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Abstruct-A nonlinear projection method is presented to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvi- 
sualize higb-dimensional data as a two-dimensional image. The 
proposed method b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbased on the topotogV p“ mpp- 
ping algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd Kohonen [13H16]. The tapology preserving 
mapping algorithm is used to trpin a two-dimensional network 
structure. Then the interpoint dbtances in tbe feature space 
between the units in the network are graphidly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcusplayea to 
show the underlying StruCtuFe of the data. Fartheimore, we will 
present and discuss a new method to qnadfy how well a topologv 
preserving mapping algorithm maps the bigbdbensiod input 
data onto the network stmeture, This will be used to compare 
our projection method with a well-k~~own method of Sa”on 
[SI. Experiments indicate that the performance of the Koho- 
nen projection method is con~pambk or better than Sammon’s 
method for the purpose of clparsurine dasEcnd data. Another 
advantage of the metbod is that its tbe-complesity only depends 
on the resolution of the outpot irmrse, and not on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsize of the 
dataset. A disadvantage, however, is the large amount of CPU 
time required. 

I. INTRODUCTION 

N important tool in exploratory data analysis is the pro- A jection of high-dimensional data onto a low-dimensional 
space to facilitate visual inspection of the data. This can 
provide better insight into the data, since clustering tendencies 
or a low intrinsic dimensionality in the data may become 
apparent from the projection. To preserve the inherent structure 
of the data as well as possible, the projection method should 
map the data faithfully onto the lower dimensional space. 
In general, this projection problem can be formulated as 
mapping a set of n vectors from an N-dimensional space 
onto an M-dimensional space, with M < N .  Since the goal 
here is exploratory data analysis, we will be concerned with 
projections onto a two-dimensional plane (M = 2). 

In this paper we will present a projection method that 
is based on the topology preserving mapping algorithm of 
Kohonen [13]-[16]. In the proposed method, which will be 
called the Kohonen projection method, the topology preserving 
mapping algorithm is used to project high-dimensional data 
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onto a two-dimensional network structure. Then, with a new 
display technique, we will show how the inherent structure 
of the data can be visualized. Furthermore, a new method is 
presented to quantify how well a topology preserving mapping 
algorithm maps the data onto the network structure. This 
allows a quantitative evaluation of the quality of the mapping 
and thereby a comparison of topology preserving mapping 
algorithms with other projection methods. First, however, we 
will provide a short overview of some well-known projection 
methods. 

In the literature on exploratory data analysis, several projec- 
tion methods have been described. These projection methods 
try to preserve one of several criterion functions in the 
projection. Two important distinctions that can be made are 
whether the class labels of the data (if available) are used 
or not and whether the mapping is linear or nonlinear. This 
results in four possible types of projection algorithms which 
we will mention briefly here: 

Unsupervised and Linear: Among the linear projection 
methods for data without class labels, the eigenvector 
or Karhunen-Loeve projection [8] is probably the best 
known. Another powerful linear projection method is 
projection pursuit, developed by Friedman and Tukey [6]. 
Unsupervised and Nonlinear: Sammon has presented a 
widely used algorithm in which the mean squared differ- 
ence between the interpattern distances of points in the 
original space and in the projected space is minimized 
[28]. This generally results in a highly nonlinear mapping 
of the data. An approach that is somewhat related to 
Sammon’s algorithm is multidimensional scaling [ 171 
and [18]. Here a dataset often containing ordinal data is 
mapped onto a plane. A fundamentally different approach 
was presented by Wang et al. [31]. Their method projects 
the data onto the plane such that the minimum spanning 
tree of the data is preserved. 
Supervised and Linear: Discriminant analysis is a well- 
known procedure to project labeled data in a linear 
fashion [4]. In discriminant analysis, the ratio of the 
determinants of the between-class scatter matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( S B )  
and the within-class scatter matrix (Sw) is maximized. 
The solution is the space spanned by the eigenvectors 
corresponding to the largest eigenvalues of the matrix 

9 Supervised and Nonlinear: An example of a nonlinear 
algorithm to project labelled data is presented in [7] 
and [8]. In this method, the coordinates of the points 
in the projected space are a function of the distance to 

‘ 

(Si1 . SB).  
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Fig. 1. The structure of a unit in a Kohonen network. Every unit computes 
the Euclidean distance between the -Y-dimensional input vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and the 
weight vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. 

the Icth nearest neighbor of every point. In a number of 
applications it was shown that this projection preserves 
the underlying structure of the data. A second interesting 
method is described in [21]. Here the pairwise log- 
likelihood ratios of the points are used in the two- 
dimensional display. An unsupervised variant of this 
method was also presented. 

The Kohonen projection method that is discussed in this 
paper falls in the category of nonlinear projection methods. Al- 
though the algorithm is basically unsupervised, many authors 
have demonstrated and used the topology preserving properties 
of the algorithm for problems in which the class labels are 
known, e.g., see [13]-[16] and the references therein. In this 
paper, however, we will assume that no information about the 
pattern class labels is available, and we will study how the 
Kohonen projection method compares to other unsupervised 
nonlinear projection methods. Category information of the 
data will only be used to evaluate the performance of the 
method. 

The remainder of this paper is organized as follows. Sections 
I1 and I11 will present the Kohonen topology preserving 
mapping algorithm and Sammon's nonlinear projection al- 
gorithm and its variants. The Kohonen projection method is 
presented in Section IV together with the tools that are required 
for its evaluation. In Section V, a number of experiments 
will be presented which will be discussed in Section VI. 
Finally, the conclusions of this study are presented in Section 
VII. 

11. THE KOHONEN TOPOLOGY 
PRESERVING MAPPING ALGORITHM 

The topology preserving mapping algorithm of Kohonen is 
an iterative procedure for training a class of neural networks 
[ 131-[16]. The learning procedure is unsupervised or self orga- 
nizing and is used to train a network of units or neurons that 
are arranged in a low-dimensional structure (see Figs. 1-2). 
In this paper, a two-dimensional structure for the network is 
used, but in the literature the application of one and three- 
dimensional structures has frequently been described (e.g., see 
[15] and [26]). 

The training of the network is initialized by assigning small 
random values to the weight vectors m of the units in the 
network. Each iteration in the learning process consists of 
three steps: the presentation of a randomly chosen input vector 
from the input space, the evaluation of the network, and an 
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Fig. 2. A Kohonen network consisting of a two-dimensional array of units 
is shown. Every unit has the architecture as depicted in Fig. 1. On every step 
in the learning process, the unit c with the smallest Euclidean distance to the 
input-vector is determined. Then, all units within a certain neighborhood of 
unit c are updated according to the learning rule 2). The figure shows how the 
size of this neighborhood shrinks as a function of time. Early in the learning 
process, at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt l .  a very large number of the units is updated on every step, 
whereas finally, at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 3 .  only a small fraction is updated. 

update of the weight vectors. In the following, the iteration 
will be indexed by the time t .  The weight vectors are updated 
according to the following procedure [ 131-[ 161. 

After the presentation of a pattern, the Euclidean distance 
between the input vector and the weight vector is computed for 
all units in the network. The unit with the smallest distance 
is marked as unit c 

In the following step, all units within a certain spatial neigh- 
borhood N ,  around unit c are updated according to (see Fig. 2) 

The size of the neighborhood N ,  is a function of time t and 
shrinks monotonically. The parameter a ( t )  is the step size of 
the adaptation of the weights and also shrinks monotonically 
with time. The update rule is closely related to the Ic-means 
clustering algorithm [20]. Like the Ic-means algorithm, it is 
the best matching unit (i.e., cluster center) which is moved a 
small step into the direction of the input vector. In the topology 
preserving mapping algorithm, however, a whole set of units 
are updated instead of a single unit. Since the units that are 
updated at every step are neighboring units in the network, 
there is a tendency that neighboring units in the network 
represent neighboring locations in the feature space. In other 
words, the topology of the data in the input space is preserved 
during the mapping. Clearly, when the intrinsic dimensionality 
of the data is higher than the dimensionality of the network, 
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the network will not be able to fully represent the structure 
of the data (see [15]). In that case, however, the network can 
be considered to be a low-dimensional representation of the 
data. It is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAproperty of the algorithm that will be used in 
the Kohonen projection method described in this paper. 

A slightly alternative formulation of the learning rule, which 
was used in DUT expenhents, is the followhg [16]. h6tead 
of updating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall units in the neighbodmd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, identically, the 
update of a unit is weighed by a Am~ticm of the distance 
to the best matahing unit in the network. That is, when the 
coordinates of a unit in the network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare given by r and the 
coordinates of the best matching unit by r,, a unit is updated 
according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

mi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t  +. 1) = mi ( t )  + h,i ( t )  [z(t> - mi ( t ) ]  (3) 

where h,i is a Gaussian weighting function 

( "",T,;;Il2) 
hCi(t )  = ho(t)  exp - (4) 

Here ho(t) and a(t) are chosen as suitably decreasing func- 
tions of time. In [16] it is discussed that the algorithm 
is relatively insensitive to the actual choice of these two 
parameters and the way in which they are decreased during 
the learning process. These findings are in accordance with 
our experiments, which are described in Section V. 

Successful applications of this algorithm in speech recog- 
nition [14], robotics [26], AI [27], and many others are 
well known. For most of these applications, however, it is 
not always clear whether the algorithm offers any advan- 
tages over other competing methods. Rigorous theoretical 
analyses concerning various properties of this algorithm can 
be found in [24], [25], and [l5]. These analyses study the 
convergence properties and the st@bility of the algorithm for 
some simple distributions of the data in the feature space. 
An important issue that is not addressed in these analyses, 
however, is the behavior of the algorithm when it is trained 
with a small amount of data. This is an important issue that 
is especially relevant in practical applications. A class of 
variants of the algorithm was presented as "learning vector 
quantization," e.g., see [16]. These are essentially modifi- 
cations of the algorithm to use it for supervised learning 
problems. 

nI. NONIINEAR PROJECTION WITH SAMMON'S ALGORITHM 

Sammon's nonlinear projection algorithm [28] aims at mini- 
mizing an error measure that is a function of the differences of 
the interpoint distances in che original space and the interpoint 
distances in the projected space. Experimental results in [ l ] 
indicated that Sammon's algorithm has a performance that 
is superior over other algarithms. Therefore, we have chosen 
to compare the Kohonen pmjection method with Sammon's 
algorithm, rather than some other method. Moreover, two of 
the datasets that were used for the experiments in [ l ]  are also 
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Fig. 3. A Kohonen network of 100 by 100 units was trained with the IRIS 
data (dataset 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin Section V). When the class labels are assigned to the units 
after training, this projection clearly shows that the data is clustered and 
thereby demonseates the topology preserving property of the algorithm. 

used in the experiments that we describe in Section V, i.e., the 
IRIS data (dataset 5) and the 80X data (dataset 4). 

When the distance between two patterns i and j is denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dzj in the original feature space, and di j  in the projected 
space Sammon's algorithm minimizes the following measure 
of distortion of the projection 

i<j 

This is an optimization problem that can be solved with a suit- 
able optimization technique, as the gradient descent procedure 
proposed by Sammon [28]. Since for every step in an iteration 
of Sammon's algorithm n ( n  - l ) /2 distances have to be 
computed, the algorithm quickly becomes impractical for large 
amounts of data. Therefore, numerous authors have proposed 
methods to lower the time complexity of the algorithm, e.g., 
see [3], [23], [19], and [l]. Furthermore, a number of variants 
of the algorithm have been published. Among these are the use 
of different metrics [32], [12], different optimization criteria 
[29] or different optimization methods [ 121. 

Iv. THE KOHONEN PROJECTION METHOD 

As discussed in Section 11, the topology preserving mapping 
algorithm can be used to project data onto the low-dimension4 
network structure. An example is presented in Fig. 3. In this 
figure the well-known IRIS data (dataset 5 in Section V) 
is used to train a network. The figure shows the labelling 
of the units in a large Kohonen network (100 x 100) after 
the learning process. From the fact that the three classes 
are well separated in the network plane, it can be decided 
that the classes are clustered. It is important to note, how- 
ever, that the structure of the data can only be perceived 
through this labeling of the units. Therefore, for problems for 
which no class labels are available, this procedure will not 
work. 
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Fig. 4. 
clusters. 

Projection image of dataset 1-10 dimensional separated normal Fig. 5. Projection image of dataset 9-Uniform distributed 10 dim. data 

The solution to the labeling problem that is presented in this 
paper has two components. In the first place, a rather large 
network is used. For the experiments reported in this paper, a 
two-dimensional network of 100 by 100 units was used. The 
second step of our solution is to display the network as an 
image, whereby every unit corresponds to a pixel. The gray 
value of each pixel is determined by the maximum distance in 
the feature space of the corresponding unit to its four neighbors 
(East, West, North, and South) in the network. The larger the 
distance, the lighter the gray value is. 

An example of this method is presented in Fig. 4. In this 
case, two 10-dimensional Gaussian distributed clusters (dataset zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) were used to train the network. It is apparent from the 
projection image that there are two dark regions, corresponding 
to regions where the units are very close in the feature space, 
and one bright line, which corresponds to the empty region 
between the two clusters. In each dark region the units are 
relatively close, so the distance in the feature space of a 
unit to its four neighbors in the network is small. For all 
units in the bright region, however, there is at least one 
neighboring unit that is far(ther) away, so the corresponding 
gray value is higher. Note that the network has only a two- 
dimensional topology and is therefore not capable of fully 
capturing the 10-dimensional nature of the individual clusters. 
The image clearly shows, however, that the dataset consists 
of two well-separated clusters. It is illustrative to compare 
the result of Fig. 4 with that of Fig. 5.  In the latter case the 
dataset consists of uniformly distributed 10-dimensional data 
(dataset 9). Since there are hardly any clustering tendencies 
in this dataset, it is interesting to notice that there is no 
apparent structure in the corresponding projection image. 
From these results it can be concluded that the proposed 
projection method works in principle. The questions that 

now remain to be answered are how can the quality of the 
mapping be quantified and how to relate its performance 
to the performance of other projection methods. Therefore, 
the second contribution of this paper consists of such a 
quantification method. 

One of the problems that arises in the evaluation of the 
Kohonen projection method is that there is no direct notion of 
interpoint distances in the projection. This is different from all 
other mapping methods where the data are projected directly 
onto a lower dimensional space. In this projected space, the 
distances are easily computed, which facilitates the direct 
usage of an error measure like Sammon’s distortion measure 
in (5) .  In our approach, distances are displayed indirectly by 
the gray value, and the only distances that are displayed are the 
distances between the four immediate neighbors. To be able to 
evaluate the new projection method, it is necessary to define 
a distance measure in the network plane. Therefore, we will 
define a metric that is essentially based on a graph searching 
technique; see Fig. 6. Its functionality and implementation 
closely resembles that of the gray value weighted distance 
transform as described by Verbeek and Venver [30]. First, 
however, we need some definitions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Dejiinition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: The distance between two units (see Fig. 6); 
The distance d,, between two eight-connected neighbor- 
ing units zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj in the network plane is defined as the 
Euclidean distance d:, of the units in the feature space. 
The distance d,, between two nonneighboring units i and 
j in the network plane is defined as the minimum of 
the summed distances between neighboring units over all 
possible eight-connected paths in the network plane from 
unit i to unit j .  

An informal interpretation of these definitions is that the 
distance between two points in the image is determined by 
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integrating tha v a h s  over ail .p&la between the 
two paints id chu@dp&vg ’tee@ with thelawest sum. It is 
important to note that this informal interpretation is not exactly 
equal to the formal definition. This is because the definitions 
above are explicitly defined in the network plane and not in the 
image. The differences are based on two related facts. In the 
first place, the projection image only shows information about 
the distance between a unit and its four neigh-, whereas the 
estimate of the distance makes use of the distances to eight 
neighbors. Clearly, this improves the estimates of the path 
lengths. Second, the projection image e&ctively shows the 
distance to only one neighbor for every unit (i.e., the farthest), 
whereas our distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAestimate makes use of the distance to 
eight neighbols. For Me projection image this is advantageous 
since this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAincrcaSes the contrast in the projection image. The 
estimation of the distances, however, c l d y  benefits from 
taking more neighbors into account. 

Now that we arc able to compute the distance between two 
units, we can define the distance between two pattems in the 
network plane. 

Dejinitim 2: The distance between two pattems in the 
network plane is defined a8 the distance between the two 
corresponding closest units. 

Now all bne necessary tools are available to compare the 
projection methods. Since for almost all datasets that were used 
in the experiments the class labels were available, we have 
chosen to use the following evaluation criteria (see also [I]): 

The Sammon error measure; see (5) .  This indicates how 
well the interpattern distances have been preserved in the 
projection. 
The difference of the performance of the nearest neigh- 
bor classifier in the original and the projected space. 
This measures how weM “local” i n f o d o n  has been 
preserved in the projection. 
The difference of the performance of the nearest mean 
classifier (also known as the minimum distance classifier) 
in the original and the projected space. This indicates 
how well “global” information has been preserved in the 
projection. 

ss of labelling the 

complete evaluation procedure only took 10% of the time that 
was spent in training the network. From that point of view, 
the proposed evaluation methods are indeed computationally 
feasible. 

A final remark is that an alternative use of these evaluation 
mods is to quantify how well a Kohonen network has been 
able to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmap the data onto the network structure. For example, 
variants of the algorithm can quantitatively be compared in 
this way. 

V. EXPERIMENTS 

To test the projection method with the criteria mentioned 
above, a number of experiments were conducted. In this 
section the datasets, the experimental procedures and the 
results will be discussed. 

A. Datasets 

To test the performance of the projection method, a large 
variety of datasets was used. Among these are four artificial 
datasets and five datasets consisting of real data. 

Dataset I: Artificial dataset consisting of two standard 
normally distributed clusters of 500 patterns each, in a 10- 
dimensional space. The means of the clusters are (-1, -1, 
-1, e . . ,  -1) and (+l, +1, +1, , +1) and the covariance 
matrix of both clusters is equal to the identity matrix. 
The Bayes error for the two distributions is only 0.078%, 
so the two clusters are very well separated in the feature 
space. 
Dataset 2: Artificial dataset consisting of two elongated 
clusters of 500 patterns each, in a nonlinear two- 
dimensional subspace of the three-dimensional feature 
space; see Fig. 7. This dataset was generated with the 
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following pseudo code: 

Class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

t h e t a  = P i  * ( - 0.5 + random-unif ( )); 

x = 0.5 * cos( the ta)  + 0.025 
* random-gauss( ); 

y = 0.5 * s in ( the ta )  + 0.025 
* random-gauss( ); 

z = s in (2  * x) * cos(2 * y) + 0.025 
* random-gauss( ); 

Class B : 

t h e t a  = P i  * (0.5 + random-unif ( )):  

x = 0.25 + 0.5 * cos( the ta)  + 0.025 

y = 0.5 + 0.5 * s in ( the ta )  + 0.025 

z = s in (2  * x) * cos(2 * y) + 0.025 

* random-gauss ( ): 

* random-gauss( ): 

* random-gauss( ): 

This dataset was used because it is (almost) intrinsically two 
dimensional. It is, therefore, to be expected that it perfectly 
maps to the two-dimensional structure of the network. 

Dataset 3: Artificial dataset consisting of uniformly dis- 
tributed data on the surfaces of two three-dimensional 
spheres: a large sphere at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 0, 0) with radius one, and 
a small sphere within the large sphere at (0, 0, 0.2) 
with radius 0.1. This dataset was chosen because it is 
particularly difficult for most clustering algorithms [9]. 
Dataset 4: Real dataset consisting of the well-known 80X 
hand printed character data. It consists of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45 patterns in 
an eight-dimensional feature space. The data consists of 
three classes (the characters “8,” “0,” and “X’) and is 
very sparsely distributed in the feature space [9]. 
Dataset 5: Real dataset consisting of the well-known IRIS 
dataset [5]. It consists of 150 patterns in three classes in 
a four-dimensional feature space. 
Dataset 6: Real dataset extracted from the range image 
of a polyhedral object; see Fig. 8. Of all the 13633 
pixels in the range image, the z coordinate and the (three 
component) surface normal vector was computed. In [9] 
it was shown how range data can be segmented with the 
help of a clustering algorithm in this feature space. Here 
we use the Kohonen projection method to visualize the 
clustering tendencies of the dataset. 
Dataset 7 Real dataset extracted from a 256 x 256 image 
with four textures synthesized by four different Gaussian 
Markov random fields; see Fig. 9. The dataset contains 15 
multi-resolution SAR (i.e., simultaneous autoregressive) 
model features for every pixel [22]. The 5 and the y 
coordinates of every pixel were included as two additional 
features. The total number of patterns in the dataset was 
4000. 

Fig. 7. 
subspace in the three-dimensional feature space. 

Dataset 2: two elongated clusters in a nonlinear two-dimensional 

Dataset 8: Real dataset extracted from a composite 512 
x 512 image with 16 textures from the Brodatz book [2]; 
see Fig. 10. The image was filtered with 20 Gabor filters, 
giving 20 features for every pixel [ 101. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and the y 
coordinate of every pixel were included as two additional 
features. The total number of patterns in the dataset was 
16000. 
Dataset 9: Artificial dataset consisting of 1000 uniformly 
distributed patterns in a 10-dimensional cube. This dataset 
exhibits almost no clustering tendency and is, therefore, 
expected to result in a projection image with hardly any 
structure. 

B. Experimental Procedures 

The starting point for all the experiments was a Kohonen 
network consisting of 100 by 100 units. The choice for this 
size of the network was based on the available amount of 
memory in the computers available to us. The network should 
preferably be as large as possible, however, to provide the user 
with the largest possible resolution in the projection image. 
Every dataset was used to train 10 networks with the same 
architecture but with different initial weights, so that statistics 
about the performance of the network could be collected. The 
simulations were based on a custom made program in C and 
were performed on SUN Sparc I1 workstations. 

The parameters of the Kohonen learning algorithm were 
based on a few initial experiments with some of the datasets. 
After the selection of the parameter values, the same values 
were used for all the datasets and for all the experiments. 
They were set to the following values. The initial value of the 
parameter controlling the step size of the updates ho (0) was 
0.05, see (3). After every update of the weights (i.e., after the 
presentation of a pattern to the network), ho(t)  was decreased 
with a factor 0.9999, with a minimum value of 0.0001. The 
width of the kernel weighing the update of the units, a (0), 
was initially set to 66.666 and a ( t )  was also decreased by 
a factor 0.9999, with a minimum of 1.0. In advance of the 
training procedure, the order of the patterns in the datasets was 
randomized, and then all the patterns were cyclically presented 
to the network. The training of the network was terminated 
after 100000 weight vector updates. After the training phase 
of the network, the Sammon distortion and the error rates of the 
nearest neighbor classifier and the nearest mean classifier were 
computed with the leave-one-out method. The classifiers were 
implemented by projecting the dataset or the class means onto 
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the network structure. Special care was taken to deal with the 
problem of multiple data points mapping onto the same unit. 
In that case the unit was labeled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith the majority class label 
of the data points that were projwted onto the unit. As the 
distance measure allows the compttation of the distances and 
thereby also of neighboring Elations, a new sample could then 
easily be labelled by searching for the nearest unit with a class 
label. To limit the amount of CPb time required for datasets 
larger than lo00 patterns, the estimates of the performance of 
both classifiers were based on a randomly selected subset of 
lo00 patterns. 

To compare the Kohonen projection method with an al- 
temative method, all experiments were repeated with Sam- 
mon’s algorithm. Every datawt was a h  projected 10 times 
with Sammon’s algorithm and statjstics about the perfor- 
mance were collected. Since the CPU and memory require- 
ments of Sammon’s algorithm become prohibitive for large 
amounts of data, the datasets that were larger than lo00 
patterns were replaced by a subset consisting of lo00 ran- 
domly selected patterns. The step size for the gradient descent 
procedure in Sammon’s algorithm (i.e., the Magic Factor, 
see [28]) was chosen as 0.3, After the projection, the per- 
formance of the nearest neighbor classifier and the near- 
est mean classifier were computed with the leave-one-out 
method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Results 

The results of the experiments are summarized in Tables 
I-III. Since the data in dataset 9 (the uniformly distributed 
noise in a cube) was not labsiled, the estimates. of the nearest 
neighbor and nearest mean performance are omitted for this 
dataset. 

In Figs. 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5,  and 11-17, the projection images of the 
Kohonen projected data are shown. When the class labels of 
the data are available, a particularly good display technique 
can be derived by showing the labels in a color overlay on the 
projection image. For comparison, the Sammon’s projection 
of the IRIS data is shown in! Fig. 18. 

VI. DISCUSSION 

From the projection images shown in Figs. 4, 5, and 11-17, 
it can be seen that they indeed visualize the true structure of 
the data. The best examples of this are found in Fig. 4 (dataset 
1) and Fig. 5 (dataset 9), respectively, corresponding to a well- 
clustered dataset and a dataset without any clustering tendency. 
Fig. 4 is indeed very structured, whereas Fig. 5 shows very 
little or no structure. Moreover, for datasets 2, 3, 5,  6, and 
7 it is clear that there are indeed clustering tendencies in the 
data. Some limitations of the method can be found in Figs. 13 
and 17. In Fig. 13 the problem is caused by the very sparse 
nature of the dataset. The image contains roughly as many 
dark regions as there are patterns in the dataset (i.e., 45). This 
indicates that every pattern is considered to represent a cluster 
by itself or, in other words, that there is no clustering tendency 
detected in the data. This is in accordance, however, with the 
results of other projection algorithms on this dataset (e.g., see 

[9]). A second potential problem is found in Fig. 17. Here, a 
large number of clusters “struggle” for the limited available 
space in the image. Probably, a better result could be obtained 
by using a larger network. 

From the quantitative results reported in Section V, it is 
apparent from Table I that Sammon’s algorithm performs 
significantly better in preserving the interpoint distances than 
the Kohonen algorithm. This is not surprising, since the 
Kohonen algorithm does not aim at minimizing Sammon’s 
error measure. The exception is dataset 2, which represents 
the best possible case for the Kohonen algorithm: the data 
is clustered and has an intrinsic dimensionality that is equal 
to the dimensionality of the network structure. Another in- 
teresting result is found for dataset 9, which corresponds to 
the worst possible case for any projection algorithm. Here, 
the data has no clustering tendency at all and has an intrinsic 
dimensionality that is higher than the dimensionality of the 
network structure. For the Kohonen projection method, this 
indeed results in an extremely high distortion. For Sammon’s 
algorithm, however, the structure of this data caused the 
algorithm not to converge. 

The results presented in Tables 11 and 111 show that the 
. Kohonen projection method varies between slightly better to 
significantly better than Sammon’s algorithm in preserving 
the performance of the nearest neighbor classifier and the 
nearest mean classifier. This implies that for applications in 
which the projected data have to be classified afterwards, 
the Kohonen algorithm is to be preferred over Sammon’s 
algorithm. An example of such an application is the speech 
recognition system as described by Kohonen [14]. Also, it 
is apparent that the performance of the nearest neighbor 
classifier is slightly better preserved than the performance of 
the nearest mean classifier. This can be explained by the fact 
that the topology preserving mapping algorithm is still based 
on localized updates of the units. 

A subtle difference between the two projection algorithms 
is when they are used for the projection of points that are not 
part of the Original dataset. In the Kohonen projection method, 
an unforeseen point is projected by searching for the closest 
unit in the network. Then, its projection can be visualized by 
highlighting the corresponding pixel in the projection image. 
When the number of units in the network is larger than the 
size of the dataset, the Kohonen algorithm has the advantage 
that the network interpolates between the points of the dataset. 
This provides a good estimate of the projection of a new point, 
where accuracy can be controlled by the size of the network. 
For Sammon’s algorithm, the projection of an unforeseen 
point can analogously be accomplished by searching for the 
nearest neighbor of the new point in the dataset. Then, as 
an estimate of the location of the new point in the projected 
space, the projection of its nearest neighbor can be used. 
When the size of the original dataset is small, the accuracy 
of this procedure can potentially be increased by averaging 
over some of the projected nearest neighbors. This involves 
an additional procedure, however, that is not implicit in the 
projection method. 

Another issue that needs discussion is the speed of the 
Kohonen projection method, since it might prevent its practical 
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In the implementation that was used for the experiments, 
every projection in Section V took up to tens of hours of 
CPU time. Clearly, this is not fast enough for interactive use. 
Since 90% of the CPU time was spent in training the network 
with the Kohonen topology preserving mapping algorithm, the 
projection method can be speeded up by using faster variants 
of the Kohonen algorithm. The issue of investigating faster 
variants of the Kohonen algorithm, however, was considered 
not to be within the scope of this paper. With the regular 
Kohonen algorithm in our implementation, we estimate that 
the speed can possibly be improved by a factor 10 by using 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Projection image of dataset 2-two elongated clusters in 3D space. 

other parameters for the Kohonen algorithm (e.g., lowering the 
number of iterations to 25 000 or 50 000), and by optimizing 
the simulator. Then, by using a computer that is 10 times faster, 
the CPU-time could be brought back to tens of minutes instead 
of tens of hours. Due to the parallel nature of the Kohonen 
algorithm, another promising way to speed up the projection 
is by using parallel computers or special purpose hardware. 
This may bring the projection time back from minutes to 



556 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEEE TRANSACTIONS ON NEURAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANETWORKS, VOL. 6, NO. 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAY 1995 

Fig. 12. Projection image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf dataset -mall sphhe within I q e  sphm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

seconds. Another interesting difference between the algorithms 
is that the CPU time for Sammon's algorithm is proportional 
to the square of the number of samples in the dataset, whereas 
the Kohonen projection method is linear in the number of 
units in the network. Therefore, by choosing the resolution of 
the projection image one can directly influence the required 
amount of CPU time. 

A final remark is that, as can be seen in Fig. 6, the 
approximation of distances by taking discrete steps in the 

Fig. 15. Projection image of dataset Grange image data 

network plane clearly results in an overestimate of the dis- 
tance. This suggests that this discretization effect could be 
corrected by multiplying the estimated distance with a correc- 
tion factor slightly smaller than one. Although it is doubtful 
that a universal constant exists which is optimal for all 
network sizes and all probability distributions, some theo- 
retical work could be done on determining the value of 
this constant for certain probability distributions and network 
sizes. Also, empirical research might indicate that a constant 
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Set Description 

Fig. 16. Projection image of dataset 7 4  textures data. 

Sammon distortion 
Kohonen Droiection I Sammon's 

Fig. 17. Projection image of dataset 8-16 texture5 data 

exists which improves the results in a number of realistic 
applications. 

VII. CONCLUSIONS 

The nonlinear projection method that is presented in this 
paper is based on three ideas, of which two ideas are contribu- 
tions of this paper. In the first place, the well-known Kohonen 
topology preserving mapping algorithm is used to project high- 

+ iris setosa . iris versicolor 

+ .9. . 

2 1 . 1  . I ' I . I . I  - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 3  - 2  - 1  0 1 2 3 

Fig. 18. 
rithm. 

The projection of the IRIS data (dataset 5) with Sammon's algo- 

TABLE I 
THE AVERAGE SAMMON DISTORTION ( IN 70) 

AND ITS STANDARD DEVIATION (IN BRACKETS) 

dimensional data onto a two-dimensional network structure. 
Secondly, the structure of the data is visualized by mapping the 
network onto a two-dimensional image. In this image, the gray 
value of every pixel (i.e., unit) is proportional to the distance 
to the farthest neighbor in the network plane. Finally, a 
technique based on the gray value weighted distance transform 
[30] facilitates the definition of a metric in the network 
plane and thereby enables a quantitative evaluation of the 
algorithm. The experimental results indicate that the Kohonen 
projection method has a performance that is comparable or 
better than Sammon's algorithm for the purpose of classi- 
fying clustered data. For the purpose of preservation of the 
interpoint distances, however, Sammon' s algorithm performs 
better. Although the current implementation is very slow, 
the algorithm can be speeded up significantly by mapping 
the algorithm onto a parallel computer. Furthermore, the 
time complexity of the proposed algorithm depends on the 
resolution of the projection image, and not on the num- 
ber of samples in the dataset. A final remark is that the 
use of the metric in the network plane facilitates a quan- 
titative evaluation of various topology preserving mapping 
algorithms. 
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CLAS- (m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%), E~TIMA’IED m THE LEAVE-ONEOUT 
MJ?~HOD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAM) ITS STANDARD DWIATION (m BRACKETS) 

THE AVERAGE ERROR OF THE NWREST NEIGHBOR 

TABLE In 
THE AVERAGE ERROR OF THE NEAREST MEAN CLASSIFW 

(IN %), ESTIMATED WITH THE LEAVE-ONE-OUT 
MJ?rHOD AND ITS STANDAUD DEVIATION (IN BRACKETS) 

set Description Classifmtion Errm 
Usinginplt I Kohonen I Sammon‘s 
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