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Abstract

Dynamical systems of monotone homogeneous functions
appear in Markov decision theory, in discrete event sys-
tems and in Perron-Frobenius theory. We consider the
case when these functions are given by finite algebraic ex-
pressions involving the operations max, min, convex hull,
translations, and an infinite family of binary operations,
of which max and min are limit cases. We set up a hierar-
chy of monotone homogeneous functions that reflects the
complexity of their defining algebraic expressions. For
two classes of this hierarchy, we show that the trajecto-
ries of the corresponding dynamical systems admit a lin-
ear growth rate (cycle time). The first class generalizes
the min-max functions considered previously in the liter-
ature. The second class generalizes both max-plus linear
maps and ordinary non-negative linear maps.
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1 Introduction

For all integersn ≥ 1, we denote by≤ the usual par-
tial order onRn (x ≤ y ⇐⇒ xi ≤ yi , for all
i = 1, . . . , n). For all λ ∈ R and x ∈ Rn , we set

λ + x
def
= (λ + x1, . . . , λ + xn).

A function f : Rn → Rp is monotoneif

(M) ∀x, y ∈ Rn , x ≤ y H⇒ f (x) ≤ f (y) ;

it is (additively)homogeneousif

(H) ∀λ ∈ R, x ∈ Rn , f (λ + x) = λ + f (x) .

Monotone homogeneous functionsRn → Rp are called
topical functions(see [14]).

We consider dynamics of the form:

x(k) = f (x(k − 1)), ∀k ≥ 1,(1)

x(0) = ξ ∈ Rn ,

where f is a topical functionRn → Rn . The following
questions are natural:
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Question 1.Does the limit

χ( f, ξ)
def
= lim

k→∞
x(k)/k(2)

exist ?

Question 2.Does f admit an (additive, non-linear)
eigenvector x∈ Rn :

f (x) = λ + x, with λ ∈ R ?(3)

If such aλ exists, we call it theeigenvalueof f asso-
ciated withx. We say that(η, v) ∈ (Rn)2 is anultimately
affine regimeof f if there exists an integerK such that

∀k ≥ K , f (v + kη) = v + (k + 1)η .(4)

Clearly, f has an eigenvectorx with eigenvalueλ iff it
has an ultimately affine regime of the form(η, x), with
η = (λ, . . . , λ). This leads us to ask, as a generalization
of Question 2:

Question 3.Does f admit an ultimately affine regime?

In the sequel, we will writeχ( f ) instead ofχ( f, ξ),
since, for all topical functionsf and for allξ, ξ ′ ∈ Rn ,

(5) χ( f, ξ) exists H⇒ χ( f, ξ ′) exists and

χ( f, ξ ′) = χ( f, ξ) .

This follows from a remarkable observation due to Cran-
dall and Tartar [5]: if the homogeneity property (H)
holds, the monotonicity property (M) becomes equivalent
to f beingnon-expansive:

(N) ∀x, y ∈ Rn , ‖ f (x) − f (y)‖ ≤ ‖x − y‖ ,

where‖ ‖ denotes the sup-norm (‖x‖ = max1≤i≤n |xi |).
Then, by (N), for allξ, ξ ′ ∈ Rn , ‖ f k(ξ)/k− f k(ξ ′)/k‖ ≤

‖(ξ − ξ ′)/k‖ which goes to 0 whenk goes to∞. This
shows (5).

If f has an ultimately affine regime,χ( f ) exists. In-
deed,

(6) f has an ultimately affine regime(η, v) ∈ Rn

H⇒ χ( f ) = η ,

for (4) implies thatχ( f ) = limk→∞ f k(v + Kη)/k =

limk→∞(v + (K + k)η)/k = η. A fortiori:

f has an eigenvalueλ H⇒ χ( f ) = (λ, . . . , λ) .(7)



Property (6) implies that the vectorη, which satisfies (4),
if it exists, is unique. A fortiori, the eigenvalueλ, if it
exists, is unique.

In Discrete Event Systems applications (see e.g. [1,
13]), xi (k) represents the time ofk-th occurrence of a
repetitive event of typei , say the time of thek-th pro-
duction of a part of typei . Then,χi ( f ) represents the
asymptotic mean time between two consecutive events of
type i . For this reason,χ( f ) is calledcycle timevector.
A remarkable well understood case is that oftimed event
graphs[1], whose dynamics involve linear maps over the
max-plus semiring, which can be written as:

fi (x) = max
1≤ j ≤n

(Ai j + x j ) ,(8)

whereA is an×n-matrix with entries inR∪{−∞}, with
at least one finite entry per row (this condition is required
for f to sendRn to Rn ). The max-plus spectral theory
(see e.g. [1, 6, 9]) gives a complete answer to Questions 1
and 2. Dynamics of the form (1) also appear in dynamic
programming and, up to a change of variables, in Perron-
Frobenius theory and in some of its extensions (see [19]).

The paper is organized as follows. In section 2, we
present a hierarchy of topical functions, which provides
a common setting for the above applications. Then, we
answer Question 1 and to some extent Questions 2 and 3,
for two classes of this hierarchy. 1) The first class en-
compasses dynamic programming operators of sequential
zero-sum two players stochastic games with finite state
and action spaces, and in particular, the “min-max func-
tions” studied in [20, 12, 3] which appear for instance
in the time evaluation of digital circuits [2]. The ef-
fective answer that we give in section 3 solves in more
generality the duality conjecture stated in [11]: the cy-
cle time of a min-max function does exist and we can
compute it efficiently. 2) The second class extends both
the non-negative linear operators which appear in Perron-
Frobenius theory, and the max-plus linear operators fa-
miliar in the discrete event system literature. The answer
to Questions 1,2 for this class, which is given in section 4,
can be regarded as a common generalization of the classi-
cal Perron-Frobenius theorem and of the max-plus spec-
tral theorem.

Let us conclude this introduction with some bibli-
ographical indications. Monotone homogeneous maps
have appeared in the work of several authors, in particular
in [5, 19, 14, 17]. A systematic study can be found in the
monograph [19], where, in particular, Question 2 is ad-
dressed under different assumptions. Min-max functions
were introduced in [12] following earlier work on special
cases in [20]. A counter example showing that the cycle
time of a topical function need not exist is given in [14].
The theorem of existence of ultimately affine regimes for
maps in theD∗ class (Theorem 15 below) generalizes the
results given in [3, 7] for min-max functions. The proof
of Theorem 15 can be seen as an extension to the case of
sequential zero-sum two players stochastic games of the
vanishing discount/policy iteration approach to average

cost programming in stochastic control —see e.g. [22,
Chap. 31,§7]. Some classes of the hierarchy introduced
here where applied in [4] to the modelling and analysis of
fluid timed Petri nets. The definition of the hierarchy and
the notation were inspired by numerous discussions with
Jean-Pierre Quadrat, on the special(max,+, E) class.

2 A Hierarchy of Topical Functions

2.1 Definitions and first examples

For all ǫ ∈ R \ {0}, for all a, b ∈ R, we set:

a ⊕ǫ b = ǫ log(ea/ǫ + eb/ǫ) .

This law is associative and commutative. The laws max
and min are limits of⊕ǫ :

lim
ǫ→0+

a ⊕ǫ b = max(a, b), lim
ǫ→0−

a ⊕ǫ b = min(a, b) .

In the sequel, we will use the notations max, min,⊕ǫ

for functionsRn → Rn , with a pointwise meaning, e.g.

( f ⊕ǫ g)i (x)
def
= fi (x) ⊕ǫ gi (x). The (easy) verification

of the following proposition is left to the reader.

PROPOSITION4. Let f, g : Rn → Rn denote topical
functions. Letǫ ∈ R \ {0}, α ∈ R, with 0 ≤ α ≤ 1,
c ∈ Rn . The following functions all are topical:

max( f, g), min( f, g), f ⊕ǫ g,

α f + (1 − α)g, c + f, f ∘ g .

These closure properties allow us to build inductively
complex topical functions from simple ones. IfF is a set
of topical functionsRn → Rn , we define (the probably
surprising notation will be justified soon):

(max,F) = {max
f ∈F

f | F ⊂ F, F finite} ,

(min,F) = {min
f ∈F

f | F ⊂ F, F finite} ,

(⊕ǫ,F) = {
⊕

ǫ

f ∈F

f | F ⊂ F, F finite} ,

(E,F) = {
∑

f ∈F

α f f | F ⊂ F, F finite
0 ≤ α f ,

∑

f ∈F α f = 1
} ,

(+,F) = {c + f | f ∈ F, c ∈ Rn} .

We say that a topical functionRn → Rn is simple if
there exists a mapπ : {1, . . . , n} → {1, . . . , n}, pos-
sibly non-bijective, such thatfi (x) = xπ(i ). We denote
by () (parentheses with empty content) the set of simple
functionsRn → Rn .

Starting from simple functions, and using the above
inductive constructions, we define a hierarchy of topical
functions, as follows. We first introduce the following
sets of symbols:D = {max, min,+, E} ,H = D ∪ {⊕ǫ | ǫ ∈ R \ {0}} ,P = H \ {E} ,M = H \ {max, min} .



Then, we define inductively, for allX ⊂ H:X 0 = () ,X k+1 =
⋃

⊤∈X (⊤,X k), ∀k ≥ 0 ,X ∗ =
⋃

k≥0

X k .

We define asign functionsgn :H → {1,−1, 0}, whose
values are given by the following table:

max ⊕ǫ with ǫ > 0 min ⊕ǫ with ǫ < 0 + E
1 1 −1 −1 0 0

For allX ⊂ H, we setX+ = {⊤ ∈ X | sgn(⊤) ≥ 0},X− = {⊤ ∈ X | sgn(⊤) ≤ 0}.

For instance,(max, ()) belongs toD1
+ ∩ P1

+. If
A, B, C, . . . , X are any operators inH, we will write
(A, B, C, . . . , X) instead of(A, (B, (C, . . . , ())))), to
simplify the notation. E.g. (max,+) stands for
(max, (+, ())). We next tabulate some elementary classes
of the hierarchy.

Example 5.A function in (+) can be written as

fi (x) = ci + xπ(i ) ,

wherec is a vector ofRn andπ a map{1, . . . , n} →

{1, . . . , n}. E.g., forn = 2, f (x) = (x2 + 4, x2 + 6)

belongs to(+).

Example 6.The max-plus linear map given by (8) above
belongs to(max,+) ⊂ D2

+. Indeed, let5 = {π :
{1, . . . , n} → {1, . . . , n} | Aiπ(i ) 6= −∞}. For allπ ∈

5, we define f π : Rn → Rn , f π
i (x) = Aiπ(i ) + xπ(i ).

By construction,f = maxπ∈5 f π , and by Example 5,
f π ∈ (+), for all π ∈ 5. This shows thatf ∈ (max,+).

The last example justifies a posteriori the notation
for the classes of the hierarchy: an element in the
class “(max,+)” is exactly what is traditionally called
a (max,+) (or max-plus) linear map.

Example 7.Let P denote an × n row-stochastic matrix.
The function f (x) = Px belongs1 to (E) ⊂ D1

+ ∩D1
−.

Example 8.Let f (x) = maxu∈U (cu + Pux), where
{cu}u∈U is a finite family of vectors ofRn , and{Pu}u∈U
is a family ofn × n row-stochastic matrices. By Exam-
ple 7, for allu ∈ U , the functionx 7→ cu + Pux belongs
to (+, E). Hence, f belongs to(max,+, E). Such maps
classically arise as the Bellman operators of stochastic
control problems with average reward (see e.g. [22]).

Example 9.The function

f1(x1, x2, x3) = min(max(x2 + 2, x3 + 5), x1)

f2(x1, x2, x3) = min(x2 + 1, x3 + 2)

f3(x1, x2, x3) = max(x1 − 1, x2 + 3)

belongs to(min, max,+) ⊂ D3. More generally, the
class(min, max,+) corresponds exactly to themin-max
functionsstudied in [12, 11, 3, 21].

1This result is a consequence of the following elementary row-
stochastic analogue of Birkhoff’s theorem for bi-stochastic matrices:
a matrix is row-stochastic iff it is a finite convex combination of substi-
tution matrices. The (easy) proof is detailed in [8].

2.2 First properties and other examples

We will say that a setF of functionsRn → Rn is rectan-
gular if F = π1(F)×· · ·×πn(F), whereπi denotes the
canonical projection on thei -th coordinate. The follow-
ing technical lemma will allow us to establish “canonical
forms” for some classes of the hierarchy.

LEMMA 10. For all setsF of functionsRn → Rn , for
all ⊤ ∈ H, there holds

1. (⊤,⊤,F) = (⊤,F);

2. (+, E,F) = (E,+,F);

3. (+,⊤,F) ⊂ (⊤,+,F).

4. If F is rectangular,(⊤, min,F) ⊂ (min,⊤,F).

5. If F is rectangular and⊤ ∈ D, then (⊤,F) is
rectangular.

6. If F is rectangular and satisfiesF = (+,F), then
(⊕ǫ ,F) is rectangular, for allǫ ∈ R \ {0}.

This lemma is proved in [8]. As an illustration of
the use of Lemma 10, we show that, up to a change of
variables, non-negative linear maps belong toH∗.

Example 11.Let M denote an × n matrix with nonneg-
ative entries, and at least one non-zero entry per row.
Consider the non-negative linear map:f : (R∗

+ )n →

(R∗
+
)n, y 7→ My, whereR∗

+
denotes the set of strictly

positive reals. Let log denote the function:(R∗
+ )n → Rn ,

log(y1, . . . , yn) = (log(y1), . . . , log(yn)), and let exp
denote the inverse function. Then,f = log∘ f ∘ exp be-
longs to(⊕1,+) ⊂ P2

+. Indeed, we can write, for all
1 ≤ i ≤ n:

fi (x) =
⊕

1
1≤ j ≤n

(log Mi j + x j ) .

Hence, for all 1≤ i ≤ n, the map f i = ( fi , . . . , fi ),Rn → Rn clearly belongs to(⊕1,+). Since by
Lemma 10,6,(⊕1,+) is rectangular, it follows thatf ∈

(⊕1,+).

Related examples of maps are given in [8]. The fol-
lowing result can be easily derived from Lemma 10.

PROPOSITION12. We have:D∗ = D4 = (min, max,+, E) .

The following proposition allows us to write a func-
tion inH∗ in a simple “canonical” form, in which all the
min and max operators are gathered.

PROPOSITION13. We have:H∗ = (min, max,M∗) .

Proof. This is a consequence of Lemma 10,4 and of its
dual (with max instead of min).

Since the functions inH∗ are given byfinite expressions
involving operations inH, it is not difficult to see that
there are topical functions that do not belong toH∗, even
for n = 2.



2.3 Main results

We next answer Questions 1,2 and 3 for some subclasses
of the hierarchyH∗.

THEOREM 14. Any function inP∗
+ has a cycle time.

This theorem can be seen as an extension of the
Perron-Frobenius theorem and of the max-plus spec-
tral theorem, which deal with functions in(⊕1,+) and
(max,+), respectively. The proof of Theorem 14 is
sketched in section 4 below, where it is shown how we
can computeχ( f ) from a structural decomposition off
(Theorem 29).

THEOREM 15. Any function inD∗ has an ultimately
affine regime.

The proof of Theorem 15 is sketched in Section 3 be-
low. We will just mention here some useful corollaries.

COROLLARY 16. Any function f inD∗ has a cycle time.
Moreover,χ( f ) = η, for all ultimately affine regimes
(η, v) ∈ (Rn )2 of f .

Proof. This follows from (6).

COROLLARY 17. A function f inD∗ has an eigenvector
in Rn iff χ( f ) = (λ, . . . , λ), for someλ ∈ R.

Proof. The implication⇒ follows from (7). Conversely,
assume thatχ( f ) = (λ, . . . , λ). We know by Theo-
rem 15 that (4) holds for some(η, v) ∈ (Rn)2. By Corol-
lary 16, we haveη = χ( f ) = (λ, . . . , λ). Then, (4)
means precisely thatv is an eigenvector off with asso-
ciated eigenvalueλ.

The importance of rectangular subsets stems from the fol-
lowing general observation (rectangularity is defined as
in §2.2, with E instead ofR).

LEMMA 18. If (E,≤) is a linearly ordered set, ifF is
a finite rectangular set of functions En → En, for all
x ∈ En, there exists g∈ F such that

max
f ∈F f (x) = g(x) .(9)

Proof. SinceE is linearly ordered, and sinceF is finite,
for all i = 1, . . . , n, there exists anf i ∈ F such that
f i
i (x) = maxf ∈F fi (x). Let g denote the function whose

i -th coordinate isf i , for all i = 1, . . . , n. SinceF is
rectangular,g belongs toF . We have maxf ∈F f (x) =

g(x).

Let F denote a set of topical functionsRn → Rn that
admit a cycle time. By an immediate monotonicity argu-
ment, we have:

χ(max
f ∈F f ) ≥ max

f ∈F χ( f ) ,(10)

provided that the left hand side is well defined (we use
the notation max for the least upper bound of a possibly

infinite set). Due to (9), it is very natural to ask whether
the equality holds in (10) whenF is finite and rectan-
gular. The answer is positive inD∗, as shown by the
following theorem which will be derived from an asymp-
totic expansion result in Section 3.

THEOREM 19. For all finite rectangular subsetsF ofD∗, the equality holds in(10).

By symmetry, under the same assumptions, the dual
equalityχ(min f ∈F f ) = min f ∈F χ( f ) also holds.

3 Computing Cycle Times using Germs of
Laurent Series and Policy Iteration

In this section, we sketch the main ideas of the proofs of
Theorem 15 and 19. The proofs are detailed in [8].

Let L be the set of Laurent series of the form

x(α) =
a−1

1 − α
+ a0 + a1(1 − α) + · · · ,(11)

with a−1, a0, a1 . . . ∈ R ,

that converge in some interval(α0, 1). The setL can
be identified with the set of sequences of the form
(a−1, a0, ...) subject to the condition that (11) converges.
A germof function atα = 1− is an equivalence class of
a real function by the equivalence relation:x ∼ y ⇐⇒

∃α0 < 1,∀α ∈ (α0, 1), x(α) = y(α). Let M be the set
of functions which have a convergent Laurent series ex-
pansion of the form (11) in some interval(α0, 1). The setL can be identified with the set of germs ofM (any two
functions having the same germ have the same Laurent
series). The usual order≤ on functions clearly passes
to germs, and hence toL, where it can easily be seen to
correspond to the lexicographic ordering on sequences.
Hence,(L, ≤) is linearly ordered. We will extend the no-
tation∼ to vectors (entrywise), and we will also speak of
germs for vector functions.

For all 0 ≤ α < 1, we associate with a topical func-
tion f : Rn → Rn the uniqueξα( f ) ∈ Rn such that

f (αξα( f )) = ξα( f ) .(12)

Due to (N), the mapx 7→ f (αx) is α-contractingfor the
sup-norm. Hence, the Banach Contraction Theorem [10,
Th. 2.1] shows that the fixed-pointξα( f ) is well defined.
The key of the proof of Theorem 15 and Theorem 19 is
the following asymptotic expansion result.

THEOREM 20. For all f ∈ D∗, the germ ofξα( f ) be-
longs toLn .

I.e., the entries ofξα( f ) have expansions of the
form (11), in some interval(α0, 1). Theorem 20 is con-
nected to Theorems 15 and 19 by the following proposi-
tion, which is proved in [8].

PROPOSITION21. Let f ∈ D∗, with

ξα( f ) =
a−1

1 − α
+ a0 + o(1− α) ,(13)



and a−1, a0 ∈ Rn . Then, forα < 1, α sufficiently close
to 1,

f (
a−1

1 − α
+ a0 − a−1) =

a−1

1 − α
+ a0 .(14)

This remarkable property is due to thelocally affine
character of maps inD∗: this allows us to derive the al-
gebraic identity (14) from the approximate result (13).

Using Theorem 20, we get that iff ∈ D∗, then
ξα( f ) has an expansion of the form (13). Then, by spe-
cializing (14) to a large integerk = (1 − α)−1, we get
that (a−1, a0) is an ultimately affine regime off , which
shows Theorem 15.

Using Corollary 16, we obtain immediately the fol-
lowing useful fact.

COROLLARY 22. For all f ∈ D∗, χ( f ) coincides
with the term a−1 in the asymptotic expansion ofξα( f )

(see(13)).

We next derive Theorem 19 from Theorem 20. LetF be a finite rectangular subset ofD∗, and let h =

maxf ∈F f . We will prove that there existsg ∈ F such
that χ(h) = χ(g). By Theorem 20,ξα(h) = a−1(1 −

α)−1 + a0 + · · · ∈ Ln (we denote by the same symbol
the elementξα( f ) and its germ). By2 Lemma 18 (with
E = L), h(αξα(h)) = g(αξα(h)), for someg ∈ F . Then,
ξα(g) = ξα(h). By Corollary 22,χ(h) = χ(g) = a−1,
which concludes the proof of Theorem 19.

It remains to prove Theorem 20.

LEMMA 23. If f = c + Px ∈ (+, E), where c∈ Rn

and P is a n× n row-stochastic matrix, thenξα( f ) =

(I − αP)−1c has a Laurent series expansion inLn .

This is a standard result on resolvents [16, Chap. 1,§3,
pp-38,39]: due to Perron-Frobenius theorem, 1 is a
semisimple eigenvalue ofP, hence(1 − αP)−1 has a
pole of order one atα = 1. One key of the proof of
Theorem 20 is the following elementary version of the
maximum principle.

LEMMA 24. Let f ∈ (+, E). If x ∈ Ln is such that
f (αx) < x, thenξα( f ) < x.

Proof. Let g : y 7→ f (αy). By Banach contraction the-
orem, limk gk(x) = ξα( f ). Sinceg is monotone, we get
x > g(x) ≥ g2(x) ≥ limk gk(x) = ξα( f ).

LEMMA 25. Let f = minu∈U gu ∈ (min,+, E), with U
finite, (+, E) ⊃ {gu}u∈U rectangular. Then, there exists
u ∈ U such thatξα( f ) = ξα(gu) ∈ Ln .

2We can apply Lemma 18 becauseF ⊂ D∗ can be identified to a
set of mapsLn → Ln. Indeed, usual laws on real functions pass to
germs, andL is stable by: translation, product by a scalar, max, min.
Since only these operations are involved in the syntactic definition of a
map inD∗, a mapf ∈ D∗ defines a mapLn → Ln, that to the germ of
a functionx ∈ Mn, associates the germ of the functionf (x). We still
denote byf this map.

Proof. We select u such that ξα(gu) is minimal in
{ξα(gu)}u∈U . We setξα = ξα(gu), to simplify the no-
tation. We have

f (αξα) ≤ gu(αξα) = ξα .(15)

By Lemma 18 (applied toE = L), there existsu ∈ U
such thatf (αξα) = gu(αξα). If the inequality in (15) is
strict, we havegu(αξα) < ξα. By the Maximum Prin-
ciple (Lemma 24),ξα(gu) < ξα, which contradicts the
minimality of ξα. Thus f (αξα) = ξα, that isξα( f ) =

ξα.

Theorem 20 is an immediate consequence of the fol-
lowing more precise lemma, whose proof is similar in
essence to that of Lemma 25.

LEMMA 26. Let f = minu∈U gu ∈ (min, max,+, E),
with U finite and(max,+, E) ⊃ {gu}u∈U rectangular.
Then, there existsu ∈ U such thatξα( f ) = ξα(gu) ∈ Ln .

Example 27.Consider the mapf : R2 → R2,

f1(x1, x2) = min(3 + x1, 5 + 1
2(x1 + x2))

f2(x1, x2) = max(1
3x1 + 2

3x2, x2) .

We can write f = min(g1, g2), g1 = max(h11, h12),
g2 = max(h21, h22), where

h11 =

(

3 + x1
1
3x1 + 2

3x2

)

, h12 =

(

3 + x1
x2

)

h21 =

(

5 + 1
2(x1 + x2)

1
3x1 + 2

3x2

)

, h22 =

(

5 + 1
2(x1 + x2)

x2

)

.

Some elementary linear algebra yields

ξα(h21) =

(

2
1−α

+ 18
6−α

2
1−α

− 12
6−α

)

.

We can check easily thatξα(h21) = g2(αξα(h21)) =

f (αξα(h21)). Thus, ξα(h21) = ξα(g2) = ξα( f ), and
by Corollary 22,χ(h21) = χ(g2) = χ( f ) =

(

2
2

)

.

In the above example, the main difficulty is to “guess”
that the mapsg2 andh21 are the ones which determine
the cycle time off and ofg2, respectively. As detailed
in [3, 7] in the special case of maps in(min, max,+), this
can be done systematically by using a policy improve-
ment scheme. A similar algorithm allows us to compute
efficiently the cycle time of maps inD∗.

4 Structural Analysis of Topical Functions

We equipR def
= R ∪ {−∞} with the metricd(x, y) =

|ex − ey|. Clearly, any map inH∗ admits a continuous
extensionRn → Rn. We will consider more generally
continuous functionsRn → Rn, that satisfy property (H)
and (M), withx, y ∈ Rn, λ ∈ R. We will still call topical
the functionsRn → Rn that satisfy these two properties.

For a continuous topical functionf : Rn → Rn, we
can easily prove via Brouwer’s fixed point theorem that



f (x) = λ + x, for somex ∈ Rn \ {−∞}, λ ∈ R (we de-
note by−∞ the vector whose components are all equal
−∞)3. But to show thatχ( f ) = λ using (7), we need a
finite eigenvectorx ∈ Rn . We next introduce the natural
class ofirreducibletopical functions, for which eigenvec-
tors are automatically finite.

Let ei ∈ Rn denote the vector such that(ei )i = 0,
and(ei ) j = −∞, if i 6= j . We say thati ∈ {1, . . . , n}

has accessto j ∈ {1, . . . , n} (and we writei → j ) if
f k
i (ej ) > −∞, for somek ≥ 0. By convention,f 0 is

the identity map, hencei → i , for all i ∈ {1, . . . , n}.
The relation→ is clearly transitive, hence the relationR : iR j ⇐⇒ (i → j ) and( j → i ) is an equivalence
relation. We will simply callclasses of fthe equivalence
classes forR. A map f is irreducible if it has a single
class.

THEOREM 28. An irreducible continuous topical func-
tionRn → Rn admits a finite eigenvector.

Proof. We have just observed thatf (x) = λ + x, for
somex ∈ Rn\{−∞}, andλ ∈ R. Sincex has at least one
finite coordinate,x j , we can write, for alli ∈ {1, . . . , n},
and for all k such that f k

i (ej ) > −∞, k × λ + xi =

f k
i (x) ≥ f k

i (x j + ej ) = x j + f k
i (ej ) > −∞. Hence,

xi > −∞.

If C is a class off , we denote byıC : RC → Rn the
canonical injection, such thatıC

i (x) = xi if i ∈ C, and
ıC
i (x) = −∞ otherwise. We denote byπC : Rn → RC

the canonical projection, such thatπC
i (x) = xi , for all

i ∈ C. We set f C = πC ∘ f ∘ ıC. We say that the classC
is non-degenerateif f C is not an identically−∞ scalar
map. By Theorem 28, for all classesC, f C has a finite
eigenvector. IfC is non-degenerate, the associated eigen-
valueλ must be finite. It is unique, sinceλ = χ( f C).
We will setρ( f C) = λ. We say thati ∈ {1, . . . , n} has
access to the classC, and we writei → C, if i → j , for
some j ∈ C.

THEOREM 29 (CYCLE TIME FORMULA). The cycle
time of a map f∈ P∗

+ can be computed by the following
formula:

χi ( f ) = max
i→C

ρ( f C) ,(16)

where themax is taken over the non-degenerate classes
C to which i has access.

The proof, which is essentially similar to the classical
Perron-Frobenius case (whenf ∈ (⊕1,+)), is detailed
in [8].

Example 30.Let {Au}u∈U denote a finite family of non-
negative matrices. Letf (y) = maxu∈U Auy. The map
f = log∘ f ∘ exp, which belongs to(max,⊕1,+) ⊂ P∗

+,
is irreducible iff the matrix

∑

u∈U Au is irreducible in the
sense of Perron-Frobenius theory.

3The proof consists in noting that, iff (x) 6= −∞ for all x 6= −∞,
the map f̃ (x) = f (x) − log(

∑

1≤i≤n e fi (x)) sends continuouslyK =

{x ∈ Rn |
∑

1≤i≤n exi = 1} to itself, and thatK is compact and
homeomorphic to a convex.

Example 31.Consider the mapf such that fi (x) =

n−1(
∑

1≤ j ≤n x j ), for all 1 ≤ i ≤ n. We have f (ei ) =

−∞, thus, there aren degenerate classes{1}, . . . , {n},
and we cannot get any useful information from the par-
tition of {1, . . . , n} into classes. This raises the natural
question of defining a structural accessibility notion that
encompasses both maps inP∗

+ and maps inD∗
+. See [8].
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