is set equal to the dominant 

frequency of loading. The non-linear formulation ensures that when 1ζ = , 0rc =  and 

hence the total force never exceeds the ultimate resistance of soil. 

 
Figure 5.1 Schematic showing the different components, input and output for proposed 

macroelement 

Undrained Loading 

We next integrate the effects of effective stress changes on the soil-pile response. 

For this purpose, the drained response is modified by means of a pore pressure generator. 

The average effective stress in the vicinity of the pile is evaluated by using the 

‘liquefaction front’ concept developed by Iai et al. [88] and extending it for the case of 

piles as shown in Figure 5.2.  
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Figure 5.2 Extension of concept of "Liquefaction Front" for piles in r-S space 
 

This approximation is based on the observation that the pore pressure generation 

is directly proportional to the total amount of plastic shear work done per unit volume of 

soil (Towhata and Ishihara [89]). As a result, the average effective stress 0' 'v vS σ σ=  

can be written in terms of normalized soil resistance / 'ir p Bσ=  as follows: 

( )
3

2 2
2 2 3 1 3

( )

[( ) / ] ( )

o

o

S r r
S

S S S r r m r r

≤= 
+ − + − >

    (5.6)  

where ( )2 0 2 11 / 3S S m m= − , 3 0 2 12 / 3r S m m= , 1m  is the slope of failure line and 

2m  is the slope of phase transformation line. S0 is defined in terms of normalized plastic 

shear work ( w ), parameter controlling liquefaction resistance ( 1w ) and parameter 

controlling the shape of strength degradation curve (κ ) and is calculated incrementally as 

follows: 

0

1

exp
w

S
w

κ
 

=  
 

        (5.7)  

( 1) /
0 0 0 1( log ) /dS S S dw wκ κκ −= −       (5.8)  
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The quantity dw  is the normalized incremental plastic shear work, and is 

calculated as the difference between total incremental shear work and elastic incremental 

shear work normalized by the product of ultimate soil resistance and yield displacement 

(see Equation 10). Since the results from our parametric investigation on cyclic 

displacement amplitude indicate that the amount of plastic shear work done when the soil 

is in “dilation” doesn’t contribute significantly to the build-up of excess pore pressure, 

only the plastic shear work done in “contractive” zone is used as follows: 

3

3

. .( / )

0

e

y y y y

dW dW p du p dp K
r r

p u p udw

r r

− − = ≤= 
 >

    (5.9)  

According to Iai et al [32], a drawback of the formulation in equation (5.6) is that 

it becomes unstable when the r-S curve approaches the failure line; for the macroelement, 

this implies that when 1ζ = , 0/S S → ∞ . To avoid this problem and improve the 

response idealization obtained in parametric analysis, we impose the condition that the 

failure slope 1m  be increased by a factor of 01.05 0.4S+ . In this way, the increment of 

0.05 of the intercept bounds the total response and avoids numerical instability at 1ζ = , 

while the 00.4S  term prevents overestimation of dilation response when the soil in the 

vicinity of pile is not liquefied. 

Partially Drained Loading 

Gonzalez et al. [66] among others reported that the interaction between pile and 

soil during liquefaction leads to the formation of a zone around the pile where pore 

pressures are considerably different from those in the far-field. This difference has been 

attributed to both dilation effects in the soil as well as suction on the ’tension’ side of 

pile. These observations agree with the concept of near-field where soil-structure 

interaction causes deviations in stress, pore pressure and displacements from the 

corresponding quantities in the far-field. We observed a similar phenomenon in our 
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numerical analyses, namely that the liquefaction caused by the relative soil-pile motion 

was confined within a zone of about five diameters around the pile as shown in Figure 

5.3. Due to the pressure difference between near-field and far-field, drainage initiated 

between the two regions depending on the pressure gradient. 

 
Figure 5.3 Effective vertical stress plot after seven loading cycles showing the formation 

of local liquefaction zone 
 

To account for the effects of partial drainage, it is assumed that there is a linear 

pressure gradient between the near-field and the far-field in the radial direction, and that 

Darcy’s Law may be applied. The drainage velocity is thus given as: 

( )0'v ff

h k
V k S S

L L
σ∆= = −        (5.10)  

where k  is the permeability of soil, ffS is the effective stress ratio in free-field and the 

drainage length L B∝ . We also know that 

0 1v

s

d dS
V

dt dt K

ε∝ ∝         (5.11)  

where vε is the volumetric strain released due to outflow of water, and sK  is the bulk 

modulus of soil. Since n
sK S∝ , the expression above can be modified and written in 

implicit form as: 
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( )0

.

1 .

n

ffn

dtS
dS S S

dtS

β
β

= −
+

       (5.12)  

where ( )/f k Bβ = . 

Total Macroscopic Pile Response 

 
Figure 5.4 Flowchart for calculation of pile response using proposed macroelement 

 
In order to compute the total response, the drained response is first calculated 

using equation (5.3).  The shear work done is calculated incrementally as 

. / y ydw p du p u= , and is used to calculate the change in S0 due to pore pressure 

generation as described in equation (5.8). The new 0S  is then calculated by 

adding/subtracting the change in 0S  due to pore pressure generation and dissipation as 

given by equation (5.12), respectively. Given the current value of ζ , the liquefaction 
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front parameter 0S , and the shear stress ratio given as 1r m Sζ= , the current level of 

average-effective stress ratio (S) is calculated. The total resistance then calculated 

as yp p Sζ= . The process is expressed in form of flowchart in Figure 5.4.  
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CHAPTER 6  

CALIBRATION OF MACROLEMENT 

Drained Response 

To simulate drained conditions, the soil permeability was set to a very high value 

(k=1m/s) and a very low loading frequency (0.1Hz) was used. Also, to simulate dry 

conditions, the numerical analyses were performed without using the fluid phase. The 

results for both cases were found to be in excellent agreement with each other for the 

same values of effective confining stress. Therefore, in the rest of the paper the 

drained/dry response is used interchangeably as long as the effective confining stress is 

the same. 

Initial stiffness Modulus (K) 

Figure 6.1 shows the initial stiffness modulus of the p-y curves (K) as a function 

of Young’s modulus of the soil (Es) at different depths and for different reference 

Young’s modulus (Es0).  
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Figure 6.1 Variation of initial stiffness of pile response with Young's modulus for soil 
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For all cases the stiffness modulus follows the relation: 

1.25 sK E=          (6.1)  

This is in excellent agreement with the values proposed in literature (Roesset [90]; 

Makris and Gazetas [87]) for pseudo-static response of circular piles.  

Ultimate Resistance (py) 

Figure 6.2 shows the normalized ultimate resistance of p-y curves ( 'y vp σ ) as a 

function of the pile diameter. The normalized ultimate resistance is observed to be 

directly proportional to the pile diameter, which is similar to the formulations 

3 'y p vop K Bσ=  by Broms [91], and 2 'y p vop K Bσ=  by Fleming et al. [92] with 

( )2tan 45 / 2pK ϕ= +  being the coefficient of passive earth pressure and ϕ  the friction 

angle for soil.  
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Figure 6.2 Normalized ultimate soil resistance (py) as a function of pile diameter 

 
The variation of normalized ultimate resistance with friction angle observed in 

this study is shown in Figure 6.3. The best-fit curve is obtained as a combination of both 

aforementioned formulations as:  
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( )23.25 0.3 'y p p vp K K Bσ= +       (6.2)  

The coefficient ( )23.25 0.3p pK K+  is slightly higher than 3 pK  and 2
pK  reported in 

the literature; the overestimation can be attributed to the fact that there is no gapping (loss 

of contact) on the tension side of pile while loading in our numerical simulations. While 

the same formulation is used in this paper for consistency and for the sake of simplicity, 

other more sophisticated formulations including the one proposed by Reese et al [16] can 

also be used. 
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Figure 6.3 Normalized ultimate soil resistance as a function of soil friction angle 

Backbone Curve (Monotonic Loading) 

Figure 6.4 shows the p-y curves for monotonic loading for different depths and 

different friction angles. Both soil resistance and displacement are normalized as p/py and 

u/uy. As long as the reference maximum strain maxγ  remains constant, the backbone 

curves in normalized space are the same, i.e, are independent of depth and friction angle. 

The dependence of backbone curves on maxγ  is shown in Figure 6.5. As maxγ  decreases, 

the response becomes stiffer.  
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Figure 6.4 Normalized backbone (monotonic loading) curves for pile response at 

different soil depths 
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Figure 6.5 Normalized backbone curves as a function of max deviatoric strain in soil 

along with fitted values using the proposed model 
 

While fitting the backbone curves with the proposed Bouc-Wen model, the 

function  ( ) tanh( ) / tanh( )f ζ αζ α=  was found to give much better fit compared to the 

usual function ( ) n
f ζ ζ= . Since the difference between the backbone curves for 
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max 0.04 0.08γ = −  is not that pronounced, a value of α =2.7 for dense sands ( maxγ =0.04), 

2.8 for medium-dense ( maxγ =0.06) and 2.9 for loose sands ( maxγ =0.08) is recommended. 

The most widely employed backbone curves for lateral loading of piles in practice 

are the ones proposed by Reese et al. [16] and later adopted by API [17]. Murchison and 

O’Neill [93] provided a simpler analytical expression to fit the three-part curve proposed 

by Reese et al. [16] as tanh( / )y yp p u u=  where y up nAp=  with n and A being 

corrections to the ultimate resistance up  that account for pile shape and depth, 

respectively. Figure 6.6 shows how the proposed backbone curve compares with the 

backbone curve recommended by Reese et al. in normalized p-y space. The Reese et al. 

curve predicts a much stiffer response than actually observed as has been reported before 

by many other researchers including Yan & Byrne [94]. 
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Figure 6.6 Comparison between backbone curves proposed by Reese et al. (1974) and 

those proposed in this study 

Cyclic Loading-Reloading 

The pile response when subjected to cyclic loading of different displacement 

amplitudes is shown in Figure 6.7. The unloading stiffness is observed to be the same as 

initial stiffness modulus, which implies 0.5b =  and 0.5g =  for the proposed model. It is 
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also observed, however, that the modulus starts decreasing during unloading unlike the 

case of proposed model formulation where it remains constant till reloading, i.e., till the 

net force has reached zero. However, since the difference is not that significant, a better 

fit can be obtained by using a slightly reduced unloading modulus with 0.6b =  and 

0.4g = . 
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Figure 6.7 Pile response to cyclic loading of different loading amplitude 

 
Figure 6.8 shows the response in a scenario where the pile is loaded 

monotonically to 0.1 m and then subjected to cyclic loading of magnitude ranging from 

0.01 to 0.05 m.  The response shows kinematic hardening behavior and as a result, force 

relaxation is observed after each cycle of unloading-loading. Such kind of kinematic 

hardening behavior is common in cohesionless soils where the soil collapses and fills up 

any gap formed behind the pile. As will be shown in later section of paper, the proposed 

model is able to capture this force relaxation behavior as well. 
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Figure 6.8 Pile response to small loops of cyclic unloading-reloading after monotonic 

loading 

Undrained Response 

For the simulation of undrained conditions, the soil permeability was set to a very 

low value (k=10-9 m/s). Simulations were performed for both fully drained and fully 

undrained cases and the mean effective stress ratio around the pile (S) was calculated as: 

d

r
S

r
=           (6.3)  

where 0/ 'vr p Bσ=  is the normalized pile response for the undrained case and dr  is for 

drained case. 

Figure 6.9 shows sample pile response in the r-u domain for both drained and 

undrained case. Using these curves, the mean effective stress ratio around the pile is 

calculated and the results are shown in r-S space in Figure 6.10. As loading progresses, 

the mean effective stress ratio (S) decreases, thereby leading to degradation of pile 

response (r). But after crossing the phase transformation line, the soil exhibits dilative 

tendency and strain-hardening is observed.  
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Figure 6.9 Drained and Undrained pile response at depth 2 m in r-u space 
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Figure 6.10 Representation of undrained pile response in r-S space (grey) along with 

points at which phase transition begins (black) 

Slope of Phase-transformation Line (m2) 

Figure 6.11 (a)-(d) show the points at which phase-transformation begins in r-S 

domain for different pile diameters (B), depth below ground surface (D), friction angle 

(ϕ ) and liquefaction resistance parameter ( χ ), respectively. It should be noted that 

according to the proposed model, these points fall along a straight line in r-S space with a 

slope 3 20.67m m= . 
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Figure 6.11 Points of beginning of phase-transformation in r-S domain for different (a) pile diameter (b) depth below ground surface 

(c) friction angle (d) liquefaction resistance parameter 
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As observed from Figure 6.11, the slope of phase transformation line is 

independent of all the above mentioned parameters. It is found to be controlled only by 

the critical state friction angle ( ssϕ ) as shown in Figure 6.12. Along similar lines as 

compared to slope of failure line, the slope of phase transformation line is fitted as: 

( )2
2 3.25 tan 45 2ssm ϕ= +�       (6.4)  
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Figure 6.12 Variation of slope of phase-transition line with critical state friction angle. 

The fitted values are also shown. 

Shear Work Correlation Parameter 

Figure 6.13 (a)-(c) show the shear work correlation curves, i.e., S0 vs. w, for 

different values of critical state friction angle ( ssϕ ), friction angle (ϕ ) and pile diameter 

(B). While the curves are independent of critical state friction angle and friction angle as 

expected, they are independent of pile diameter (B) as well. This is because of the fact 

that while the total shear work done for same value of w  increases proportional to 2B  

since yp B∝  and yu B∝ , the volume of soil influenced by pile motion also increases 

proportional to 2B , thereby keeping the work done per unit volume the same. 
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Figure 6.13 Shear work correlation for different values of (a) critical state friction angle (b) pile diameter (c) friction angle 
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Figure 6.14 (a) Shear work correlation curves as a function of liquefaction resistance parameter (b) Shear work correlation curves after 

normalization with parameter w1 
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Figure 6.15 Parameter η as a function of Poisson's ratio and power exponent n 

 
The curves depend only on the liquefaction resistance parameter for soil ( χ ) as 

shown in Figure 6.14(a), but by scaling the x-axis using the normalization parameter 1w , 

they follow the same backbone as shown in Figure 6.14(b). The scaling parameter 1w is 

found to be inversely proportional to χ and is expressed as 

1 /w η χ=          (6.5)  

where η  is a function of Poisson ratio of soil as shown in Figure 6.15 and is given as 

(1 ) 2 2(1 )(1 2 ) (1 )n n nnη ν ν− −= − −        (6.6)  

where ‘n’ is the power exponent for soil. A good match is obtained for fitting the curve 

shape of shear work correlation curves using a value of 1.4κ = . 
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Partially Drained Response 

Drainage Parameter ( β ) 

Figure 6.16 shows shear work correlation curves for partially drained case for 

different values of soil permeability. It can be seen that instead of degrading continuously 

as a function of shear work, the pile response achieves a steady state after some time. The 

steady state oeqS  is plotted as a function of permeability in Figure 6.19. While the dots 

represent the values obtained from FE simulations, the lines represent the values obtained 

from fit using the β  parameter.  
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Figure 6.16 Shear work correlation curves for partially drained case for varying soil 

permeability 
 

Figure 6.17(a)-(b) show the variation of response for different soil porosity and at 

different depths, respectively. The response is almost independent of porosity and also 

appears to be independent for depths greater than one diameter indicating that drainage is 

primarily radial in nature during liquefaction. 
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Figure 6.17 Soeq (equilibrium) as a function of soil permeability for (a) soils with different porosity and (b) different depths below 

ground surface 
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Figure 6.18 Soeq for different pile diameter as a function of (a) soil permeability (b) soil permeability normalized with pile diameter 
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Figure 6.18(a) shows the response for different pile diameters. Since the near-

field liquefied zone is proportional to pile diameter, the drainage length for larger piles is 

longer and hence the equilibrium average effective stress ratio decreases as pile diameter 

increases which agrees with the observations from FEM simulations. By normalizing 

permeability with pile diameter ( /k B ), similar response is obtained for all pile diameters 

as shown in Figure 6.18 (b). It should be noted that the effect of loading rate is 

automatically taken into account in the model by the ‘dt’ term and the actual 

dimensionless parameter controlling the response is . /k dt B  or /k Bf . Since the response 

is controlled by bulk modulus ( sK ) as opposed to Young’s modulus, a similar 

dependence of β  on Poisson’s ratio is observed. Nonetheless, the total response as 

shown in Figure 6.20 is the same for both Poisson’s ratio considered, since change in the 

rate of pore pressure dissipation is cancelled out by the change in rate of pore pressure 

generation as discussed in previous section. The β parameter is obtained as: 

( )
( )

2 1
550

3 1 2

k

B

ν
β

ν
+

=
−

       (6.7)  
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Figure 6.19 Comparison between observed (dots) and predicted (line) Soeq values as a 

function of soil permeability and friction angle 
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Figure 6.20 Soeq vs. soil permeability variation for different values of Poisson’s ratio 
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CHAPTER 7  

VERIFICATION AND VALIDATION OF MACROELEMENT 

3D Finite Element Comparison 

In order to verify that the components of proposed model replicate the pile 

response observed during FEM simulations, sample predictions by the proposed model 

on the element scale are compared with the observed FEM response. In subsequent 

sections, we also compare the performance of the model to large-scale simulations of 

pile-supported waterfront structures and field test results. This work is currently under 

development and results so far are found to be in excellent agreement with observations. 

Results presented here are for loose soil with 32ϕ = � , 30ssϕ = �  and 0.15χ = . 

The comparison for dry/drained case is presented in Figure 7.1 (a)-(b) where (a) shows 

the predicted and observed response for cyclic loading with different displacement 

amplitude whereas (b) shows the force relaxation behavior when the pile is loaded 

monotonically and then subjected to unloading-loading in small loops. Figure 7.2 (a)-(b) 

shows the comparison for undrained behavior at two different loading amplitudes of 1 cm 

(almost no dilation) and 5 cm (significant dilation), respectively. Finally, the partially 

drained behavior for soil permeability ranging from k=10-5 to 5x10-4 m/s is compared in 

Figure 7.3 (a)-(d). It can be seen that the model is able to simulate the pile response with 

sufficient degree of accuracy. 
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Figure 7.1 Comparison between predicted (solid) and observed (dotted) drained pile response for (a) different cyclic loading 

amplitudes (b) unloading-reloading in small loops 
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Figure 7.2 Comparison of observed (3D FEM) and predicted (model) response for loose soil (φ=32, χ=0.15) at 2m depth for two 

displacement amplitudes (a) 1 cm and (b) 5 cm. 
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Figure 7.3 (a)-(d) Comparison of partially drained pile response in r-S domain for four different soil permeability
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Validation 

The performance of macroelement is validated next by comparison with two 

different kinds of tests. The first type consists of field tests where liquefaction is induced 

by means of controlled blasting followed by lateral loading of pile. The second type 

consists of centrifuge experiments where the pile with a superstructure is excited by 

means of seismic loading.  

Comparison with Field Test using Blast Induced Liquefaction 

 

Figure 7.4 (a) Soil profile (b) SPT and CPT records (c) Estimated relative density (d) 
Estimated friction angles (Weaver et al. [63]) 
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The field test was conducted at National Geotechnical Experimentation site at 

Treasure Island, California. The island was constructed during Golden Gate International 

Exposition in 1930s by hydraulic filling dredged material from Sacramento River over 

shoals of neighboring Yerba Buena Sand. The site conditions have been explored using 

subsurface investigations (Faris and de Alba [95]). The soil profile along with corrected 

blow counts (SPT), Cone Tip Resistance (CPT), Relative density (estimated from 

relationships proposed by Kulhawy and Mayne [96]), and friction angle (estimated from 

CPT, SPT and Peck et al. [97]) are shown in Figure 7.4. The reader is referred to Weaver 

et al. [63] for more details. 

The soil parameters estimated from the field data are shown in Table 1. The 

critical state friction angle ( ssϕ ) is estimated using the relative density and friction angle 

(ϕ ). For very loose sands (Dr = 20%, 1 2ssϕ ϕ− = − � ) whereas for loose sands (Dr = 50%, 

3ssϕ ϕ− = � ). The liquefaction resistance parameter is estimated from SPT blowcounts as 

recommended by Popescu and Prevost [78]. Finally the drainage parameter (β) is 

estimated directly from the dissipation rate of excess pore pressure right next to pile as 

shown in Figure 7.5. In t = 300 seconds, the excess pore pressure ratio drops from 0.85 (S 

= 0.15) to 0.61 (S = 0.39). Assuming the excess pore pressure ratio sufficiently far away 

from pile to be 1.0, we get 

. (1 )ndS
S S

dt
β= −         (7.1) 

Using, the above equation, the drainage parameter can be calculated as 

0.39

0.15

1

300 (1 )n

dS

S S
β =

−∫         (7.2) 

Integrating numerically we get, β = 0.0021 (1/s). Back calculating the soil permeability, 

we get k = 6.7x10-6 m/s which seems a reasonable value for medium to fine sands. 
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Using the soil parameters, the macroelement parameters were estimated using the 

relationships described in previous chapters and are shown in Table 2. The parameter Soi 

is the initial value of effective stress ratio, i.e., 1 ur−  in the near field just after blasting 

and is determined directly from the pore pressure histories. 

 

Figure 7.5 Calculation of drainage parameter from field test data (modified from Weaver 
et al. [63]) 

 
The pile has a diameter of 0.6 m and EI = 291,800 kN/m2. After blasting, the 

loading was applied using a hydraulic actuator equipped with a swivel head to provide 

free head condition. Due to rapid dissipation of pore pressure, half loading cycles were 

used. The first series of loading consisted of one 75 mm, one 150 mm followed by eleven 

225 mm displacement cycles at a rate of 10 mm/min. Due to slow loading rate, the 

radiation damping was considered to be negligible in the model.  

Predictions vs Observations: No gap element 

First, the field test is simulated using the macroelement without any gapping at 

soil-pile interface. The numerical model is shown in Figure 7.6. Figure 7.7 shows the 

comparison between observed and simulated results for force vs. displacement recorded 

at the top of pile whereas Figure 7.8 shows p-y curves recorded at different depths.  
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Table 7.1 Soil Properties estimated at the macroelement locations 
 

Soil Type Depth 

(m) 

ρ (g/cc) σv’ 

(Pa) 

φ φss Xpp k  

(m/s) 
sand 0.185 1.90 3445 37 29 0.12 5.00E-06 

sand 0.75 2.00 10611 33 29 0.14 5.00E-06 

sand 1.5 2.00 17961 32 29 0.14 5.00E-06 

sand 2.25 2.00 25311 32 29 0.14 5.00E-06 

sand 3 2.00 32661 32 29 0.14 5.00E-06 

sand 3.75 2.00 40011 32 29 0.14 6.70E-06 

sand 4.5 2.00 47361 32 29 0.14 6.70E-06 

clayey sand 5.3 2.00 55201 30 28 0.15 6.70E-06 

clayey sand 6.3 2.00 65001 30 28 0.15 6.70E-06 

clayey sand 7.3 2.00 74801 30 28 0.15 6.70E-06 

clayey sand 8.3 2.00 84601 29 28 0.16 6.70E-06 

sand 9.3 2.00 94401 29 28 0.18 6.70E-06 

sand 10.3 2.00 104201 29 28 0.18 6.70E-06 

sand 11.3 2.00 114001 29 28 0.18 6.70E-06 

sand 12.3 2.00 123801 29 28 0.18 6.70E-06 

 

 

Table 7.2 Macroelement parameters calculated from soil properties 
 
S.No D 

(m) 

K  

(Pa) 

Py 

(kN.m) 

α m1 m2 w1 S0i β (1/s) 

1 0.38 16239915 37056 2.8 17.93 9.37 1.65 0.25 0.0016 

2 0.75 24430840 92165 2.8 14.48 9.37 1.41 0.22 0.0016 

3 0.75 31785271 148233 2.8 13.76 9.37 1.41 0.20 0.0016 

4 0.75 37732492 208893 2.8 13.76 9.37 1.41 0.17 0.0016 

5 0.75 42862320 269553 2.8 13.76 9.37 1.41 0.15 0.0016 

6 0.75 47440657 330213 2.8 13.76 9.37 1.41 0.13 0.0016 

7 0.75 51614469 390873 2.9 13.76 9.37 1.41 0.12 0.002 

8 1.00 46435839 412351 2.9 12.45 9.00 1.32 0.10 0.002 

9 1.00 50389479 485557 2.9 12.45 9.00 1.32 0.10 0.002 

10 1.00 54054714 558763 2.9 12.45 9.00 1.32 0.10 0.002 

11 1.00 57486734 601948 2.9 11.86 9.00 1.24 0.10 0.002 

12 1.00 60725095 671677 2.9 11.86 9.00 1.10 1.00 0.002 

13 1.00 63799292 741405 2.9 11.86 9.00 1.10 1.00 0.002 

14 1.00 66732017 811133 2.9 11.86 9.00 1.10 1.00 0.002 

15 1.00 69541172 880862 2.9 11.86 9.00 1.10 1.00 0.002 
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Figure 7.6 Numerical model used to simulate field test 
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It can be seen that while the magnitude of total force at maximum displacement is 

captured with reasonable accuracy, the strain hardening behavior exhibited by observed 

data is not seen in numerical results. Similar observations can be made with p-y response 

as well. While the authors reported no visible gap formation due to liquefied sand and 

water flowing behind the pile, the liquefied sand mixture that fills up the gap is expected 

to be show a softer response than the original soil present in the region. 
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Figure 7.7 Lateral force vs. displacement response at the top of pile without accounting 

for gapping. 
 

This can also be observed from Figure 7.9, where during first three cycles when 

the cyclic displacement amplitude is successively increased, the initial part shows a 

concave region with strain hardening, whereas after the previous maximum displacement 

is exceeded, the response is almost a straight line that looks more like the predicted 

response without a gap. The displacement profile shown in Figure 7.10 (b) and somewhat 

agrees with the observed displacements. Figure 7.10(a) shows the predicted and observed 

bending moments for last cycle when the load at top of pile is 44, 137 and 232 kN, 

respectively. The bending moments are generally overpredicted for loads 44 and 137 kN 



 84 

and the maximum bending moment occurs closer to the ground surface which is expected 

since the soil resistance in top layers is overestimated when the gapping is not accounted 

for. However, the bending moments at 232 kN are reasonably well predicted. 
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Figure 7.8 Comparison between p-y curves at different depths without accounting for 

gapping 
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Figure 7.9 Lateral force vs. displacement response at the top of pile as observed in field 

test (Weaver et al. [63]) 
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Figure 7.10 (a) Bending moment (b) Displacement profile with depth for simulation 

without soil-pile gapping 
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The Gap Element 

In order to simulate the effect of gapping, a gap element is implemented as an 

additional component of the macroelement. The gap element is an envelope function used 

to scale the total p-y response predicted by the macroelement depending on the current 

displacement and the maximum previous displacement on each side of the pile. A 

hyperbolic function is used and the gap multiplier is calculated as 

( )
max

1
g

gg

n

ref
g d d nn

ref

u
m c c

u u u
= + −

+ −
 (7.3) 

Where dc is the ratio of drag resistance from sides to total resistance and is typically equal 

to 0.1-0.2 (reference), maxu is the maximum previous displacement on each side, gn is a 

power coefficient and refu is a reference displacement value used for scaling. The 

reference displacement is chosen as 5ref yu u= where /y yu p K= is the yield displacement 

and refu  roughly corresponds to the displacement at which 50% of maximum resistance is 

mobilized. Figure 7.11 shows the variation of gap multiplier for power coefficient gn = 1, 

2 and 4. A power coefficient of 2 is used in this study. 
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Figure 7.11 Variation of gap multiplier for different power coefficients 
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Predictions vs Observations: Gap element 

Figure 7.12 shows the total force recorded at pile head vs. displacement. Very 

good agreement is obtained between the observed and predicted values. The agreement 

between p-y curves recorded at six different depths is also quite good as can be seen in 

Figure 7.13. Good agreements between displacement and bending moment are also 

observed as shown in Figure 7.14 (a) and (b), respectively. 
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Figure 7.12 Comparison between observed and predicted lateral force at pile top when 

accounting for soil-pile gapping 

Comparison with Pysimple1 

To compare with other available formulations, the p-y simple element (Boulanger 

et al. [47]) was also used to predict the pile response. The element properties were 

generated using the in-built pysimplegen1 module in OPENSEES [98] using the soil 

properties provided in Table 1. A drag coefficient of 0.3 and residual strength ratio of 0.1 

were used. The ultimate resistance in the module is calculated using the API [17] method. 

In order to provide a fair comparison, the response of macroelement proposed in this 

study (henceforth referred to as PYmacro) was also computed using the same p-y 
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resistance. The parameters used for PYmacro are presented in Table 3. Figure 7.15 

presents the total lateral force vs. displacement response for pysimple1 and PYmacro, 

respectively. It can be seen that the response predicted by PYmacro is still reasonably 

good and better than the response predicted by pysimple1.  
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Figure 7.13 p-y curves at six depths with soil-pile gapping 
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Figure 7.14 (a) Bending moment (b) Displacement profile with depth for simulation with 

soil-pile gapping 
 

 
Table 7.3 Macroelement parameters with py calculated using API [17] method 

 
S.No D 

(m) 

K  

(Pa) 

Py 

(kN.m) 

α m1 m2 w1 S0i β (1/s) 

1 0.38 16239915 23496 2.8 11.37 5.94 1.65 0.25 0.0016 

2 0.75 24430840 45821 2.8 7.20 4.66 1.41 0.22 0.0016 

3 0.75 31785271 72867 2.8 6.76 4.60 1.41 0.20 0.0016 

4 0.75 37732492 99568 2.8 6.56 4.46 1.41 0.17 0.0016 

5 0.75 42862320 132046 2.8 6.74 4.59 1.41 0.15 0.0016 

6 0.75 47440657 174580 2.8 7.27 4.95 1.41 0.13 0.0016 

7 0.75 51614469 244439 2.9 8.60 5.86 1.41 0.12 0.002 

8 1.00 46435839 354994 2.9 10.72 7.75 1.32 0.10 0.002 

9 1.00 50389479 505595 2.9 12.96 9.37 1.32 0.10 0.002 

10 1.00 54054714 633879 2.9 14.12 10.21 1.32 0.10 0.002 

11 1.00 57486734 1131235 2.9 22.29 16.92 1.24 0.10 0.002 

12 1.00 60725095 951105 2.9 16.79 12.75 1.10 1.00 0.002 

13 1.00 63799292 1334370 2.9 21.34 16.20 1.10 1.00 0.002 

14 1.00 66732017 1486940 2.9 21.74 16.50 1.10 1.00 0.002 

15 1.00 69541172 1582618 2.9 21.31 16.17 1.10 1.00 0.002 
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Figure 7.15 Comparison between observed and predicted lateral force at pile top for (a) Pysimple1 and (b) Pymacro 
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Figure 7.16 Bending Moment profiles for (a) Pysimple1 and (b) Pymacro 
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Figure 7.17 Displacement profiles for (a) Pysimple1 and (b) Pymacro 

 



 92 

 
Similar observations can be made for the moment profiles as shown in Figure 

7.16 where pysimple1 tends to overpredict the moments by around 50-70%. Good 

agreements for displacement profile are obtained for both the cases as shown in Figure 

7.17. 
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Figure 7.18 p-y response for pysimple1 method 
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Figure 7.19 p-y response for PYmacro method 

 
 

Finally, the p-y response for pysimple1 and pymacro are shown in Figure 7.18 

and Figure 7.19, respectively. 
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Comparison with Centrifuge Tests 

The centrifuge tests were conducted at National Geotechnical Centrifuge at UC 

Davis. An acceleration of 30g was used which gives a scaling factor of 30. A mixture of 

water and methyl cellulose with a viscosity 10 times that of water was used as the pore 

fluid. Two particular configurations referred to as CSP_2 and CSP_3 are chosen for 

simulation. The model layouts are shown in Figure 7.20 and Figure 7.21 respectively. 

CSP_2 consists of 9 m thick layer loose Nevada sand on the top (Dr = 35-40%) underlain 

by Dense Nevada sand (Dr = 80%) whereas the upper layer in CSP_3 is medium dense 

Nevada sand (Dr = 55%). Nevada Sand is fine, uniform sand (Cu =1.5, D50 = 0.15 mm) 

and its behavior has been extensively studied in both laboratory and centrifuge tests 

during the VELACS project (Arulanandan and Scott [99]). Hence the soil properties are 

reasonably well documented (Popescu and Prevost [78]). 

The soil properties are shown in Table 4. Using the soil properties, the 

macroelement properties are calculated as given in Table 5 for CSP_2 and Table 6 for 

CSP_3. Both the models are subjected to two events A and B that are scaled versions 

Kobe 1995 earthquake. Event A has a maximum acceleration of 0.04 g whereas event B 

has a maximum acceleration of 0.22g. 

Table 4 Soil Properties for Centrifuge Tests 
 

Property Unit Dr = 35% Dr = 55% Dr = 80% 
Shear Modulus (Go)  MPa 25 30 40 
Bulk Modulus (Ko) MPa 50 55 100 
Power Exponent (n) -- 0.7 0.7 0.7 
Friction angle (φ) Degrees 32 34 38 
CS Friction angle (φss) Degrees 30 30 30 
Liquefaction (χ) -- 0.16 0.14 0.06 
Permeability (k) m/s 6.6x10-5 5.6x10-5 4.7x10-5 
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Figure 7.20 Model layout in CSP_2 (Wilson et al. [58]) 
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Figure 7.21 Model Layout in CSP_3 (Wilson et al. [58]) 

 

For the purpose of comparison, the highly instrumented pile was used for both 

models. The pile had a Young’s modulus (Ep) = 70 GPa and Area moment of Intertia (I) 

= 0.0061 m4. The superstructure mass (Mss) was 49140 kg. The input displacement 
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histories for free-field end of macroelement were obtained by integrating the acceleration 

time histories recorded in free field in the centrifuge at seven locations and using linear 

interpolation for the other seven. The excess pore pressure ratio time histories were also 

obtained from pore pressure transducers in centrifuge experiments themselves. The 

numerical model is shown in Figure 7.22. 

Table 5 Macroelement properties for Model CSP_2 
 
No. D 

(m) 

K (Pa) Py 

(kN/m) 

α m1 m2 w1 Β 

(1/s) 

Cr 

(Pa.s) 

1 0.335 1.56E+03 4.41E+06 2.9 13.76 9.75 1.257 0.12 1.38E+05 

2 0.67 6.24E+03 1.17E+07 2.9 13.76 9.75 1.257 0.12 2.52E+05 

3 0.67 1.25E+04 1.89E+07 2.9 13.76 9.75 1.257 0.12 3.42E+05 

4 0.67 1.87E+04 2.51E+07 2.9 13.76 9.75 1.257 0.12 4.08E+05 

5 0.67 2.50E+04 3.07E+07 2.9 13.76 9.75 1.257 0.12 4.63E+05 

6 1 3.26E+04 3.71E+07 2.9 13.76 9.75 1.257 0.12 5.20E+05 

7 1 4.19E+04 4.42E+07 2.9 13.76 9.75 1.257 0.12 5.81E+05 

8 1 5.12E+04 5.09E+07 2.9 13.76 9.75 1.257 0.12 6.34E+05 

9 1.5 6.28E+04 5.87E+07 2.9 13.76 9.75 1.257 0.12 6.94E+05 

10 1.5 7.68E+04 6.75E+07 2.9 13.76 9.75 1.257 0.12 7.57E+05 

11 2 9.39E+04 1.26E+08 2.7 18.96 9.75 3.352 0.08 1.13E+06 

12 2 1.14E+05 1.44E+08 2.7 18.96 9.75 3.352 0.08 1.23E+06 

13 2 1.34E+05 1.61E+08 2.7 18.96 9.75 3.352 0.08 1.32E+06 

14 2 1.54E+05 1.78E+08 2.7 18.96 9.75 3.352 0.08 1.41E+06 

 
Table 6 Macroelement properties for Model CSP_3 

 
No. D 

(m) 

K (Pa) Py 

(kN/m) 

α m1 m2 w1 Β 

(1/s) 

Cr 

(Pa.s) 

1 0.335 1.66E+03 4.97E+06 2.8 15.25 9.75 1.490 0.10 1.49E+05 

2 0.67 6.65E+03 1.31E+07 2.8 15.25 9.75 1.490 0.10 2.73E+05 

3 0.67 1.24E+04 2.02E+07 2.8 15.25 9.75 1.490 0.10 3.58E+05 

4 0.67 1.90E+04 2.74E+07 2.8 15.25 9.75 1.490 0.10 4.32E+05 

5 0.67 2.57E+04 3.38E+07 2.8 15.25 9.75 1.490 0.10 4.93E+05 

6 1 3.33E+04 4.05E+07 2.8 15.25 9.75 1.490 0.10 5.52E+05 

7 1 4.28E+04 4.83E+07 2.8 15.25 9.75 1.490 0.10 6.16E+05 

8 1 5.23E+04 5.56E+07 2.8 15.25 9.75 1.490 0.10 6.73E+05 

9 1.5 6.42E+04 6.41E+07 2.8 15.25 9.75 1.490 0.10 7.36E+05 

10 1.5 7.84E+04 7.38E+07 2.8 15.25 9.75 1.490 0.10 8.03E+05 

11 2 9.56E+04 1.27E+08 2.7 18.96 9.75 3.352 0.08 1.14E+06 

12 2 1.16E+05 1.45E+08 2.7 18.96 9.75 3.352 0.08 1.24E+06 

13 2 1.36E+05 1.63E+08 2.7 18.96 9.75 3.352 0.08 1.33E+06 

14 2 1.56E+05 1.79E+08 2.7 18.96 9.75 3.352 0.08 1.42E+06 



 98 

 

 

Figure 7.22 Numerical model used for simulating centrifuge tests 
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Model CSP_2 

Figure 7.24 shows the acceleration time histories at the Pile Head, and 

acceleration and displacement time histories at the Superstructure for both recorded and 

predicted cases for event A whereas Figure 7.25 shows the same for event B. It can be 

seen that all the time histories are in good agreement with each other for both the events. 

The time histories predicted by numerical model were low pass filtered using a 

Butterworth filter of 4th order and cutoff frequency 25.0 Hz to filter out any high 

frequency noise. Figure 7.23 (a) and (b) show the observed and predicted maximum 

moment profiles for events A and B, respectively. The bending moments are predicted 

quite well within 25% accuracy. Finally Figure 7.26 shows the p-y response for top six 

macroelements for event A and Figure 7.27 for event B. While event A doesn’t mobilize 

the soil resistance lower than 2.0 m and the soil response below that is almost linear, 

significant non-linearity can be seen all the way up to 3.5 m for event B. 
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Figure 7.23 Bending Moment profiles for soil profile CSP_2 (a) Event A and (b) Event B 
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Figure 7.24 Observed and predicted time histories for CSP_2 event A 
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Figure 7.25 Observed and predicted time histories for CSP_2 event B 
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Figure 7.26 p-y response for top six macroelements for profile CSP_2 event A 
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Figure 7.27 p-y response for top six macroelements for profile CSP_2 event B 

Model CSP_3 

Figure 7.29 shows the acceleration time histories at Pile Head, and acceleration 

and displacement time histories at the Superstructure for both recorded and predicted 

cases for event A whereas Figure 7.30 shows the same for event B. The time histories are 

in good agreement for event A, but for event B the numerical model predicts lower peak 
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accelerations (2.5 m/s2 predicted vs. 4.0 m/s2 observed at pile head and 5.0 m/s2 predicted 

vs. 8.0 m/s2 observed at superstructure).  Similar trend is observed in bending moments in 

top 2 m for both event A and B as shown in Figure 7.28 (a) and (b), respectively. The 

bending moments are predicted quite well below 2 m but are around 25% lower for top 2 

m. The reason for mismatch can be seen from Figure 7.31 that shows the p-y response for 

top six macroelements for event A and Figure 7.32 that shows the same for event B. 

When comparing the response with back calculated p-y curves presented in Wilson [58], 

as shown in Figure 7.33 and Figure 7.34, it can be seen that the back calculated p-y 

curves at 1.2 m depth show a very stiff response (even stiffer than the response for 

drained conditions). This could be due to excessive drag force which arises due to higher 

viscosity of pore fluid and problems with scaling. The stiffer response of soil in top 1.2 m 

compared to actual response if there were no scaling issues would result in higher 

moments in top 2 m and also higher accelerations.  
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Figure 7.28 Bending Moment profiles for soil profile CSP_3 (a) Event A and (b) Event B 
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Figure 7.29 Observed and predicted time histories for CSP_3 event A 
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Figure 7.30 Observed and predicted time histories for CSP_3 event B 
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Figure 7.31 p-y response for top six macroelements for profile CSP_3 event A 
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Figure 7.32 p-y response for top six macroelements for profile CSP_3 event B 
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Figure 7.33 Back calculated p-y curves from CSP3_A (Wilson [58]) 

 

 
Figure 7.34 Back calculated p-y curves from CSP3_B (Wilson [58]) 
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CHAPTER 8  

MACROLEMENT FOR BIAXIAL LOADING 

Introduction 

Pile foundations are used quite extensively to support variety of structures 

especially those built on loose/soft soils. Other than vertical loads, pile foundations are 

often subjected to lateral loads during seismic events. Soil-structure-interaction plays an 

important role in evaluating the response of pile foundations to lateral loads (Mylonakis 

and Gazetas [100]). Various methods for analyzing seismic soil-structure interaction 

include finite-element or finite-difference methods and dynamic beam on non-linear 

Winkler foundation (BNWF) method. BNWF method, also referred to as ‘p-y’ approach, 

assumes that each layer of soil responds independently of adjacent layers of soil and 

hence can be replaced by a discrete spring. Though it ignores shear transfer between 

adjacent soil layers, it is reasonably accurate for flexible piles and being simpler and 

computationally less expensive than FEM, it has found extensive use in analyses of both 

static and dynamic problems. Backbone curves for monotonic loading have been 

recommended by Matlock [15], Reese et al. [16], API [17]. For cyclic and transient 

loading macroelements have been proposed by El Naggar and Novak [29], Boulanger et 

al. [47], Badoni and Makris [85] and Rha and Taciroglu [46]. 

In current practice, the effects of axial and lateral loads are analyzed 

independently. Recently, attempts have been made to emphasize the importance of 

coupling between vertical and lateral loading (Karthigeyan et al. [101], Rha and 

Taciroglu [46]). However, the coupling between two perpendicular directions in lateral 

loading has still been ignored so far. The authors are not aware of any study to date that 

documents the response of piles to bidirectional lateral loading even though seismic 

loading is essentially bidirectional in nature. 
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The objective of this research is to develop and calibrate a macroelement model 

that can capture the soil resistance exerted on the pile during bidirectional loading. The 

macroelement is developed by modifying and extending the Bouc-Wen (Bouc [83]; Wen 

[84]) model based on physical mechanism of soil resistance. The ability of such models 

in successfully predicting soil-pile interaction has been demonstrated before by Badoni 

and Makris [85], Gerolymos & Gazetas [49] and Varun & Assimaki [102]. The 

macroelement is then calibrated using 3D finite element analyses due to lack of any 

experimental data. Finally, the importance of coupling is demonstrated by comparing the 

predictions from uncoupled and coupled model for transient motions from three different 

earthquakes. 

Uniaxial Hysteresis Model 

For a simple hysteresis model based on Bouc-Wen model, the restoring force can 

be written in the following form with an elastic and a plastic component as  

(1 ) yp ku pα α ζ= + −        (8.1)  

where yp  is the yield strength, k  is the initial stiffness, α  is the post yield stiffness to 

initial stiffness ratio and ζ is the hysteretic parameter governed by the following 

differential equation 

( )( )( )1 sgn .
n

y

du
d b g du

u
ζ ζ ζ= − +      (8.2)  

where /y yu p k=  is the yield displacement, ( , )b g are parameters controlling unloading-

reloading stiffness such that 1g b= −  and n is a parameter controlling sharpness of 

hysteresis before yielding (higher values of n  correspond to a bilinear backbone curve). 

For the purpose of modeling pile response in soils, the post yield stiffness is zero, 

hence 0α = . Also, the function 
nζ can be replaced with any function fζ or ( )f ζ  as long 
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as it is a monotonically increasing function ofζ and satisfies (0) 0f =  and (1) 1f = . In 

that case equation above can be written as  

( )( )( )1 sgn .
y y

du du
d f b g du K

u uζζ ζ= − + =     (8.3)  

where K  is the normalized tangent stiffness as a function ofζ . 

Biaxial Hysteresis Model 

Physical Meaning of Formulation 

The uniaxial model is extended to biaxial case by means of the actual physical 

mechanisms involved. When the pile moves forward, passive resistance is mobilized in 

front of the pile and a small volume of soil is pushed into non-linear (plastic) range. As 

displacement increases, the soil resistance increases but volume of soil in front of pile 

that is in plastic state also increases, thereby causing the stiffness (incremental 

resistance dp for a given incremental displacement du ) to decrease.  

 
Figure 8.1 Restoring force as a function of degree of non-linearity for (a) incremental 
displacement along same direction (b) incremental displacement perpendicular to zeta 
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Figure 8.1 shows the restoring force ( )p ζ  as a function of degree of non-linearity 

( )ζ  for the case of uniaxial loading. For biaxial case, after loading the pile uniaxially to a 

certain degree of non-linearity, it is loaded in a different direction such that incremental 

displacement du
���

makes an angleψ  with hysteretic vectorζ
��

. Due to the change in loading 

direction, there is lesser volume of plastic soil in the front half of the pile and hence the 

tangent stiffness is higher than the case if the pile was loaded uniaxially in the same 

direction. The tangent stiffness is expected to increase as a function of the angleψ  with 

the stiffness being minimum at 0ψ =  and maximum atψ π= . Also, since the stress state 

in soil in front of the pile is not symmetric anymore, the incremental resistance dp will 

not be in the same direction as incremental displacement du  and will make an angle with 

the incremental displacement. The angle is expected to be a function of degree of 

asymmetry in stress state in soil in front of the pile as shown in Figure 8.2. It is zero for 

0,ψ π= but will be maximum for / 2ψ π= .  

p
�

du
���

dp
���

 
 

Figure 8.2 Incremental reaction force (magnitude and direction) as a function of 
incremental displacement for (a) high degree of non-linearity (b) very low non-linearity 
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Formulation for Biaxial Model 

In case of 2D loading, the resultant force p , hysteretic parameterζ and 

displacement du , all have two components and can be written as vectors 1 2
ˆ ˆa a i a j= +

�
 

where 2 2
1 2a a a a= = +  is the magnitude and 2

1

tan
a

a
θ = , θ  being the angle made 

by a
�

with axis-1. While the elastic part of the restoring force can be calculated easily by 

using superposition principle, the equation for plastic part of restoring force can be 

written as 

yp p ζ=
�� �

        (8.4)  

Where the Hysteresis parameter dζ
����

is calculated in a similar fashion as 

 
y

du
d K

u
θζ =
���

����
        (8.5)  

Kθ is the tangent stiffness tensor along any set of axes that make an angle duθ with the 

principal axes. The principal axes for any load increment are the set of axes where axis-1 

is aligned with incremental displacement vector du
���

. The tangent stiffness tensor along 

any axes Kθ  is obtained using the transformation tensor duθ and tangent stiffness tensor 

along principal axes K  as 

T

du duK Kθ θ θ=         (8.6)  

where 

1 2

2 1

cos sin 1

sin cos

du du
du

du du

du du

du dudu

θ θ
θ

θ θ
   

= =   − −  
    (8.7)  

11 12

21 22

k k
K

k k

 
=  
 

       (8.8)  
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Here iik  is the diagonal stiffness term and ijk is the cross-stiffness term. For the case of an 

isotropic medium, 11 22 iik k k= =  and 12 21 ijk k k= = . The tangent stiffness tensor can thus 

be written as 

sin(2 ) cos(2 )

cos(2 ) sin(2 )
ii ij du ij du

ij du ii ij du

k k k
K

k k k
θ

θ θ
θ θ

− 
=  + 

    (8.9)  

As discussed in the section above, the formulation for stiffness terms is based on 

following criteria 

(a) When du acts along the same line asζ , the 2D model should reduce to 1D model, 

i.e.,  

( )( )1iik f b gζ= − + for 0ψ = and ( )( )1iik f b gζ= − − for ψ π=  

0ijk =  for 0,ψ π=  

(b) When 0ζ = , the system has no memory and the 2D model is the same as 1D 

model for the very next load increment, i.e., 0ijk = . 

For the diagonal stiffness term, the normalized dot product is used to replace the sign 

function in 1D model so that it still has the same value of 1 and -1 for the extreme cases 

of 0ψ =  andψ π= , respectively but provides a smooth interpolation in between. 

( )( )1 cosiik f b gζ ψ= − +       (8.10)  

1 1 2 2cos
  

du dudu

du du

ζ ζζψ
ζ ζ

+= =i
     (8.11)  

For the cross-stiffness term, the following form is proposed which satisfies 0ijk = when 

either 0ζ = orsin 0ψ = . 

sinijk cfζ ψ=         (8.12)  

1 2 2 1sin
  

du du du

du du

ζ ζ ζψ
ζ ζ

× −= =

��� ��

     (8.13)  

Using 
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1

2

cos

sin

du

du

du
du du

du

θ
θ

  
= =   
   

���
      (8.14)  

We get 

( )
( )

1

2

sin(2 ) cos cos(2 )sin

cos(2 )cos sin(2 ) sin

ii ij du du ij du du

yij du du ii ij du du

k k kd du
d

d uk k k

θ θ θ θζ
ζ

ζ θ θ θ θ

 − + 
 = = 
 + +   

����
 (8.15)  

1

2

cos sin

sin cos
ii du ij du

ii du ij du y

k kd du
d

k kd u

θ θζ
ζ

θ θζ
−  

= =    +   

����
    (8.16)  

The magnitude of increment in hysteresis parameter is calculated as 

2 2 2 2
1 2 ii ij

y y

du du
d d d d k k K

u u
ζ ζ ζ ζ= = + = + =    (8.17)  

Range for Parameter c  

The range for parameter c in the cross-stiffness term can be determined using the 

following criteria 

CRITERIA 1: The maximum load cannot exceed yp or 1ζ ≤ . This condition translates to 

1

0
d

du
ζ

ζ

=

≤         (8.18)  

1 2
1 2

1 2cos sin

d d
d d ddu du
du du duζ ζ

ζ ζζ ζζ ζ ζθ θ
ζ

+
= = +    (8.19)  

( ) ( ) ( ) ( )cos sin cos sin 0ii du ij du ii ijk k k kζ ζθ θ θ θ ψ ψ⇒ − − − = − ≤   (8.20)  

( )2 2 2cos cos cos sin cos (1 )cos 0f b g c c g c gζψ ψ ψ ψ ψ ψ⇒ − + + = − + − − ≤  (8.21)  

Case 1: If c g≥ , then maxima occurs at cos 1ψ = and is equal to 0. Thus, the inequality 

is satisfied for all values of ψ if c g≥ . 

Case 2: If c g< , then maxima occurs at 
1

cos 1 1
2(1 / )c g

ψ = − ≤ ≤
−

.  
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If / 2g c g≤ < , maxima occurs at cos 1ψ = again and the inequality is satisfied 

for all values of ψ . 

If 0 / 2c g≤ < , the maximum value is 
1

/ 0
4(1 / )

c g
c g

− >
−

for / 2c g< . Hence, 

the inequality is not satisfied for all values of ψ . 

Thus, / 2c g≥ for 0
d

du

ζ
≤ , when 1ζ = . 

CRITERIA 2: As the magnitude of non-linearity in soil increases, the stiffness should 

decrease, i.e., for any given ψ , 0
dK

dζ
≤  

For 1D case 

( cos ) 0
dK

f b g
d ζ ψ
ζ

′= − + ≤       (8.22)  

Since 0fζ′ > , the above inequality is satisfied for all values of ψ if b g≥ , i.e., 1/ 2g ≤ . 

For 2D case 

( ) ( )( )( )2 2 21
cos cos sin

ijii
ii ij

dk fdkdK
k k b g f b g c

d K d d K
ζ

ζψ ψ ψ
ζ ζ ζ

′ 
= + = − + + + + 

 
 (8.23)  

( ) ( )( )2 2 2 2 2cos 2 cos cos sin 0b g f b b g g b cζψ ψ ψ ψ⇒ − + + + + − + ≤  (8.24)  

( ) ( ) ( )2 2 2 2 22(1 ) 1 1 cos (1 ) ( ) cos 0g f g g f c g g cζ ζψ ψ⇒ − − − + + + − + − ≤ (8.25)  

If c g≤ , then maxima occurs at cos 1ψ = − and is equal to ( )( ) 1 ( )b g f b gζ− − − − . Since, 

b g≥ and ( ) 1f b gζ − ≤ , the inequality is satisfied for all values of ψ  if c g≤ . 

Thus, c g≤  and 1/ 2g ≤  for 0
dK

dζ
≤ . 

Combining together both the conditions, we get 

[ ]2,c g g∈  where [ ]0,1 2g ∈  
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Extension to asymmetric and orthotropic cases 

The model described above assumes isotropic conditions in horizontal plane, i.e., 

homogenous soil and same boundary condition. However, this may not always be the 

case, e.g., piles in pile groups and piles on sloping ground. The proposed model can 

easily be extended to these conditions as follows. 

Piles in pile groups: The ultimate resistance and initial stiffness of piles in groups 

is a function of pile spacing as shown in Figure 8.3. For case of medium to high non-

linearity, the influence of piles other than the adjacent ones can be neglected and the 

problem can be reduced to an orthotropic system. The orthotropic system can be 

converted to an isotropic system using coordinate transformation (Park et al. [103]) as 

1

2 2

2

y

y

u
u u

u
′ =  and 

1 1

2 2

2 2

y

y

K u
p p

K u
′ =      (8.26)  

K1, py1

 
Figure 8.3 Ultimate resistance and initial stiffness for pile in pile group 

 
Piles in sloping ground: The system is symmetric in direction perpendicular to 

sloping ground whereas it is asymmetric in the sloping direction. However, by choosing 

the axes carefully, it can be reduced to two identical asymmetric systems as shown in 

Figure 8.4.  



 119 

p
y

2
p

y
2

p y
�

p y
+

p
y �

p
y +

 
Figure 8.4 Asymmetry in ultimate resistance for pile in sloping ground 

 
Using the approach by Wang and Wen [104], the asymmetry can then be accounted for as 

( ) ( )1 ( ) 1 ( )y y yp sign p sign pζ ζ+ −= + + −     (8.27)  

Where yp+ and yp− are the ultimate strength along positive and negative axis, respectively. 

Comparison with 3D FEM Analyses 

 

Since, limited results are available for bidirectional lateral loading of piles; the 

model is calibrated and verified by means of comparison with 3D FEM analyses.  

Numerical Framework 

Numerical simulations are performed using the finite element computer code 

DYNAFLOW (Prevost [70]). Since the loading and geometry no longer have an axis of 

symmetry, a full model is used instead of a half model as used in previous analyses. 

Table 8.1 Material parameters for the soil model 
 

Property Symbol Range 
Elastic Parameters 

Shear Modulus Gs 2 MPa 
Bulk Modulus Ks 4 MPa 

Power Exponent n 0.5 
Yield Parameters 

Peak Friction Angle  φ 32° 
Max. shear strain γmax 0.08 
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A detailed description of the model is provided in chapter 3 itself. The soil 

parameters used are provided in Table 8.1. 

Calibration 

Figure 8.5 shows the pile response in terms of soil resistance per unit length vs. 

displacement (p-y) curves as a function of cyclic displacement amplitude for a pile with 

diameter B = 1m and soil at depth D = 2 m..  
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Figure 8.5 Comparison of pile response to uniaxial cyclic loading from FEM and 

proposed model for displacement amplitude (a) u1=0.1 m (b) u1=0.025 m 
 
Varun & Assimaki [102] calibrated a uniaxial hysteresis model based on FEM 

simulations where the model parameters are related to soil parameters as following 

(a) The initial stiffness of model  

1.25 sK E=         (8.28)  

Where Es is the Young’s modulus of soil 

(b) Yield strength or ultimate soil resistance per unit length 

( )23.25 0.3 'y p p vp K K Bσ= +      (8.29)  

Where ( )2tan 45 / 2pK ϕ= + is the coefficient of passive earth pressure and ϕ  is the 

friction angle for soil. 

(c) Backbone curve 
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A backbone function of ( ) ( )tanh tanhf n nζ ζ= is used instead of 
n

fζ ζ= . A value of 

n =2.7 for dense sands ( maxγ =0.04), 2.8 for medium-dense ( maxγ =0.06) and 2.9 for loose 

sands ( maxγ =0.08) is recommended. 

(d) Unloading-Reloading stiffness parameters 

 b = 0.6 and g = 0.4 

(e) Cross-stiffness parameter 

The pile is loaded uniaxially in x1- direction upto displacement levels of 0.025, 

0.05 and 0.1 m followed by loading in x2-direction upto 0.1 m. The cross-stiffness 

parameter c is calibrated by matching the unloading (force relaxation) curves in x1-

direction as displacement in x2-direction increases (Figure 8.6). A value of 0.25c = is 

used based on the best fit. 

Comparison with cyclic loading 

The results from FEM analyses are next compared with the predictions from the 

model. In order to evaluate the coupling in both directions, two types of loading patterns 

are used as shown in Figure 8.7.  

0 shaped loading 

In case of 0-shaped loading, when the displacement in one direction is maximum, 

it is minimum in the other direction and vice-versa. Thus, when loading is taking place 

along one direction, unloading takes place along the other direction. Results are presented 

for amplitude of displacement along x1 being 0.025 m (lesser degree of non-linearity) in 

Figure 8.9(a)-(c) and 0.1 m (high degree of non-linearity) in Figure 8.8(a)-(c).  
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Figure 8.6 Unloading curves along x1 direction for calibration of 'c' parameter 
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Figure 8.7 Cyclic Displacement Loading patterns (a) 0-shaped (b) 8-shaped 
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Figure 8.8 Comparison between FEM and proposed model results for pile response to 0-
shaped biaxial cyclic loading with displacement amplitude u1= 0.1 m and for 
displacement amplitude ratio (a) 0.25 (b) 0.5 and (c) 1.0 
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Figure 8.9 Comparison between FEM and proposed model results for pile response to 0-
shaped biaxial cyclic loading with displacement amplitude u1= 0.025 m and for 
displacement amplitude ratio (a) 0.25 (b) 0.5 and (c) 1.0 

 

 



 125 

In both cases, the effect of severity of loading in the other direction is examined 

for the ratio of amplitudes of displacement u2/u1 varying from 0.25 to 1.0. 

The results show that as displacement amplitude ratio increases, the response 

along x1 shows rounding of corners near the unloading time instant. The rounding of 

corners implies a decrease in the energy dissipated due to hysteresis; however, the overall 

response along x1 starts deviating from uncoupled response only for displacement 

amplitude ratio higher than 0.5. On the other hand, the response along x2 direction is 

remarkably different with the differences between coupled and uncoupled response being 

more significant for lower values of displacement amplitude ratio. The peak resistance is 

reached at around 33% of peak displacement and negative stiffness values are observed 

thereafter. As expected, the effect of coupling in both directions is more pronounced for 

higher displacement amplitude, i.e., higher degree of non-linearity. The response in all 

cases is captured quite well by the proposed model. 

8 shaped loading 

In case of 8-shaped loading, the displacement along x2 reaches maximum before it 

does so for x1. Thus both during loading and unloading along x1, a complete reload-

unload cycle takes place along x2 direction. The results for displacement amplitude u1 = 

0.025 m are shown in Figure 8.11(a)-(c) whereas for u1 = 0.1 m are shown in Figure 

8.10(a)-(c). Similar to the observations in 0-shaped loading, the effect of coupling on 

response in x1 direction becomes significant only for displacement amplitude ratio higher 

than 0.5. The response shows rounded corners, strain hardening kind of behavior during 

loading in x2 direction and negative stiffness during unloading in x2 direction. For x2 

direction, asymmetry is observed due to unloading and reloading phases in x1 direction 

with the asymmetry being more pronounced for lower values of displacement amplitude 

ratio. The proposed model again is able to capture the response very well. 
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Figure 8.10 Comparison between FEM and proposed model results for pile response to 8-
shaped biaxial cyclic loading with displacement amplitude u1= 0.1 m and for 
displacement amplitude ratio (a) 0.25 (b) 0.5 and (c) 1.0 
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Figure 8.11 Comparison between FEM and proposed model results for pile response to 8-
shaped biaxial cyclic loading with displacement amplitude u1= 0.025 m and for 
displacement amplitude ratio (a) 0.25 (b) 0.5 and (c) 1.0 
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Comparison with transient loading 

This section presents the response of pile to biaxial transient loading using 

earthquake time histories from 1999 Kocaeli earthquake, 1989 Loma Prieta earthquake 

and 1995 Kobe earthquake (PEER database). The displacement are band pass filtered 0.1-

40 Hz and baseline corrected. 

1999 Kocaeli earthquake 

The ground motions for 1999 Kocaeli earthquake Mw 7.4 were recorded at 

Arcelik (ARC) station at a distance of 17 km from fault rupture. The displacement time 

histories in both directions are shown in Figure 8.12 with peak displacement of 13.6 cm 

and 35.6 cm. The horizontal displacement pattern is shown in Figure 8.13. The 

comparison of response time histories predicted using 3D FEM, uniaxial and biaxial 

model are shown in Figure 8.14(a)-(b) whereas Figure 8.15(a)-(b) shows the pile 

response in p-y domain for biaxial and uniaxial model, respectively. 
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Figure 8.12 Displacement time histories in x1 and x2 direction for Kocaeli earthquake 
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Figure 8.13 Displacement pattern in horizontal plane for Kocaeli earthquake loading 
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Figure 8.14 Comparison between results obtained using FEM, uniaxial and biaxial model 
for pile response to Kocaeli eathquake transient loading in (a) x1 direction and (b) x2 
direction 
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Figure 8.15 Comparison of pile response to Kocaeli earthquake loading for (a) biaxial 
model and (b) uniaxial model 

1989 Loma Prieta earthquake 

-0.2

0

0.2

0 10 20 30 40

time (s)

u
 (

m
)

u1

u2

 
Figure 8.16 Displacement time histories in x1 and x2 direction for Loma Prieta earthquake 
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Figure 8.17 Displacement pattern in horizontal plane for Loma Prieta earthquake loading 
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Figure 8.18 Comparison between results obtained using FEM, uniaxial and biaxial model 
for pile response to Loma Prieta earthquake transient loading in (a) x1 direction and (b) x2 
direction 
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Figure 8.19 Comparison of pile response to Loma Prieta earthquake loading for (a) 
biaxial model and (b) uniaxial model 
 

The ground motions for 1989 Loma Prieta earthquake Mw 6.9 were recorded at 

Sunnyvale-Colton Ave. (SVL) station at a distance of 28.8 km from fault rupture. The 

displacement time histories in both directions are shown in Figure 8.16 with peak 

displacement of 19.1 cm and 16.9 cm. The horizontal displacement pattern is shown in 

Figure 8.17. The comparison of response time histories predicted using 3D FEM, uniaxial 

and biaxial model are shown in Figure 8.18(a)-(b) whereas Figure 8.19(a)-(b) shows the 

pile response in p-y domain for biaxial and uniaxial model, respectively. 

1995 Kobe earthquake 

The ground motions for 1995 Kobe earthquake Mw 6.9 were recorded at OSAJ 

station at a distance of 8.5 km from fault rupture. The displacement time histories in both 
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directions are shown in Figure 8.20 with peak displacement of 9.3 cm and 8.0 cm. The 

horizontal displacement pattern is shown in Figure 8.21. The comparison of response 

time histories predicted using 3D FEM, uniaxial and biaxial model are shown in Figure 

8.22(a)-(b) whereas Figure 8.23(a)-(b) shows the pile response in p-y domain for biaxial 

and uniaxial model, respectively. 
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Figure 8.20 Displacement time histories in x1 and x2 direction for Kobe earthquake 
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Figure 8.21 Displacement pattern in horizontal plane for Kobe earthquake loading 

 



 134 

-250

-150

-50

50

150

250

0 10 20 30 40 50 60

time (s)

p
1
 (

k
N

/m
)

FEM

1D Model

2D Model

-300

-200

-100

0

100

200

300

0 20 40 60 80 100 120

time (s)

p
2
 (

k
N

/m
)

FEM

1D Model

2D Model

 
Figure 8.22 Comparison between results obtained using FEM, uniaxial and biaxial model 
for pile response to Kobe earthquake transient loading in (a) x1 direction and (b) x2 
direction 
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Figure 8.23 Comparison of pile response to Kobe earthquake loading for (a) biaxial 
model and (b) uniaxial model 

Observations 

In order to compare the difference between pile response predicted by uniaxial 

( unip ) and biaxial ( bip ) models, the misfit between soil resistance time histories is 

calculated as 

( ) ( )2 2

1 1

n n

bi uni bi
i i

p p pε
= =

= −∑ ∑      (8.30)  

The results for both directions and all three earthquakes are presented in Table 

8.2. Comparing the pile response obtained using transient loading histories from the 

above mentioned three earthquakes, the following observations can be made 

(a) The proposed biaxial model is able to capture the response obtained from 3D FEM to 

a high degree of accuracy for all three cases. 
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(b) Using two uncoupled uniaxial models in both directions tends to overestimate the soil 

strength and always predicts stiffer response compared to actual case. It also fails to 

capture rounding of corners near unloading, negative stiffness and apparent strain 

hardening behavior observed in coupled response.  

(c) The difference between coupled and uncoupled response is more pronounced as the 

degree of soil non-linearity increases. This can be seen from lower difference for 

Kobe and Loma Prieta earthquakes but significant difference for Kocaeli earthquake 

(Table 8.2). 

 
Table 8.2 Misfit between time histories predicted by uniaxial (1D) and biaxial (2D) 

models 
 

Earthquake u1(cm) u2(cm) ε1 ε2 εtot 

1999 Kocaeli 13.6 35.6 0.754 0.273 0.307 
1989 Loma Prieta 19.1 16.9 0.468 0.400 0.302 

1995 Kobe 9.3 8.0 0.435 0.303 0.259 

 

Conclusions 

A generalized hysteresis model was presented to capture pile response to biaxial 

loading in horizontal direction. The model was calibrated using 3D FEM simulations and 

was found to simulate the response to both cyclic and transient loading with high degree 

of accuracy. The effect of coupling in both directions was compared as a function of soil 

non-linearity mobilized during the loading and it was observed that neglecting the 

coupling can lead to overestimation of soil resistance by upto 43% for displacements as 

low as 10% of pile diameter. 
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CHAPTER 9  

CONCLUSIONS AND FUTURE WORK 

Conclusions 

 In this thesis, we presented a detailed parametric investigation of the dynamic 

response of single piles in liquefiable soils using 3D FEM simulations. The numerical 

results compared very well with a series of important observations made in centrifuge 

tests, and offered additional insight in mechanisms manifesting due to soil-structure 

interaction in liquefiable sites such as:  

(a) Residual drag resistance of 10 kPa in liquefied sand at low displacements. 

(b) Excess pore pressure generation in near field caused by cyclic structural loading 

at low displacement values. 

(c) Dilative soil response at higher displacements with loose sands (Dr = 35%) 

retaining only 10% of their original strength after liquefaction but medium dense 

sands (Dr = 55%) retaining upto 30% of original strength. 

(d) The gradual change from fully drained to fully undrained behavior with 

decreasing permeability or increasing loading rate. 

(e) The effect of soil non-linearity on radiation damping   

Based on the numerical results, we then proposed a generic macroelement that can be 

used to simulate the observed pile response parameterized as a function of the soil 

properties that were identified from the parametric investigation. The mechanical model 

comprises a nonlinear Winkler-type model that accounts for soil resistance acting along 

the circumference of the pile, and a coupled viscous damper that simulates changes in 

radiation damping with increasing material non-linearity. A semi-empirical approach that 

accounts for the effects of soil-structure interaction on pore pressure generation in the 

vicinity of pile is used to detect the onset of liquefaction. The calibration of these 
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parameters is performed using 3D FEM simulations. The macroelement parameters are 

related to soil properties as 

(a) Stiffness Modulus (K) 

1.25 sK E=         (9.1) 

(b) Ultimate resistance ( yp ) 

( )23.25 0.3 'y p p vp K K Bσ= +       (9.2) 

(c) Backbone curve parameter (α ) 

2.7

2.8

2.9

Dense

Medium

Loose

α

= 



       (9.3) 

(d) Slope of phase-transformation line (m2) 

( )2
2 3.25 tan 45 2ssm ϕ= +�       (9.4) 

(e) Shear work correlation parameter 

(1 ) 2 2(1 )

1

(1 2 ) (1 )n n nn
w

ν ν
χ

− −− −=      (9.5) 

(f) Drainage parameter ( β ) 

( )
( )

2 1
550

3 1 2

k

B

ν
β

ν
+

=
−

       (9.6) 

The calibration of macroelement was verified by comparison of the response with 

3D FEM simulations. The validation and benchmarking was performed next by 

comparison with field data from blast induced liquefaction tests, and seismic soil 

structure interaction data from centrifuge test. The macroelement was shown to perform 

well in both situations, namely when:  

(a) direct loading is applied to the structure and structural loading is the primary source of 

excess pore pressure generation (field tests) and 
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(b) both loading and excess pore pressure comes primarily from far-field initially 

followed by inertial loading from the superstructure (centrifuge tests). 

The model for drained loading was then extended to capture the pile response to 

biaxial loading in the horizontal direction. The biaxial Bouc-Wen model was calibrated 

using 3D FEM simulations and was found to simulate the response to both cyclic and 

transient loading with high degree of accuracy. The effect of coupling in both directions 

was compared as a function of soil non-linearity mobilized during the loading and it is 

observed that neglecting the coupling can lead to overestimation of soil resistance by 

upto 44% for displacements as low as 10% of pile diameter. It also fails to capture 

rounding of corners near unloading, negative stiffness and apparent strain hardening 

behavior observed in coupled response. The difference between coupled and uncoupled 

response is more pronounced as the degree of soil non-linearity increases.  

 

Future Work 

 
(a) The macroelement developed in this study is meant for vertical piles. However, 

many old waterfront structures still use battered piles along with vertical piles. 

FEM simulations can be used to compare the difference in p-y response vertical 

and battered piles and then extend the macroelement to capture the response of 

battered piles as well. 

(b) Since most waterfront structures have pile spacing greater than 4 pile diameters, 

the pile-soil-pile interaction factors can be ignored. However, the macroelement 

parameters such as phase transition slope and liquefaction resistance can be 

expressed as functions of normalized pile spacing (S/B) for S/B < 4. 

(c) The same approach used to develop macroelement for sand can be extended to 

account for cyclic softening of clays. The multi-directional element can also be 

extended to clays. 
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APPENDIX A 

MATLAB SCRIPTS 

Script for Unidirectional Macroelement 

clear all 
clc 
%****** Define Loading****** 

dt = 0.05; 
t = 0:dt:62.5; 
u = 0.02*sin(2*pi*0.1*t); 
ru = 0.0*t; 
Sff = 1-ru; 
tol = 0.0005; 

%****** Define model parameters****** 
n = 0.5; 
B = 1.0; 
beta = 0.0; 
si = 19500; 
Y_m = 51400000; 
a = 2.9; 

% m1(phi), m2(phip), w1 
prm = [16.5,9.75,1.33]; 

%******Backbone curve******* 
k = Y_m*1.25*(si/100000)^n; 
py = si*B*prm(1); 
uy = py/k; 

%******Hysteresis loop****** 
b = 0.6; 
g = 0.4; 

% ******Start calculations****** 
zeta(1) = 0.0; 
p(1)= 0; 
w(1) = 0; 
S(1)= 1.0; 
S0(1) = 1.0; 
for i=2:length(u) 

      du = u(i)-u(i-1); 
      tzeta = zeta(i-1); 
      f = 1; 
     while abs(f)>tol 

f = tzeta-zeta(i-1)-(1-tanh(a*abs(tzeta))/tanh(a)*(b+g… 
*sign(du*tzeta)))*du/uy; 
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fd = 1+(sech(a*abs(tzeta)))^2/tanh(a)*… 
(b+g*sign(du*tzeta))*du/uy*a*sign(tzeta); 

          tzeta = tzeta - f/fd; 
    end 
     zeta(i) = tzeta; 
     p(i) = py*zeta(i)*S(i-1); 
     dw = 0; 
     if abs(zeta(i))<=0.67*prm(2)/prm(1) 
          dw =  abs(p(i)*(du - (p(i)-p(i-1))/(k*(S(i-1))^n))/py/uy); 
            end 
     w(i) = w(i-1) + dw; 
     dSb = 1.4*S0(i-1)*(-1*log(S0(i-1)-0.005))^(0.4/1.4)*dw/prm(3); 
     dSd = beta*S(i-1)^n*dt/(1+beta*S(i-1)^n*dt)*(Sff(i)-S(i-1)); 
     S0(i) = S0(i-1) - dSb + dSd;     
     if (abs(zeta(i))<0.67*prm(2)/prm(1)) 
          S(i) = S0(i); 
     else 
          c = 1/(1.1+0.4*S0(i)); 
          alp = 1/3*prm(2)/prm(1)*c; 
          S2 = S0(i)*(1-alp); 
          r3 = 0.67*prm(2)*S0(i); 

S(i) = S0(i)*((1-alp-2*alp*abs(c*zeta(i)))+((1-alp-… 
2*alp*abs(c*zeta(i)))^2-(1-c^2*zeta(i)^2)*(1-2*alp-… 
4*alp^2))^0.5)/(1-c^2*zeta(i)^2); 

            end 
end 
 

Script for Biaxial Macroelement 

 
clear all 
clc 

% ******Define Loading****** 
dt = 0.05; 
t = 0:dt:30; 
ux = 0.10*sin(2*pi*0.1*t); 
uz = 0.1*cos(2*pi*0.1*t); 
uz(1:2.5/dt)=0; 

%******Combine both displacements****** 
u = [ux; uz]; 

% ******Define model parameters****** 
n = 0.5; 
si = 19500; 
Y_m = 51400000; 
% m1(phi) 
prm = 13.85; 
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tol = 0.0005; 
%******Backbone curve******* 

k = Y_m*1.25*(si/100000)^n; 
py = si*prm(1); 
uy = py/k; 
a = 2.9; 

%******Hysteresis loop****** 
b = 0.6; 
g = 0.4; 
c = 0.25; 

%****** Start calculations****** 
zeta(:,1) = [1e-6; 1e-6]; 
for i=2:length(u) 
     du = u(:,i)-u(:,i-1); 
     dun = norm(du,2); 
     tz = zeta(:,i-1); 
     f = [1; 1]; 
    while (abs(f(1))>tol || abs(f(2))>tol) 
          zn = norm(tz,2); 
          if dun == 0 
              ts = [1 0; 0 1]; 
              cg = 1; 
              sg = 0; 
          else 
              ts = [du(1) du(2); -du(2) du(1)]/dun; 
              cg = du'*tz/dun/zn; 
              sg = (du(2)*tz(1)-du(1)*tz(2))/dun/zn; 
          end 
          fz = tanh(a*zn)/tanh(a); 
          fzd = a/tanh(a)*(1-tanh(a*zn)^2); 
          kn = 1-fz*(b+g*cg); 
          ks = c*fz*sg; 
          Km = [kn ks; ks kn]; 
          kn1 = -1*(fzd*tz(1)/zn*(b+g*cg)-fz*g*sg*tz(2)/zn^2); 
          kn2 = -1*(fzd*tz(2)/zn*(b+g*cg)+fz*g*sg*tz(1)/zn^2); 
          ks1 = c*(fzd*tz(1)/zn*sg+fz*cg*tz(2)/zn^2); 
          ks2 = c*(fzd*tz(2)/zn*sg-fz*cg*tz(1)/zn^2); 
          Km1 = [kn1 ks1; ks1 kn1]; 
          Km2 = [kn2 ks2; ks2 kn2]; 
          f = tz - zeta(:,i-1) - ts'*Km*ts*(du/uy); 
          J = eye(2) - [(ts'*Km1*ts*(du/uy)) (ts'*Km2*ts*(du/uy))]; 
          tz = tz - J^-1*f; 

end 
zeta(:,i) = tz; 

end 
p= py*zeta; 
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