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All cited works refer essentially to compact sec-

tion beams where symmetry does not play any role,

whereas in the present model open-cross-section

beams, without any assumption of symmetry, are

considered. The discrete form of the equations

of motion obtained in Part I [1] is used to ana-

lyze the non-linear oscillations of a beam with a

mono-symmetric cross-section. Due to the presence

of many mixed terms, phenomena of modal coupling

and internal resonance involving all the displacement

components can occur, allowing the beam to undergo

exural–exural–torsional vibrations. A beam has

been considered having frequency ratios: !1=!3
∼=2

and !2=!3
∼= 3, where !1 is the exural frequency

in the symmetry direction and !3 is the torsional

frequency. These frequency ratios imply quadratic

and cubic internal resonances and a combination

resonance to occur.

A harmonic load acting in the direction of the

symmetry axis, in an external resonance condition

with exural frequency, is considered. Multiple time

scale method [8] is used to obtain modulation-phase

equations and the reconstitution method �rst pro-

posed in [9] is adopted to return to the true time

domain. Steady-state solutions and their stability are

studied by using the model proposed. The coe�-

cients of the discrete equations of motion and some

frequency–response curves are compared with those

obtained by the model in which torsional elongation

and non-linear warping are neglected, retaining linear

Vlasov warping only.

2. Amplitude and phase equations for the discrete

model

A beam with a monosymmetric cross-section,

loaded by a distributed harmonic force applied to

the beam’s centroid axis acting along the section

symmetric axis is considered. By assuming that the

beam is inextensible and shear indeformable and

using a three-mode discretization, the non-linear

exural–exural–torsional oscillations are gov-

erned by the following three ordinary di�erential

equations [1]:

�q1 + d1q̇1 + k1q1 = c1q
2
2 + c2q

2
3 + c3q2q3 + c4q1q

2
2

+ c5q1q
2
3 + c6q1q2q3 + f1;

�q2 + d2q̇2 + k2q2 = c7q1q2 + c8q1q3 + c9q
3
2 + c10q

3
3

+ c11q
2
1q2 + c12q

2
1q3 + c13q2q

2
3

+ c14q
2
2q3;

�q3 + d3q̇3 + k3q3 = c15q1q2 + c16q1q3 + c17q
3
2

+ c18q
3
3 + c19q

2
1q2 + c20q

2
1q3

+ c21q2q
2
3 + c22q

2
2q3; (1)

where qi is the ith mode amplitude, di are the modal

damping coe�cients and f1(t) = p1e
i
1t + c:c: is the

load, of frequency 
, assumed to be in primary res-

onance with the q1-mode. Moreover, the beam is as-

sumed to be in internal resonance conditions of the

kind 2:3:1, so that quadratic, cubic and combination

resonances occur.

The method of multiple time scales is employed to

study the non-linear equations (1). Since non-linear

terms are quadratic and cubic, a second-order expan-

sion is developed. A small parameter � is introduced

by ordering the linear damping and load amplitude as

di = �2d̃i; pi = �3p̃i. Moreover, the displacements qi

are expanded as

qi(T0; T1; T2; �) = �q
(0)
i (T0; T1; T2)+�2q

(1)
i (T0; T1; T2)

+ �3q
(2)
i (T0; T1; T2) + · · · ; (2)

where, T0 = t; T1 = �t; T2 = �2t. T0 is a fast scale,

on which motions with frequencies of the order of 


occur, while T1 and T2 are the slow scales, on which

modulations of the amplitudes and phases take place.

Substituting Eq. (2) into Eq. (1) and equating coe�-

cients of like powers of �, the following perturbation

equations are obtained:

Order �:

D00q
(0)
i + !2

i q
(0)
i = 0; (i = 1; 2; 3): (3)

Order �2:

D00q
(1)
i + !2

1q
(1)
1 =−2D01q

(0)
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(0)2

2 + c2q
(0)3

3

+ c3q
(0)
2 q
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D00q
(1)
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2q
(1)
2 =−2D01q

(0)
2 + c7q

(0)
1 q

(0)
2

+ c8q
(0)
1 q

(0)
3 + c:c:;



D00q
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2
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2
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3q
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(0)
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3
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(1)
2
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(1)
1 q
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whereDi()=@()=@Ti ; Dij()=@2()=@Ti@Tj (i; j=0; 1; 2)

and the tilde has been omitted for simplicity. The so-

lution to the �rst-order perturbation equations (3) is

q
(0)
i = Ai(T1; T2)e

i!iT0 + c:c: (6)

In order to investigate the system response under

internal and external resonance conditions, three

detuning parameters �i are introduced


1 = !1 + �2�1;

2!3 = !1 + ��2;

3!3 = !2 + �2�3: (7)

The �rst relation accounts for the primary external res-

onance, while the last two relations account for the

quadratic and the cubic internal resonances, respec-

tively. Substituting Eq. (6) into Eqs. (4) and zeroing

secular terms, it follows that

D1A1 =−2i�1A
2
3e

i�2T1 − 2i�2A2
�A3e

i(�2T1−�3T2);

D1A2 =−2i�3A1A3e
i(�3T2−�2T1);

D1A3 =−2i�4 �A1A2e
i(�2T1−�3T2)

− 2i�5A1
�A3e

−i�2T1 ; (8)

where coe�cients �i are reported in the appendix. The

solution to the �2-order perturbation equations reads:

q
(1)
1 =K1c1A

2
2e

i2!2T0 + K2c3A2A3e
i(!2+!3)T0

+
c1

!2
1

A2
�A2 +

c2

!2
1

A3
�A3 + c:c:;

q
(1)
2 =K3c7A1A2e

i(!1+!2)T0 + K4c7 �A1A2e
i(!2−!1)T0

+K5c8 �A1A3e
i(!3−!1)T0 + c:c:;

q
(1)
3 =K6c15A1A2e

i(!1+!2)T0

+K7c16A1A3e
i(!1+!3)T0 + c:c:; (9)

where coe�cients Ki are reported in the appendix.

Eqs. (6) and (9) are substituted into Eqs. (5); zeroing

again secular terms and taking into account Eqs. (7),

leads to

D2A1=(−id1!1A1+p1e
i�1T2+b1 �A1A2A3e

i(2�2T1−�3T2)

+ b2A1A3
�A3 + b3A

2
3e

i�2T1 + b4A1A2
�A2

+ b5A2
�A3e

i(�2T1−�3T2))=2i!1;

D2A2 = (−id2!2A2 + b6A
3
3e

i�3T2 + b7A2A3
�A3

+ b8A1
�A1A2+b9A

2
1
�A3e

i(�2T1−2�3T2)+b10A
2
2
�A2

+ b11A1A3e
i(�3T2−�2T1))=2i!2;



D2A3 = (id3!3A3 + b12A2
�A
2

3e
−i�3T2 + b13A2

�A2A3

+ b14A1
�A1A3 + b15 �A1A2e

i(�2T1−�3T2)

+ b16A
2
3
�A3 + b17A

2
1
�A2e

i(�3T2−2�2T1)

+ b18A1
�A3e

−i�2T1)=2i!3; (10)

where coe�cients bi are given in the appendix.

Eqs. (8) and (10) are rewritten in terms of polar

quantities by de�ning

Aj =
1
2
aje

i j ; (11)

where ai are real amplitudes and  i are the phases. In

the previous Eqs. (8) and (10), the explicit dependence

on time is eliminated by introducing the following

phase-di�erences:

1 =  1 − �1T2;

2 = 2 3 −  1 + �2T1;

3 = 3 3 −  2 + �3T2: (12)

The reconstitution method �rst proposed in [9] is

adopted to return to true time t, according to the

following rules:

ȧi = �D1ai + �2D2ai ;

#̇i = �D1#i + �2D2#i : (13)

Using Eqs. (8) and (10) and taking into account

Eqs. (11) and (12), the following amplitude and

phase equations are �nally obtained:

ȧ1 =−d∗

1a1 + h1a
2
3 sin 2 + h2a2a3 sin(2 − 3)

+ h3a1a2a3 sin(22 − 3)− f∗

1 sin 1;

ȧ2 =−d∗

2a2 + h4a1a3 sin(3 − 2) + h5a
3
3 sin 3

+ h6a
2
1a3 sin(3 − 22);

ȧ3 =−d∗

3a3 − h7a1a3 sin 2 + h8a1a2 sin(2 − 3)

− h9a2a
2
3 sin 3 + h10a

2
1a2 sin(3 − 22);

a1̇1 =−h1a
2
3 cos 2 − h2a2a3 cos(2 − 3)

− hc3a1a2a3 cos(22 − 3)− h14a1a
2
3

− h15a1a
2
2 − f∗

1 cos 1 − �1a1; (14)

a1a3̇2 = (h1a
3
3 − 2h7a

2
1a3) cos 2

+(h2a2a
2
3 − 2h8a

2
1a2) cos(2 − 3)

−2h9a1a2a
2
3 cos3+(h3a1a2a

2
3−2h10a

3
1a2)

× cos(3 − 22)− 2h11a1a
2
2a3 − 2h14a

3
1a3

− 2h13a1a
3
3 + h14a1a

3
3 + h15a1a

2
2a3

+f∗

1a3 cos 1 + �2a1a3;

a2a3̇3 =−3h7a1a2a3 cos 2 + (h4a1a
2
3 − 3h8a1a

2
2)

× cos(2 − 3) + (h5a
4
3 − 3h9a

2
2a

2
3) cos 3

+(h6a
2
1a

2
3 − 3h10a

2
1a

2
2) cos(3 − 22)

− 3h11a
3
2a3 − 3h14a

2
1a2a3 − 3h13a2a

3
3

+ h16a2a
3
3+h17a

2
1a2a3+h18a

3
2a3+�3a2a3;

where coe�cients hi ; f
∗

1 ; d
∗

i are reported in the ap-

pendix. Eqs. (14) describe the non-linear resonant

motion of the system; the steady-state solutions and

their stability are studied for a particular mechanical

system in the next section.

3. Numerical results

3.1. Sample mechanical system

Non-linear coupling and resonant motions are in-

vestigated for a beam simply supported at the ends and

restrained by torsional constraints. Warping at the end

sections is admitted and only one of the supports is

free to move in the longitudinal direction. The bound-

ary conditions at z = 0; l are










u1(0) = 0;

u2(0) = 0;

#3(0) = 0;











u1(l) = 0;

u2(l) = 0;

#3(l) = 0;











EI2u
′′

1 (0) = 0;

EI1u
′′

2 (0) = 0;

E"#′′

3 (0) = 0;











EI2u
′′

1 (l) = 0;

EI1u
′′

2 (l) = 0;

E"#′′

3 (l) = 0:

(15)

They are such that simple closed-form expressions

for the eigenvalues and the eigenfunctions of the lin-

earized system can be obtained.



Fig. 1. Geometrical beam characteristics.

The cross-section of the beam is illustrated in

Fig. 1. It has a symmetry axis x1; moreover the ab-

scissas of the shear center xC and of the centroid xG
are equal to:

xC =
3s2h2b2

12bs2h2 + 8s2h3
; xG =

b2s

2s(2b+ h)
: (16)

The aspect ratios are assumed to be s=h ∼= 1=25,

h=b ∼= 3=5; h=l ∼= 1=48, for which the internal res-

onance conditions (7)2; (7)3 are satis�ed. In the nu-

merical investigation the following geometrical and

material characteristic are used: h=3:0 cm, b=5:0 cm,

s=0:12 cm, l=144 cm, E=1; 22; 0000 kg=cm2, G=

469; 230 kg=cm2, �=9:1×10−6 kgm=cm
3. The dimen-

sions of the section of the beam have been chosen in

such a way as to make possible experimental investi-

gations in future; the material considered is copper.

The solution of the linear free dynamic problem

furnishes the following �rst three eigenvalues and

eigenfunctions:

!1 = 235:40 rad=s;

!2 = 354:20 rad=s;

!3 = 117:76 rad=s

�1 =





1

0

0



 sin
�z

l
;

�2 =





0

−0:958813

0:284039



 sin
�z

l
;

�3 =





0

0:499159

0:866511



 sin
�z

l
: (17)

The displacement components u1(z; t); u2(z; t);

#3(z; t) are obtained from the modal amplitudes q1(t)

by the following relations:

u1 = ’11a1 cos(!1t +  1) sin
(�z

l

)

;

u2 = [’22a2 cos(!2t +  2)

+’23a3 cos(!3t +  3)] sin
(�z

l

)

;

#3 = [’32a2 cos(!2t +  2)

+’33a3 cos(!3t +  3)] sin
(�z

l

)

; (18)

where ’ij is the jth component of the ith eigenfunc-

tion �i. According to Part I of this work, the eigen-

functions �i are used as shape functions to discretize

the equations of motion through the Galerkin proce-

dure. The displacements of the midspan cross-section

in the �rst three modes are illustrated in Fig. 2. Due

to the symmetry, the displacement component u1 is

uncoupled from the other two.

The coe�cients of the discretized equations of mo-

tion (1), are then evaluated in non-dimensional form,

as illustrated in Part I, for a beam in which non-linear

warping and torsional elongation of the longitudinal

�bers are accounted (Model 1) and also for the case in

which these contributions are not taken into account

and only the linear Vlasov contribution to warping is

considered (Model 2).



Fig. 2. Midspan section displacements in the �rst three eigenfunctions.

Table 1

Coe�cients of the non-dimensional discretized equations of motion

Eq. (1) c1 c2 c3 c4 c5 c6

Model 1 − 4.2408 − 5.3393 − 9.5418 − 18.0918 − 26.3292 − 43.6505

Model 2 − 0.4896 0.1199 − 0.4905 − 18.0918 − 26.3296 − 43.6505

Eq. (2) c7 c8 c9 c10 c11 c12 c13 c14

Model 1 − 61.4079 − 70.1305 − 212.885 − 1132.10 − 103.679 − 125.075 − 1633.40 − 319.262

Model 2 − 5.6042 − 2.8110 − 66.7693 − 8.2102 − 103.679 − 125.075 17.2263 100.4690

Eq. (3) c15 c16 c17 c18 c19 c20 c21 c22

Model 1 − 24.728 − 27.676 − 127.672 − 829.180 − 56.5657 − 68.2389 − 1596.67 − 907.797

Model 2 − 1.2713 0.6214 15.1459 1.8149 − 56.5657 − 68.2389 − 11.1393 7.7907

The values of the coe�cients for the two model are

listed in Table 1. It is noticed that the new contribu-

tions notably change the values of many coe�cients.

In particular, several resonant terms are strongly mod-

i�ed by these e�ects, thus implying the motion is

strongly a�ected by them. Accordingly, a remarkable

change is registered in most of coe�cients of the mod-

ulation equations (14), as shown in Table 2. This con-

�rms that the motion will change very much due to

the contribution of warping and torsional elongation.

3.2. Steady-state motions and stability

Steady-state solutions are determined by zeroing

the right-hand members of the modulation equations

(14) and solving the non-linear system. Stability anal-

ysis is then performed by analyzing the eigenvalues

of the Jacobian matrix of the non-linear equations cal-

culated at the �xed points. Most results, which are

discussed in the following, are relevant to the Model

1; a few numerical investigation has been performed

also with Model 2, although it is inaccurate for the

open cross-section beams, just to point out the modi-

�cations in the response produced by the re�ned pre-

sented theory.

Amplitude–load curves are reported in Fig. 3 for

Model 1. They have been obtained for external forces

in a perfect resonance condition (�1 = 0) and for two

values of damping (Figs. 3a and b). The smaller damp-

ing is �rst considered (Fig. 3a). A unimodal linear

solution branch, a1 �=0; a2 = a3 = 0, is found. On

this branch, at a point very near to the axes origin,

one three-modal solution branch bifurcates. Due to the

presence of some saddle-nodes, the three-modal so-

lution branch alternatively loses and regains stability.

However, this behavior appears at very high values



Table 2

Coe�cients of the modulation equations of motion in the two Models 1 and 2

h1 h2 h3 h4 h5 h6

Model 1 − 1.3362 − 2.3878 68.4789 − 11.6907 − 89.2138 223.722

Model 2 0.0299 − 0.1227 − 5.1118 − 0.4686 − 0.6895 − 9.8221

h7 h8 h9 h10 h11 h12

Model 1 − 13.8381 − 12.4138 − 383.395 − 4.1440 − 445.381 40.0938

Model 2 0.3107 − 0.6382 − 2.8095 − 13.0776 3.6203 − 33.5854

h13 h14 h15 h16 h17 h18

Model 1 − 530.551 49.3155 − 15.2101 − 227.127 85.7115 93.9876

Model 2 1.4106 − 6.4672 − 4.4475 2.7422 − 16.5887 17.1358

(a)

(b)

Fig. 3. Model 1, amplitude–load curves: (a) d= 0:01; (b) d= 0:075. Perfect external resonance: �1 = 0. Thick line: stable solutions; thin

line: unstable solutions.

of the displacements at which the validity of the per-

formed analysis is in doubt. By limiting the attention to

moderately large displacements, the amplitudes curves

shown in Fig. 3b are obtained for a higher damping

to better observe the kind of bifurcation, since point B

goes away from the beginning of the unimodal branch,

as damping is increased. In general, the angular co-

e�cient of the unimodal solution and the position of



(a) (b)

Fig. 4. Model 1, frequency–response curves: (a) f1 = 0:025; (b) f1 = 0:0045. Damping value: d= 0:01. Thick line: stable solutions; thin

line: unstable solutions.

the bifurcation point depend on damping. At B, the

a1 bifurcated branch is tangent to the unimodal so-

lution and is unstable. After B, the unimodal oscilla-

tion is unstable, which means that unimodal oscilla-

tion is practically always unstable. It is worth noting

that the bifurcated three component solution has a sta-

ble branch which starts very close to the origin, that

is for very small value of the force.

Frequency–response curves are then analyzed in

Fig. 4, in which two di�erent loads are considered.

The unimodal solution becomes unstable at two points

B1 and B2, located on opposite sides with respect to

the resonance. Consequently, the unimodal solution

is unstable almost everywhere, even with respect to

the parameter �1, apart from a small range of f1, as

already observed in Fig. 3. The branch bifurcating

from B1 is initially stable for the two loads consid-

ered, while the branch bifurcating from B2 is initially

unstable for the higher load (Fig. 4a) and stable for

the lower load (Fig. 4b). However, both change sta-

bility at higher amplitudes, due to the occurrence of

saddle-nodes in Fig. 4a, or Hopf bifurcations H and

saddle-nodes in Fig. 4b. It is interesting to note that a

saturation phenomenon of a3 component occurs which

is manifest in the amplitude–load curve (Fig. 3a) and

in the frequency–response curve (Fig. 4a).

The results furnished byModel 1 di�er notably from

those obtained omitting the contribution of non-linear



(a) (b)

Fig. 5. Model 2, frequency–response curves: (a) d= 0:0005; (b) d= 0:01 Load value: f1 = 0:001. Thick line: stable solutions; thin line:

unstable solutions.

warping and torsional elongation of the longitudinal

�bers (Model 2). The di�erences can be appreciated

by comparing the frequency–response curves of Fig.

4 with those obtained with Model 2, reported in Fig.

5. For small damping d (Fig. 5a) on the unimodal

linear solution branch, a1 �=0; a2 = a3 = 0, two bi-

furcation points A1 and A2 occur. Their distance de-

pends on the damping, but they are in any case very

close. As a consequence, in contrast with Model 1,

the unimodal solution is stable everywhere, except for

the small zone between the two bifurcation points.

Two three-modal solution branches bifurcate from the

points A1 and A2, but only one branch is stable; this is

characterized by a a3 modal amplitude much greater

than the other components. No saturation phenomenon

of the third component is observed. Increasing the

damping d, the two bifurcation points �rst coalesce

and then bifurcation disappears (see Fig. 5b). In this

case, the unimodal solutions are always stable, while

the three-modal solution curve is unstable almost ev-

erywhere due to a saddle-node and a Hopf bifurca-

tion at H . The beam oscillates inde�nitely in the plane

of the excitation, while Model 1 foresees an oscilla-

tion of the beam excited by a force in the symme-

try plane characterized by comparable out-of-plane

components.



Fig. 6. Model 1, orbits of beam middle section: (a) d = 0:01; (b) d = 0:075.

Some orbits of the displacements and rotation of

the beam middle-section are illustrated in Fig. 6 at the

points marked in Figs. 3a and b. Orbits of the stable

and unstable solutions always keep a similar pattern

along the branch. Due to Eqs. (18), the displacement

components u2; #3 oscillate with frequencies !2 and

!3. One of these frequencies can be more impor-

tant than the other in the displacement components

u2 and #3 evolution. If ’i2a2 term is ¿’i3a3 term

(i= 2; 3) in Eqs. (18), !2 is the prevailing frequency

in the evolution of the displacement components u2
and #3; on the contrary, !3 becomes the prevailing

frequency. The running direction of the orbits is re-

ported also when useful. The patterns of the orbits

presented are quite di�erent from those obtained

by Model 2 which are not reported for the sake of

brevity.

4. Conclusions

The non-linear oscillations of a supported beam

have been investigated in Part II of this paper by

using the ODE’s obtained in Part I [1]. They have

been specialized for a beam having one symmetry

axis. The beam is in internal resonance conditions

and is excited by a force in external resonance con-

dition with the �rst mode, along the symmetry axis.

Amplitude and phase equations have been obtained

through multiple scale method and solved numeri-

cally. For the beam model, in which the e�ects due

to non-linear warping and torsional elongation of the

longitudinal �bers are taken into account (Model 1),

the behavior is illustrated by frequency–response and

amplitude–load curves, evaluated for di�erent values

of damping and load. Some results are compared with

those obtained by neglecting the non-linear warping

and torsional elongation of the longitudinal �bers

(Model 2).

The results have shown that warping and tor-

sional elongation produce deep modi�cations in the

dynamic behavior of the beam. In fact, the internal

resonance conditions considered interest those terms

of the discretized equations of motion, that are more

strongly modi�ed by the e�ects taken into account in

the model. These latter consequently produce strong

modi�cations in the behavior of the system; quan-

titative and qualitative di�erences are evidenced,

these latter a�ecting the stability of the oscillations.

However, the case analyzed here should be consid-

ered as a limit case, in which the inuence of the

non-linear warping and torsional elongation e�ects is

magni�ed.
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Appendix

Coe�cients �i of Eqs. (8) are

�1 =
c2

4!1

; �2 =
c3

4!1

; �3 =
c8

4!2

;

�4 =
c15

4!3

; �5 =
c16

4!3

: (A.1)

Coe�cients Ki of Eqs. (9) are

K1 =
1

!2
1 − (2!2)2

; K2 =
1

!2
1 − (!2 + !3)2

;

K3 =
1

!2
2−(!1+!2)2

; K4 =
1

!2
2−(!2 − !1)2

;

K5 =
1

!2
2−(!3−!1)2

; K6 =
1

!2
3−(!1 + !2)2

;

K7 =
1

!2
3 − (!1 + !3)2

: (A.2)

Coe�cients bi of Eqs. (10) are

b1 = 8�1�4 − 4�2�5+k1; b2 = 8�1�5+4�2�3 + k3;

b3 =−2�1�1; b4 =−4�2�4 + k2;

b5 =−2�2�1; b6 = 4�1�3 + k5;

b7 = 4�2�3 + k7; b8 = 4�3�4 + k8;

b9 = 4�3�5 + k6; b10 = k4; b11 = 2�3�1;

b12 =−4�1�4+4�2�5+k13; b13 =−4�2�4+k12;

b14 = 4�3�4 − 4�25 + k11; b15 =−2�4�1;

b16 = 4�1�5 + k9; b17 =−4�4�5 + k10;

b18 = 2�1�5; (A.3)

where ki are

k1 = c6 + 2c1c8K5 + c3c7K4;

k2 = 2c4 + 2c1c7K3 + 2c1c7K4 + c2c15K6;

k3 = 2c5 + 2c2c16K7 + c3c8K5;

k4 = 3c9 + 2
c7c1

!2
1

+ c7c1K1; k5 = c10;

k6 = c12 + c7c8K5; k7 = 2c13 + 2
c7c2

!2
1

+ c8c3K2;

k8 = 2c19 + c27K3 + c27K4 + c8c15K6;

k9 = 3c18 + 2
c16c2

!2
1

;

k10 = c19+c15c7K4; k11 = 2c20+c15c8K5+c216K7;

k12 = 2c22 + c15c3K2 + 2
c16c1

!2
1

; k13 = c21: (A.4)

Coe�cients hi, d
∗

1;2;3 and f∗

1 of Eqs. (14) are

h1 = �1 +
b3

4!1

; h2 = �2 +
b5

4!1

; h3 =
b1

8!1

;

h4 = �3 +
b11

4!2

; h5 =
b6

8!2

; h6 =
b9

8!2

;

h7 = �5 +
b18

4!3

; h8 = �4 +
b15

4!3

; h9 =
b12

8!3

;

h10 =
b17

8!3

; h11 =
b13

8!3

; h12 =
b14

8!3

;

h13 =
b16

8!3

; h14 =
b2

8!1

; h15 =
b4

8!1

;

h16 =
b7

8!2

; h17 =
b8

8!2

; h18 =
b10

8!2

;

d∗

1 =
d1

2
; d∗

2 =
d2

2
; d∗

3 =
d3

2
; f∗

1 =
f1

!1

:

(A.5)
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