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Abstract: Slight variations induced by thermal effects may bring unexpected discrepancies in both
the system’s linear and non-linear responses. The present study investigates the temperature effects
on the non-linear coupled motions of suspended cables subject to one-to-one internal resonances
between the in-plane and out-of-plane modes. The classical non-linear flexible system is excited by
a uniform distributed harmonic excitation with the primary resonance. Introducing a two-mode
expansion and applying the multiple scale method, the polar and Cartesian forms of modulation
equations are obtained. Several parametric investigations have highlighted the qualitative and
quantitative discrepancies induced by temperature through the curves of force/frequency-response
amplitude, time history diagrams, phase portraits, frequency spectrum, and Poincaré sections. Based
on the bifurcation and stability analyses, temperature effects on the multiple steady-state solutions,
as well as static and dynamic bifurcations, it is observed that the periodic motions may be bifurcated
into the chaotic motions in thermal environments. The saddle-node, pitch-fork, and Hopf bifurcations
are sensitive to temperature changes. Finally, our perturbation solutions are confirmed by directly
integrating the governing differential equations, which yield excellent agreement with our results
and validate our approach.

Keywords: thermal conditions; suspended cable; non-planar motion; bifurcation analysis;
chaotic motion

1. Introduction

Numerous non-linear systems include the quadratic and cubic non-linearities simul-
taneously, such as the cable [1], shallow arch [2], arch-foundation structure [3], cable-
stayed beam [4], multi-cable-stayed beam [5], beam-cable-beam [6], sagged-cable-crosstie
systems [7,8], and cable net structures [9], etc. Particularly, the cable is one of the most vital
structural elements that exhibits slenderness, exceptional flexibility, and ultra-low damp-
ing simultaneously [10]. Therefore, several previous studies have highlighted dynamic
characteristics of the inclined [11] and suspended cables [12], and the linear and non-linear
dynamics of suspended cables subjected to parametric and auto-parametric excitations
have been discussed in detail.

Meanwhile, another significant resonant response is the modal coupling between
a cable’s different modes. To explore various types of internal resonances, such as in-
plane/out-of-plane and symmetric/anti-symmetric modes, a combination of perturbation,
numerical, and experimental methods have been utilized. By employing these techniques,
one aims to gain a comprehensive understanding of the system dynamics and uncover
any underlying non-linear behavior [13–27]. As a result, different types of bifurcations
and chaos mechanisms can occur due to the planar and non-planar modal interactions, the
localization of energy and its conversion from the in-plane mode to the out-of-plane one,
and vice versa, are observed due to the non-linearity [28,29].
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Apart from the various short/long-terms excitations and natural/human-made dis-
asters, the cable structures always suffer from many environmental factors. Among these
disturbances, temperature changes can have significant effects on dynamic behaviors [30],
particularly the cable structures [31]. Understanding their dynamical behaviors including
thermal effects is critical and significant in the practical engineering. Provided that the
temperature effects are not distinguished correctly and appropriately, it may result in false-
positive or false-negative damage signals [32]. Furthermore, even considering a single cable,
some previous studies have shown that temperature variations can significantly affect its
static and dynamic characteristics [33–37]. In recent times, significant attention has been
paid to studying the non-linear vibration behavior of suspended cables that experience
both single and multi-harmonic excitations in thermal conditions [38–43]. These studies
aim to provide a deeper understanding of the system dynamics and the impact of thermal
effects on the cable’s behavior under different types of excitations. It is observed that many
interesting non-linear phenomena are induced due to temperature changes.

Nevertheless, a single-degree-of-freedom model has been used in some previous
studies [38–43], and the modal interactions are all neglected for simplicity. Since multiple
modes are included, the internal resonant responses cannot be ignored. Understanding
the temperature effects on the internal resonant responses of suspended cables is crucial
for their successful application in various practical engineering structures. Impressive
qualitative and quantitative discrepancies, e.g., extra Hopf bifurcations and chaotic motions,
are observed due to temperature changes in the planar two-to-one internal resonances [44].
Nevertheless, if the coupled motions are extended from planar to non-planar ones, the
internal resonance refers to some notable energy exchanges between the in-plane and
out-of-plane components due to non-linear coupling. To the best of our knowledge, there
is no previous study of thermal effects on the complex non-planar non-linear phenomena
(resonant responses, static and dynamic bifurcations, and non-planar coupled motions, etc.)
before. For these reasons, the investigation here is viewed as a significant extension from
the planar coupled motions to the non-planar ones.

Based on this solid scientific background, this paper performs theoretical development
and numerical verification. The specific objectives are: (1) to extend the planar motions to
the non-planar ones; (2) to reveal temperature effects on the non-planar coupled mechanism
in detail; (3) to show some critical quantitative and qualitative discrepancies in thermal
conditions further. In general, the paper’s organization is as follows: the in-plane and
out-of-plane mathematical model and corresponding non-linear equations of motion are
presented (Section 2). After applying the Galerkin discretization method and multiple
scales procedure, we derive the modulation equations in polar and Cartesian forms for both
primary and one-to-one internal resonances (Section 3). Then, we analyse the influence
of temperature on the bifurcations and stabilities of the non-planar oscillations, which is
presented in Section 4. Finally, some findings and conclusions are summarized in Section 5.
Through this comprehensive investigation, we aim to contribute to the existing body of
knowledge on the dynamics of suspended cables and the effects of thermal conditions on
their behavior.

2. Mathematical Modeling and Equations

In a Cartesian coordinate system O-xyz, a horizontal cable subjected to thermal con-
ditions is supported, as illustrated in Figure 1. Thermal stresses arise as a result of the
structure’s expansion and contraction caused by temperature fields, which in turn affect
the static and dynamic behaviors of the suspended cable. Therefore, a distinguishable
thermal static profile of the cable can be noted in thermal environments [37]. Here, the
suspended cable’s three configurations can be distinguished: the static, thermal-stressed,
and dynamic configurations. Assuming uniform temperature variation along the cable’s
length and cross-sectional area, the thermal dynamics of the system exhibit a significantly
slower time scale compared to the structural dynamics.
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Figure 1. Suspended cable’s mathematical model in thermal conditions.

The span of the cable between two horizontal supports, denoted by O and B, is
measured as L. The original sag and thermal-stressed sag are represented by b and b∆T ,
respectively. Under the external excitation, the longitudinal, vertical, and out-of-plane
displacements along three directions are expressed by ū(x, t), v̄(x, t), and w̄(x, t). The
partial differential equations of motion in the in-plane and out-of-plane directions are
derived using the classical condensed mathematical model [35,38,39].

m ¨̄v + cv ˙̄v− χ2
∆T Hv̄′′ − EA

L

(
y′′

χ2
∆T

+ v̄′′
) ∫ L

0

[
y′v̄′

χ2
∆T

+
1
2

(
v̄′2 + w̄′2

)]
dx = Fv cos(Ωvt + θv),

m ¨̄w + cw ˙̄w− χ2
∆T Hw̄′′ − EA

L
w̄′′

∫ L

0

[
y′v̄′

χ2
∆T

+
1
2

(
v̄′2 + w̄′2

)]
dx = Fw cos(Ωwt + θw),

(1)

where the suspended cable is subject to two external harmonic loads, Fv cos(Ωvt + θv)
and Fw cos(Ωwt + θw), with in-plane (out-of-plane) excitation amplitudes, frequencies, and
phases represented by Fv (Fw), Ωv (Ωw), and θv (θw), respectively. These loads apply a
distributed force to the cable, with the cable’s Young’s modulus, cross-sectional area, and
mass per length represented by E, A, and m, respectively. A notable deviation between the
classical and original differential equations of motion governing the suspended cable and
the current model is the introduction of a new tension variation factor χ2

∆T [35]

χ2
∆T =

H∆T
H

=
b

b∆T
, (2)

where H∆T (H) and b∆T (b) are the cable tension force and sag with (without) ther-
mal effects, respectively. Here, once the temperature changes are neglected (χ2

∆T = 1),
Equation (1) are reduced to the classical original partial differential equations in [10].

The following dimensionless variables and parameters are also defined

v̄∗ =
v̄
L

, w̄∗ =
w̄
L

, x∗ =
x
L

, y∗ =
y
L

, f ∗ =
b
L

, t∗ =
√

g
8b

t ,

c∗v,w =

√
8b
g

cv,w

m
, Θ =

EA
H

, F∗v,w =
Fv,wL

H
, Ω∗v,w =

√
8b
g

Ωv,w.
(3)

By substituting Equation (3) into (1) and removing the asterisk notations for simplicity,
we obtain a set of dimensionless equations governing the in-plane and out-of-plane motions

¨̄v + cv ˙̄v− χ2
∆T v̄′′ −Θ

(
y′′

χ2
∆T

+ v̄′′
) ∫ 1

0

[
y′ v̄′

χ2
∆T

+
1
2

(
v̄′2 + w̄′2

)]
dx = Fv cos(Ωvt + θv),

¨̄w + cw ˙̄w− χ2
∆Tw̄′′ −Θw̄′′

∫ 1

0

[
y′ v̄′

χ2
∆T

+
1
2

(
v̄′2 + w̄′2

)]
dx = Fw cos(Ωwt + θw),

(4)

where the eigenvalue solutions are derived by disregarding the non-linear, damping, and
forcing terms (Appendix A).
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To investigate internal resonances between in-plane and out-of-plane modes, we utilize
two discretization equations

v̄(x, t) = ϕn(x)qv(t),

w̄(x, t) = φn(x)qw(t),
(5)

where ϕn(x) (φn(x)) denotes the n-th eigenfunction for the transverse (out-of-plane) mo-
tions. qn(t) and qw(t) represent the in-plane and out-of-plane generalized coordinates. By
inserting Equation (5) into (4), integrating from 0 to 1, and multiplying by the mode shapes
ϕn(x) and φn(x), we obtain two ordinary differential equations

q̈v + ω2
vqv + 2µv q̇v = Λv1q2

v + Λv2q2
w + Γv1q3

v + Γv2qvq2
w + fv cos(Ωvt + θv),

q̈w + ω2
wqw + 2µw q̇w = Λw1qvqw + Γw1q2

vqw + Γw2q3
w + fw cos(Ωwt + θw),

(6)

where details regarding the damping, excitation, linear, and non-linear coefficients can be
found in Appendix B.

3. Perturbation Analysis and Modulation Equations

In line with the multiple scales procedure outlined in [45,46], we expand the unknown
displacement coordinates qk and velocity coordinates zk (k = v, w) as follows

qk(t; ε) = εqk1(T0, T1, T2) + ε2qk2(T0, T1, T2) + ε3qk3(T0, T1, T2) + ..., (7)

where Ti=εit, ∂/∂t=∑∞
i=0 εiDi, and Di=∂/∂Ti, (i = 0, 1, 2).

By inserting Equation (7) and the time-derivative expansion into the governing equa-
tions and equating coefficients of equal powers of ε, we obtain the following six first-order
differential equations of order −ε1, −ε2, and −ε3

Order ε1

D2
0qv1 + ω2

vqv1 = 0,

D2
0qw1 + ω2

wqw1 = 0,
(8)

Order ε2

D2
0qv2 + ω2

vqv2 = −2D0D1qv1 + Λv1q2
v1 + Λv2q2

w1,

D2
0qw2 + ω2

wqw2 = −2D0D1qw1 + Λw1qv1qw1,
(9)

Order ε3

D2
0qv3 + ω2

vqv3 =−
(

D2
1 + 2D0D2 + 2µvD0

)
qv1 − 2D0D1qv2

+ 2Λv1qv1qv2 + 2Λv2qw1qw2 + Γv1q3
v1 + Γv2qv1q2

w1 + δkv fv cos(Ωvt),

D2
0qw3 + ω2

wqw3 =−
(

D2
1 + 2D0D2 + 2µwD0

)
qw1 − 2D0D1qw2

+ Λw1(qv1qw2 + qv2qw1) + Γw1q2
v1qw1 + Γw2q3

w1 + δkw fw cos(Ωwt),

(10)

where δkv and δkw (k = v, w) are the Kronecker delta functions.
One begins by obtaining solutions to the order −ε1 equations, which can be derived

as follows

qv1 = Av(T1, T2)eiωvT0 + c.c.,

qw1 = Aw(T1, T2)eiωwT0 + c.c.,
(11)

where c.c. represents the conjugate for the preceding complex terms, and Ak(k = v, w) is
the complex valued amplitude of the k−th mode.

Next, we substitute Equation (11) into the order −ε2 equations and follow the same
procedure outlined in [45] to obtain the corresponding second-order solutions
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qv2 = −Λv1

3ω2
v

A2
ve2iωvT0 +

Λv1

ω2
v

Av Āv −
Λv2

3ω2
v

A2
we2iωwT0 +

Λv2

ω2
w

Aw Āw + c.c.,

qw2 =
Λw1

ω2
w − (ωv + ωw)2 Av Awei(ωv+ωw)t +

Λw1

ω2
w − (ωv −ωw)2 Av Āwei(ωv−ωw)t + c.c..

(12)

To quantify the proximity of external and internal resonances, we introduce two
detuning parameters denoted by σ1 and σ2.

Ωk = ωk + ε2σ1, (k = v, w)

ωw = ωv + ε2σ2,
(13)

where ωv and ωw are the in-plane and out-of-plane mode frequencies, respectively. Ωk is
the excitation frequency which is applied on the in-plane or out-of-plane modes directly. σ1
and σ2 are the external and internal detuning parameters, respectively.

By substituting the previous second-order solutions into the order −ε3 equations and
introducing solvability conditions, we obtain the modulation equations governing Av and
Aw. Then, we employ the reconstitution method to express the modulation equations in
the third-order

2iωv(Ȧv + µv Av) = K3 A2
w Āve2iσ2T2 + K11 A2

v Āv + K12 Av Aw Āw +
1
2

fvδkveiσ1T2 ,

2iωw(Ȧw + µw Aw) = K3 A2
v Āwe−2iσ2T2 + K22 A2

w Āv + K21 Av Aw Āv +
1
2

fwδkweiσ1T2 ,
(14)

where the non-linear coefficients K11, K12, K21, K22, and K3 are expressed in Appendix C.
Furthermore, Av and Aw in Equation (14) can be written as in the polar forms

Ak = 1/2ak(t)eiβk(t), (k = v, w), where ak and βk are the response amplitude and phase,
respectively. Substituting the polar equations into Equation (14) and separating the real
and imaginary parts, the polar form of modulation equations are obtained

ȧv = −µvav +
K3

8ωv
ava2

w sin 2∆ +
fvδkv
2ωv

sin γ1,

av β̇v = −K11a3
v

8ωv
− K12ava2

w
8ωv

− K3ava2
w

8ωv
cos 2∆− fv

2ωv
δkv cos γ1,

ȧw = −µwaw −
K3a2

vaw

8ωw
sin 2∆ +

fwδkw
2ωw

sin γ2,

aw β̇w = −K21a2
vaw

8ωw
− K22a3

w
8ωw

− K3a2
vaw

8ωw
cos 2∆− fw

2ωw
δkw cos γ2,

(15)

where ∆ = σ2t − βv + βw. Ω ≈ ωv, γ1 = σ1t − βv, γ2 = (σ1 − σ2)t − βw, and Ω ≈ ωw,
γ1 = (σ1 + σ2)t− βv, γ2 = σ1t− βw.

Similarly, the Cartesian form of modulation equations are also obtained



Appl. Sci. 2023, 13, 6646 6 of 15

ṗv =− νvqv − µv pv +
K3

8ωv
(p2

wqv − 2pv pwqw − q2
wqv)

− K11

8ωv
(q3

v + p2
vqv)−

K12

8ωv
(qvq2

w + p2
wqv),

q̇v =νv pv − µvqv +
K3

8ωv
(pv p2

w + 2pwqwqv − q2
w pv)

+
K11

8ωv
(p3

v + pvq2
v) +

K12

8ωv
(pv p2

w + pvq2
w) +

fvδkv
2ωv

,

ṗw =− νwqw − µw pw +
K3

8ωw
(p2

vqw − 2pv pwqv − q2
vqw)

− K21

8ωw
(p2

vqw + q2
vqw)−

K22

8ωw
(q3

w + p2
wqw),

q̇w =νw pw − µvqv +
K3

8ωw
(p2

v pw + 2pvqvqw − q2
v pw)

+
K21

8ωw
(p2

v pw + pwq2
v) +

K22

8ωw
(p3

w + pwq2
w) +

fwδkw
2ωw

,

(16)

where ai =
√

p2
i + q2

i (i = v, w). Ω ≈ ωv (the in-plane excitation), νv = σ1, νw = σ1 − σ2

and Ω ≈ ωw (the out-of-plane excitation), νv = σ1 + σ2, νw = σ1.
The fixed points, also known as equilibrium or constant solutions, can be obtained

by setting ȧv = ȧw = 0 and β̇v = β̇w = 0 in Equation (15). Using a pseudo-arclength path-
following algorithm, we trace the rest response branches and determine the corresponding
stability of the fixed points based on the eigenvalues of the Jacobian matrix in Equation (16).
Utilizing XPPAUTO, the four coupled solution branches that involve non-zero solutions
and determines their stability properties are exhibited [47].

4. Numerical Examples and Illustrations
4.1. Parameters and Coefficients

The parameters adopted in the following numerical examples are shown in Table 1.
Here, it is assumed that the density ρ, cross-section area A, and material properties
(Young’s modulus E and damping ratios µv,w) are all independent of temperature varia-
tions. It is shown that the vibration characteristics are not sensitive to these temperature-
dependent variables between −40 ◦C and 40 ◦C. In this following, it is noted that the
temperature changes under consideration are not continuous values, but rather several
deterministic values.

Table 1. Parameters of the suspended cable.

Parameter (Unit) Value

Density ρ (kg/m3) 7800
Area of cross-section A (m2) 7.069× 10−2

Young’s modulus E (Pa) 2.0× 1011

Thermal expansion coefficient α (1/◦C) 1.2× 10−5

Cable span L (m) 200
Damping ratio µv/µw (1) 0.005/0.006

Temperature variations ∆T (◦C) ±40

The first two in-plane symmetric and the out-of-plane mode frequencies are plotted
versus the corresponding Irvine parameter λ2 in Figure 2. It is known that the one-to-
one internal resonance occurs for a specific set of system parameters, e.g., the closeness
of two natural frequencies. Here, the first symmetric mode frequencies are equal to the
second out-of-plane ones around the first crossover point. The natural frequencies of the
system may undergo unexpected changes due to temperature variations. Due to the shift of
natural frequencies, the crossover point is also shifted, so the one-to-one internal resonant
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case will be exhibited in different Irvine parameters λ2 since the temperature increases
or decreases.

0 1 2 3 4 5 6
0

1

2

3

4

5

40

0

-40

2nd in-plane

1st in-plane

2nd out-of-plane

40 0 -40

 -40      0    40
log

1st out-of-plane

Figure 2. The first two in-plane (symmetric) and out-of-plane mode frequencies of suspended cables
in thermal environments.

In this work, we investigate internal resonances between the in-plane and out-of-
plane modes, assuming that their natural frequencies are in close proximity to each other.
The tension variation factor, natural frequencies, and the quadratic and cubic non-linear
coefficients are given in Table 2. There are significant differences in these quadratic and
cubic coefficients in warming and cooling conditions. Internal resonances in this classical
quadratic and cubic non-linear system lead to strongly coupled motions, so the effective
interaction coefficients with thermal effects around the first crossover point are also given in
Table 3. Specifically, the tension force is decreased (χ∆T < 1.0) and the natural frequency is
also decreased in the warming condition. The absolute values of all non-linear and effective
interaction coefficients increase (decrease) when the temperature decreases (increases).

Table 2. Linear and non-linear coefficients of in-plane and out-of-plane motions with thermal effects.

∆T/◦C χ∆T ωv ≈ ωw Λv1 Λv2 Γv1 Γv2 Λw1 Γw1 Γw2

−40 1.097 6.8913 −5295 −5295 −196,781 −590,337 −10,590 −590,337 −1,770,990
0 1.000 6.2832 −4402 −4402 −163,579 −490,736 −8803 −490,736 −1,472,200
40 0.886 5.5644 −3452 −3452 −128,293 −384,875 −6904 −384,875 −1,154,610

Table 3. Effective interaction coefficients with thermal effects at the first crossover point (CP1) between
in-plane and out-of-plane mode shapes.

∆T/◦C χ∆T K3(×106) K11(×106) K22(×106) K12(×106)

−40 1.097 1.378 −3.345 1.378 2.755
0 1.000 1.145 −2.781 1.145 2.290

40 0.886 0.898 −2.181 0.898 1.796

4.2. Bifurcation and Stability Analysis

This section presents numerical examples that investigate qualitative and quantitative
changes and bifurcations in thermal environments. Force-response curves are obtained
by selecting the external excitation amplitude as the control parameter, while frequency-
response curves are obtained by adopting the detuning parameter as the control factor. The
stable (unstable) solution branches are indicated by solid (dashed) lines, and the vibration
behaviors in cooling and warming conditions are represented by blue and red lines (circles),
respectively, using the perturbation (numerical) method.

4.2.1. In-Plane Excitations

Firstly, it is assumed that the external excitation is applied in the in-plane direction,
and the force-response curves with thermal effects are discussed. Setting two detuning
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parameters σ1 = 0.15 and σ2 = 0, the influences of the in-plane excitation amplitudes ( fv)
on the in-plane (av) and out-of-plane (aw) responses in warming and cooling conditions
are shown in Figure 3.

0.000 0.001 0.002 0.003 0.004 0.005
0.0000

0.0006

0.0012

0.0018

0.0024

a v, a
w

 numerical integrations (-40°C)
 numerical integrations ( 40°C)

aw

av

 stable(-40°C)   unstable(-40°C)  
 stable(40°C)    unstable(40°C)

av

 

 

f
v

SN1

SN1

Figure 3. Force-response amplitude curves with thermal effects when σ1 = 0.15 and σ2 = 0.

As the excitation amplitude ( fv) increases from zero, only a single-mode solution
(av) is exhibited and increases monotonously from 0 to 0.005. However, provided that the
excitation amplitude ( fv) is greater than 0.002 approximately, another coupled branches
appear for some selected initial conditions. As to these two-mode solutions, the non-planar
coupled motions are exhibited, and the out-of-plane responses are greater than the in-plane
ones. As the excitation amplitude ( fv) decreases from 0.005, the steady-state responses
decrease monotonously until the saddle-node bifurcation SN1. It is known that SN1 is a
typical static bifurcation and corresponds to the jump phenomenon, and the stability and
number of periodic motion states are changed suddenly. As to these two types of solutions,
two response amplitudes (av and aw) in the warming condition are larger than the one in
the cooling condition. The saddle-node bifurcation SN1 is exhibited at a smaller excitation
amplitude in the warming condition.

Furthermore, some numerical integration solutions are presented by using the fourth-
order Runge–Kutta method in Equation (6) directly. As shown in Figure 3, for the single-
mode solutions, the perturbation ones are in excellent agreement with the numerical results.
For the two-mode solutions, the numerical results seem a little larger than the perturbation
ones as to the directly excited amplitudes av. On the contrary, these numerical results seem
a little smaller than the perturbation ones as to internally excited amplitudes aw. Although
a little bit of difference is observed, the discrepancies induced by temperature effects are
confirmed quantitatively by numerical simulations.

Figure 4 illustrates the force-response curves with thermal effects for the second group
of detuning parameters, with σ1 = −0.15 and σ2 = 0. Two types of solutions are presented:
single-mode (av) and two-mode (av and aw). For the single-mode solution, only in-plane
motions are exhibited. As the excitation amplitude fv increases, the in-plane response
av also increases until reaching the first pitch-fork bifurcation PF1. A jump phenomenon
is observed, and the jump point comes earlier in the warming condition. Similarly, the
response amplitude in the warming condition is larger than the one in the cooling condition.
As to the coupled motions, when the forcing amplitude fv is dropped from 0.004, both the
in-plane and out-of-plane response amplitudes are decreased accordingly until reaching
the saddle-node bifurcation SN1. Specifically, both the in-plane and out-of-plane response
amplitudes decrease when the temperature drops from 40 ◦C to −40 ◦C. It is observed that
the temperature effects on the saddle-node bifurcation are not apparent. Although there
are some differences between the numerical solutions and perturbation ones in the coupled
motions, the quantitative changes induced by thermal effects are confirmed.
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Figure 4. Force-response amplitude curves with thermal effects when σ1 = −0.15 and σ2 = 0:
(a) in-plane; (b) out-of-plane.

For certain initial conditions, small excitation amplitudes fv can lead to extremely
large vibration amplitudes due to internal resonances. These resonant responses are highly
sensitive to temperature variations and resulting in energy transfer from in-plane to out-of-
plane modes. Direct numerical simulations and perturbation methods demonstrate good
agreement in this case, although some discrepancies are also observed.

Figure 5 presents typical frequency-response curves when fv = 0.0015 and σ2 = 0,
exhibiting the temperature effects on the dynamic behaviors through bifurcation diagrams
obtained using the external detuning parameter σ1 as a control factor. In the non-resonant
region, numerical simulations yield a small steady-state solution, which is used as the
starting point for a pseudo-arclength continuation to construct the rest curves. As the
excitation detuning parameter σ1 decreases from 0.3, only in-plane motions are observed in
the small response region, with out-of-plane motions remaining at zero. The frequency-
response curves bend to the left side, indicating a softening-type response of the non-linear
system. Notably, as the temperature drops from 40 ◦C to −40 ◦C, the curves show an even
greater leftward bend.
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Figure 5. Frequency-response amplitude curves with thermal effects when fv = 0.0015 and σ2 = 0:
(a) in-plane; (b) out-of-plane.

Two types of bifurcations, saddle-node bifurcation SN1 and pitch-fork bifurcation PF1,
are observed in the force-response curves, with the pitch-fork bifurcation occurring at a
smaller detuning parameter σ1 in the warming condition and the saddle-node bifurcation
occurring at a larger detuning parameter σ1 in the same condition. As a result, the resonant
region between the two bifurcations becomes larger at higher temperatures. These internal
resonant phenomena can easily be excited under very small external excitation amplitudes
and become more sensitive to temperature variations. From a non-linear dynamics per-
spective, these observations highlight the importance of considering internal resonances
and their sensitivity to temperature in the study of vibrational behavior.

Exciting a non-linear system near Hopf bifurcations can cause the system’s natural
frequencies to change due to thermal effects, resulting in sudden and significant changes in
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response amplitude. From a non-linear dynamics perspective, this phenomenon is due to
the coupling between non-linear behavior and thermal effects, highlighting the importance
of considering temperature effects in the study of non-linear vibrations. For this reason, to
clarify the temperature effects further, the time histories, phase planes, Poincare sections,
and power spectra are presented to exhibit the dynamic responses on the non-linear system
in thermal environments for some selected parameters (σ1 = −0.1, σ2 = 0.325, fv = 0.0015
and σ1 = −0.1, σ2 = 0.315, fv = 0.0015), just as shown in Figures 6 and 7.
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Figure 6. Time history curves, phase plane portraits, Poincaré sections and FFTs with thermal effects
when σ1 = −0.1, σ2 = 0.325, and fv = 0.0015.
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Figure 7. Time history curves, phase plane portraits, Poincaré sections and FFTs with thermal effects
when σ1 = −0.1, σ2 = 0.315, and fv = 0.0015.

Some essential differences induced by temperature changes are observed. As shown
in Figure 6, the suspended cable exhibits periodic motion in the cooling condition. A single
circle is observed in the phase plane portrait, a single dot is noted in the Poincaré section,
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and a main frequency could be observed in the frequency spectrum. In the warming
condition, the previous periodic motion bifurcated into chaotic motions. The time history
curves presented in Figure 6 indicate that the system’s response is chaotic, a conclusion
supported by the corresponding phase plane, frequency spectra, and Poincar’e sections.
From a non-linear dynamics perspective, it can be observed that periodic motions bifurcate
into chaotic ones as the temperature increases from −40 ◦C to 40 ◦C, emphasizing the
significant impact of temperature on the system’s non-linear behavior. Dynamic chaos
and oscillations are an essential undesired non-linear phenomena in cable structures, and
they may induce undesired destructions of the discomfort of the non-linear system. Here,
the temperature changes become the key factor, and the chaos may be excited in different
temperature conditions.

Figure 7 illustrates that the non-linear system exhibits chaotic motions in both warming
and cooling conditions, with similarities observed in their phase plane diagrams and chaotic
attractors. However, a significant difference is observed in the response amplitudes, which
are reduced in the warming condition. These observations highlight the sensitivity of
chaotic motions to temperature changes from a non-linear dynamics perspective.

4.2.2. Out-of-Plane Excitations

Provided that the external excitation is transferred from the in-plane to the out-of-plane,
the relative dynamical behaviors are investigated. Figure 8 presents the force-response
curves when σ1 = −0.1 and σ2 = 0, and the out-of-plane excitation amplitude ( fw) is
selected as the control parameter. As shown in Figure 8, there is no stable equilibrium
solution in the middle of the resonant region. In this region, the suspended cable’s responses
are expected to be either periodic or chaotic modulation motions.
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Figure 8. Force-response amplitude curves with thermal effects when σ1 = −0.1 and σ2 = 0:
(a) in-plane; (b) out-of-plane.

If the out-of-plane excitation amplitude ( fw) increases from zero, only the out-of-plane
motions could be observed. The steady-state solutions are stable until reaching the pitch-
fork bifurcation PF1. If fw increases further, the branch gains stability again at the Hopf
bifurcation HB, where the response branches as to the in-plane motion emerge. Along these
branches, there is strong coupling between the in-plane and out-of-plane motions. As to some
small excitation amplitudes, there are some large response amplitudes due to the one-to-one
internal resonances. It is noticed that there are two saddle nodes, and the non-linear internal
resonant responses are stable between these two bifurcations while it is unstable in other
regions. Within the internal resonant region, the internal excited amplitudes av appear to be
more sensitive to temperature changes than the directly excited ones aw.

Otherwise, when sweeping the out-of-plane excitation amplitude ( fw) backward from
0.008, the out-of-plane (in-plane) response amplitude aw (av) decreases (increases) and
passes through a Hopf bifurcation in the internal resonant region. Then, a stable solution
starts to fade away and passes through a pitch-fork bifurcation. As illustrated before, the
response amplitude decreases (increases) in the cooling (warming) condition, regardless
of the direct or the internal resonant case. Interestingly, in the large excitation amplitude
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region (e.g., fw > 0.006), the internal excitation amplitude av decreases (increases) in
the warming (cooling) condition on the contrary. Both the perturbations and numerical
solutions have verified this phenomenon. Here, both the static and dynamic bifurcations
could be observed. Due to the temperature effects, three bifurcations (PF, SN, and HB) are
exhibited in a smaller excitation amplitude fw in the warming condition.

Finally, Figure 9 illustrates the representative frequency response curves when the
external excitation is applied on the out-of-plane direction. The corresponding bifurcations
are marked, and the stability of the steady-state solutions is described clearly. These curves
show the response amplitudes av and aw as a function of the external detuning parameter
σ1, for fixed values of the out-of-plane excitation amplitude fw = 0.002 and the internal
detuning parameter σ2 = 0.
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Figure 9. Frequency-response amplitude curves with thermal effects when fw = 0.002 and σ2 = 0:
(a) in-plane; (b) out-of-plane.

Specifically, Figure 9 reveals that for σ1 > 0, only the single-mode solution is observed,
and the in-plane response amplitude av remains at zero. However, for σ1 < −0.2, a strong
interaction between the in-plane and out-of-plane modes is expected, and an internal reso-
nance may occur, leading to a sudden appearance in the response amplitude of the in-plane
mode due to energy transfer from the out-of-plane mode. In the internal resonant region,
further sweeping of the external detuning parameter causes a decrease in the in-plane and
out-of-plane responses until they experience a saddle-node jump to the trivial solutions. It
is observed that increasing temperature significantly reduces the response amplitudes. In
this case, three bifurcations are observed to be excited at a smaller detuning parameter in
the warming condition, emphasizing the importance of considering temperature effects on
the system’s non-linear behavior from a non-linear dynamics perspective.

5. Conclusions

In thermal environments, suspended cables experience unexpected changes in their
natural frequencies and mode shapes, resulting in shifted crossover points between in-
plane and out-of-plane mode frequencies. Non-linear and effective interaction coefficients
also increase or decrease with changes in temperature. When external excitation is applied
in the in-plane direction, decreasing temperature leads to significant changes in resonant
responses by reducing response amplitudes. However, when external force is applied in
the out-of-plane direction, the out-of-plane response amplitude decreases with decreasing
temperature, while the in-plane response amplitude increases with decreasing temperature
at large excitation amplitudes. Additionally, smaller excitation amplitudes and frequen-
cies can excite the saddle-node, pitch-fork, and Hopf bifurcations when the temperature
increases, and periodic motions may transition to chaotic ones. Perturbation and numerical
solutions agree well in the non-internal resonant region, but the perturbation solutions
slightly overestimate or underestimate the response amplitude in direct or internal excited
modes when the one-to-one internal resonance is excited.
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Appendix A

By solving the transcendental equations, we obtain the in-plane symmetric mode
frequencies

tan
(

ωn

2χ∆T

)
=

ωn

2χ∆T
− 4

λ2
∆T

(
ωn

2χ∆T

)3
, (n = 1, 3, 5, · · · ),

where

λ2
∆T =

λ2

χ6
∆T

and λ2 =

(
mgL

H

)2 EA
H

,

and the in-plane symmetric mode shapes are expressed as

ϕn(x) = ξn

[
1− cos

(
ωn

χ∆T
x
)
− tan

(
ωn

2χ∆T

)
sin
(

ωn

χ∆T
x
)]

, (n = 1, 3, 5, · · · ),

where the coefficient ξn is ascertained through
∫ 1

0 ϕ2
n(x)dx = 1.

As to in-plane anti-symmetric and out-of-plane mode shapes and frequencies are
expressed as follows

ωn = χ∆Tnπ,

{
ϕn(x) =

√
2 sin(nπx), n = 2, 4, 6, · · · in-plane anti-symmetric

φn(x) =
√

2 sin(nπx), n = 1, 2, 3, · · · out-of-plane

where all these natural frequencies are dependent on the temperature changes and these
mode shapes are independent of temperature conditions.

Appendix B

2µv,w = cv,w, fv =
∫ 1
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Appendix C

K11 =
10Λ2

v1
3ω2

v
+ 3Γv1, K22 =

2Λv2Λw1

ω2
v
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3ω2
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+ 3Γw2,

K12 =
4Λv1Λv2

ω2
v
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ω2
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References
1. Warminski, J.; Zulli, D. Revisited modelling and multimodal non-linear oscillations of a sagged cable under support motion.

Meccanica 2016, 51, 2541–2575. [CrossRef]
2. Yi, Z. Stanciulescu I. Non-linear normal modes of a shallow arch with elastic constraints for two-to-one internal resonances.

Non-Linear Dyn. 2016, 83, 1577–1600. [CrossRef]
3. Qiao, W.; Guo, T.; Kang, H.; Zhao, Y. An asymptotic study of non-linear coupled vibration of arch-foundation structural system.

Eur. J. Mech. Solid. 2022, 96, 104711. [CrossRef]
4. Peng, J.; Xiang, M.; Wang, L.; Xie, X.; Sun, H.; Yu, J. Non-linear primary resonance in vibration control of cable-stayed beam with

time delay feedback. Mech. Sys. Sig. Proc. 2020, 137, 106488. [CrossRef]
5. Cong, Y.; Kang, H.; Yan, G.; Guo, T. Modeling, dynamics, and parametric studies of a multi-cable-stayed beam model. Acta Mech.

2020, 231, 4947–4970. [CrossRef]
6. Gattulli, V.; Lepidi, M.; Potenza, F.; Sabatino, U.D. Modal interactions in the non-linear dynamics of a beam-cable-beam. Non-Linear

Dyn. 2019, 96, 2547–2566. [CrossRef]
7. Sun, C.; Jiao, D.; Lin, J.; Li, C.; Tan, C. Modal characteristics of sagged-cable-crosstie systems. Part 1: Modeling and validation.

Appl. Math. Model. 2023, 119, 698–716. [CrossRef]
8. Sun, C.; Liu, W.; Jiao, D.; Li, C. Modal characteristics of sagged-cable-crosstie systems. Part 2: Parametric analysis. Appl. Math.

Model. 2023, 119, 549–565. [CrossRef]
9. Wang, Z.; Li, T.; Yao, S. Non-linear dynamic analysis of space cable net structures with one to one internal resonances. Non-Linear

Dyn. 2014, 78, 1461–1475. [CrossRef]
10. Rega, G. Non-linear vibrations of suspended cables Part I: Modeling and analysis. Appl. Mech. Rev. 2004, 57, 443–478. [CrossRef]
11. Srinil, N.; Rega, G.; Chucheepsakul, S. Large amplitude three-dimensional free vibrations of inclined sagged elastic cables.

Non-Linear Dyn. 2003, 33, 129–154. [CrossRef]
12. Rega, G. Non-linear vibrations of suspended cables, Part II: Deterministic phenomena, Appl. Mech. Rev. 2004, 57, 479–514.

[CrossRef]
13. Perkins, N.C. Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear

Mech. 1992, 27, 233–250. [CrossRef]
14. Benedettini, F.; Rega, G.; Alaggio, R. Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under

multiple internal resonance conditions. J. Sound Vib. 1995, 182, 775–798. [CrossRef]
15. Pakdemirli, M.; Nayfeh, S.A.; Nayfeh, A.H. Analysis of one-to-one autoparametric resonances in cables—Discretization vs. direct

treatment. Non-Linear Dyn. 1995, 8, 65–83. [CrossRef]
16. Lee, C.; Perkins, N.C. Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Non-Linear

Dyn. 1995, 8, 45–63. [CrossRef]
17. Rega, G.; Lacarbonara, W.; Nayfeh, A.H.; Chin, C.M. Multiple resonances in suspended cables: direct versus reduced-order models.

Int. J. Non-Linear Mech. 1999, 34, 901–924. [CrossRef]
18. Nayfeh, A.H.; Chin, C.M.; Lacarbonara, W. Multimode interactions in suspended cables. J. Vib. Control 2002, 8, 337–387. [CrossRef]
19. Gattulli, V.; Martinelli, L.; Perotti, F.; Vestroni, F. Non-linear oscillations of cables under harmonic loading using analytical and

finite element models. Comput. Methods Appl. Mech. Eng. 2004, 193, 69–85. [CrossRef]
20. Berlioz, A.; Lamarque, C.-H. A non-linear model for the dynamics of an inclined cable. J. Sound Vib. 2005, 279, 619–639. [CrossRef]
21. Srinil, N.; Rega, G. The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables. Int.

J. Non-Linear Mech. 2007, 42, 180–195. [CrossRef]
22. Gonzalez-Buelga, A.; Neild, S.A.; Wagg, D.J.; Macdonald, J.H.G. Modal stability of inclined cables subjected to vertical support

excitation. J. Sound Vib. 2008, 318, 565–579. [CrossRef]
23. Abe, A. Validity and accuracy of solutions for non-linear vibration analyses of suspended cables with one-to-one internal resonance.

Non-Linear Anal. Real World Appl. 2010, 11, 2594–2602. [CrossRef]
24. Luongo, A.; Zulli, D. Dynamic instability of inclined cables under combined wind flow and support motion. Non-Linear Dyn. 2012,

67, 71–87. [CrossRef]

http://doi.org/10.1007/s11012-016-0450-y
http://dx.doi.org/10.1007/s11071-015-2432-3
http://dx.doi.org/10.1016/j.euromechsol.2022.104711
http://dx.doi.org/10.1016/j.ymssp.2019.106488
http://dx.doi.org/10.1007/s00707-020-02802-8
http://dx.doi.org/10.1007/s11071-019-04940-8
http://dx.doi.org/10.1016/j.apm.2023.03.007
http://dx.doi.org/10.1016/j.apm.2023.03.006
http://dx.doi.org/10.1007/s11071-014-1528-5
http://dx.doi.org/10.1115/1.1777224
http://dx.doi.org/10.1023/A:1026019222997
http://dx.doi.org/10.1115/1.1777225
http://dx.doi.org/10.1016/0020-7462(92)90083-J
http://dx.doi.org/10.1006/jsvi.1995.0232
http://dx.doi.org/10.1007/BF00045007
http://dx.doi.org/10.1007/BF00045006
http://dx.doi.org/10.1016/S0020-7462(98)00065-1
http://dx.doi.org/10.1177/107754602023687
http://dx.doi.org/10.1016/j.cma.2003.09.008
http://dx.doi.org/10.1016/j.jsv.2003.11.069
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.09.005
http://dx.doi.org/10.1016/j.jsv.2008.04.031
http://dx.doi.org/10.1016/j.nonrwa.2009.09.006
http://dx.doi.org/10.1007/s11071-011-9958-9


Appl. Sci. 2023, 13, 6646 15 of 15

25. Guo, T.; Kang, H.; Wang, L.; Zhao, Y. Cable’s non-planar coupled vibrations under asynchronous out-of-plane support motions:
Travelling wave effect. Arch. Appl. Mech. 2016, 86, 1647–1663. [CrossRef]

26. Macdonald, J.H.G. Multi-modal vibration amplitudes of taut inclined cables due to direct and/or parametric excitation. J. Sound
Vib. 2016, 363, 473–494. [CrossRef]

27. Zulli, D.; Piccardo, G.; Luongo, A. On the non-linear effects of the mean wind force on the galloping onset in shallow cables.
Non-Linear Dyn. 2021, 103, 3127–3148. [CrossRef]

28. Nayfeh, A.H. Non-linear Interactions: Analytical, Computational, and Experimental Method; Wiley Series in Non-linear Science; Wiley:
New York, NY, USA, 2000.

29. Manevich, A.I.; Manevich, L.I. The Mechanics of Non-linear Systems with Internal Resonances; Imperial College Press: London,
UK, 2005.

30. Xia, Y.; Chen, B.; Weng, S.; Ni, Y.Q.; Xu, Y.L. Temperature effect on the vibration properties of civil structures: A literature review
and case studies. J. Civ. Struct. Health Monit. 2012, 2, 29–46. [CrossRef]

31. Treyssède, F. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures. J. Sound
Vib. 2018, 413, 191–204. [CrossRef]

32. Zhou, H.; Ni, Y.Q.; Ko, J.M. Eliminating temperature effect in vibration-based structural damage detection. J. Eng. Mech. 2011,
137, 785–796. [CrossRef]

33. Ma, L.; Xu, H.; Munkhbaatar, T.; Li, S. An accurate frequency-based method for identifying cable tension while considering
environmental temperature variation. J. Sound Vib. 2021, 490, 115693. [CrossRef]

34. Montassar, S.; Mekki, O.B.; Vairo, G. On the effects of uniform temperature variations on stay cables. J. Civ. Struct. Health Monit.
2015, 5, 735–742. [CrossRef]

35. Lepidi, M.; Gattulli, V. Static and dynamic response of elastic suspended cables with thermal effects. Int. J. Solids Struct. 2012,
49, 1103–1116. [CrossRef]

36. Bouaanani, N.; Marcuzzi, P. Finite difference thermoelastic analysis of suspended cables including extensibility and large sag
effects. J. Therm. Stress. 2011, 34, 18–50. [CrossRef]

37. Treyssède, F. Free linear vibrations of cables under thermal stress. J. Sound Vib. 2009, 327, 1–8. [CrossRef]
38. Zhao, Y.; Peng, J.; Zhao, Y.; Chen, L. Effects of temperature variations on non-linear planar free and forced oscillations at primary

resonances of suspended cables. Non-Linear Dyn. 2017, 89, 2815–2827. [CrossRef]
39. Zhao, Y.; Huang, C.; Chen, L.; Peng, J. Non-linear vibration behaviors of suspended cables under two-frequency excitation with

temperature effects. J. Sound Vib. 2018, 416, 279–294. [CrossRef]
40. Zhao, Y.; Huang, C.; Chen, L. Non-linear planar secondary resonance analyses of suspended cables with thermal effects. J. Therm.

Stress. 2019, 42, 1515–1534. [CrossRef]
41. Zhao, Y.; Zheng, P. Parameter analyses of suspended cables subjected to simultaneous combination, super and sub-harmonic

excitations. Steel Compos. Struct. 2021, 40, 203–216.
42. Zheng, P.; Zhao, Y.; Wu, X.; Chen, L. Revisited modeling and non-linear oscillation behaviors of multi-segment damaged suspended

cables in thermal environments. Meccanica 2022, 57, 1831–1851. [CrossRef]
43. Zhao, Y.; Zheng, P.; Lin, H.; Chen, L. Non-linear coupled dynamics of suspended cables due to crossover points shifting and

symmetry breaking. Eur. J. Mech. A-Solid. 2023, 99, 104921. [CrossRef]
44. Zhao, Y.; Lin, H. Non-linear dynamics of suspended cables in thermal environments under periodic excitation: Two-to-one internal

resonance. Int. J. Bifurcat. Chaos. 2021, 31, 2150153. [CrossRef]
45. Lacarbonara, W.; Rega, G.; Nayfeh, A.H. Resonant nonliear normal modes. Part I: analytical treatment for structural one-

dimensional systems. Int. J. Non-Linear Mech. 2003, 38, 851–872. [CrossRef]
46. Lacarbonara, W.; Rega, G. Resonant nonliear normal modes. Part II: Activation/orthogonality conditions for shallow structural

systems. Int. J. Non-Linear Mech. 2003, 38, 873–887. [CrossRef]
47. Ermentrout, B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT fro Researchers and Students; SIAM:

Philadelphia, PA, USA, 2002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00419-016-1141-9
http://dx.doi.org/10.1016/j.jsv.2015.11.012
http://dx.doi.org/10.1007/s11071-020-05886-y
http://dx.doi.org/10.1007/s13349-011-0015-7
http://dx.doi.org/10.1016/j.jsv.2017.10.022
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000273
http://dx.doi.org/10.1016/j.jsv.2020.115693
http://dx.doi.org/10.1007/s13349-015-0140-9
http://dx.doi.org/10.1016/j.ijsolstr.2012.01.008
http://dx.doi.org/10.1080/01495739.2010.511927
http://dx.doi.org/10.1016/j.jsv.2009.07.005
http://dx.doi.org/10.1007/s11071-017-3627-6
http://dx.doi.org/10.1016/j.jsv.2017.11.035
http://dx.doi.org/10.1080/01495739.2019.1667930
http://dx.doi.org/10.1007/s11012-022-01556-y
http://dx.doi.org/10.1016/j.euromechsol.2023.104921
http://dx.doi.org/10.1142/S0218127421501534
http://dx.doi.org/10.1016/S0020-7462(02)00033-1
http://dx.doi.org/10.1016/S0020-7462(02)00034-3

	Introduction
	Mathematical Modeling and Equations
	Perturbation Analysis and Modulation Equations
	Numerical Examples and Illustrations
	Parameters and Coefficients
	Bifurcation and Stability Analysis
	In-Plane Excitations
	Out-of-Plane Excitations


	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

