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Abstract. This paper deals with non-linear transformations for improving the 
performance of an entropy-based voice activity detector (VAD). The idea to use 
a non-linear transformation has already been applied in the field of speech 
linear prediction, or linear predictive coding (LPC), based on source separation 
techniques, where a score function is added to classical equations in order to 

take into account the true distribution of the signal. We explore the possibility 
of estimating the entropy of frames after calculating its score function, instead 
of using original frames. We observe that if the signal is clean, the estimated 
entropy is essentially the same; if the signal is noisy, however, the frames 
transformed using the score function may give entropy that is different in 
voiced frames as compared to nonvoiced ones. Experimental evidence is given 
to show that this fact enables voice activity detection under high noise, where 
the simple entropy method fails.        

Keywords: VAD, score function, entropy, speech 

1   Introduction: cognitive modeling of speech  

[1] gives a detailed account that the process of speech comprehension can be 

divided into a number of subprocesses ranging from those responsible for matching 

acoustic input against some internal representation of the words in the language to 
those involved in extracting meaning from the string(s) of lexical items hypothesized 

by the lexical-access process and constructing a message-level interpretation of the 

sentence. The modeling of speech comprehension, similar to that in other domains of 

cognitive modeling, can be guided by the following three considerations. First, to 

what extent can a subprocess involved in the comprehension process be assigned to 

separate informationally encapsulated modules? Second, to what extent do these 

modules interact? And third, what kinds of computational architectures are adequate 

for modeling these processes? 

There are a number of properties of the raw acoustic input that makes the task of 

spoken-word recognition, and speech comprehension in general, particularly difficult. 

One of these problems is that the input is not conveniently divided into acoustic 

segments that correspond neatly to the individual words uttered by the speaker [1].   
One of the steps in order to obtain this necessary segmentation is the so-called 

Voice Activity Detection (VAD). A voice activity detector is used to detect the 

presence of speech in an audio signal. VAD plays an important role as a pre-
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processing stage in different audio processing applications. For example, the 

performance of speech recognition, speaker recognition, and source localization can 

be improved by applying these algorithms only to parts of the audio that are identified 

as speech. Furthermore, in voice over IP (VoIP) and mobile telephony applications, 

VAD can reduce bandwidth usage and network traffic by transmitting audio packets 

only if speech is detected.  Video conferencing is another challenging application of 

source localization where VAD is useful. In this application, source localization is 

performed and the video camera is steered in the direction of the audio source when 
speech is detected using VAD. VAD is also used to identify noise; therefore it can be 

waived in systems such as hearing aids and audio conferencing devices [2].  

2 Fundamentals of VAD and applications 

In this section, we give a short account of the fundamentals of VAD and some 

important applications. For more details, see [3] and the references therein. 

An important drawback affecting most of speech processing systems is the 

environmental noise and its harmful effect on the system performance. Examples of 

such systems are new wireless communication voice services or digital hearing aid 

devices. In speech recognition, there are still technical barriers inhibiting such 

systems from meeting the demands of modern applications. Speech/non-speech 

detection is an unsolved problem in speech processing which has influence over 

different applications including robust speech recognition, discontinuous 

transmission, real-time speech transmission in Internet, or combined noise reduction 

and echo cancellation schemes in the context of telephony. The speech/non-speech 
classification task is not as trivial as it may seem to be, and most of the VAD 

algorithms fail when the level of the background noise increases.  

VAD is employed in many areas of speech processing. Recently, VAD methods 

have been described in the literature for several applications including mobile 

communication services. The most important VAD applications in speech processing 

are in the fields of coding, enhancement and recognition.  

In coding, VAD is widely used within the field of speech communication for 

achieving high speech coding efficiency and low-bit rate transmission. The concept of 

silence detection and that of comfort noise generation lead to dual-mode speech 

coding techniques. Different modes of operation of a speech codec are: (i) active 

speech codec, and (ii) silence suppression and comfort noise generation modes. The 

International Telecommunication Union (ITU) adopted a toll-quality speech coding 
algorithm known as G.729 to work in combination with a VAD module in DTX 

mode. A full rate speech coder is operational during active voice speech, but a 

different coding scheme is employed for an unvoiced signal, using fewer bits and 

resulting in a higher overall average compression ratio. 

In speech enhancement, the aim is to improve the performance of speech 

communication systems in noisy environments. It mainly deals with suppressing 

background noise from a noisy signal. A difficulty in designing efficient speech 

enhancement systems is the lack of explicit statistical models for speech signals and 

noise processes. In addition, speech signals, and possibly noise processes, are not 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

strictly stationary. Speech enhancement normally assumes that the noise source is 

additive and uncorrelated with the clean speech signal. One of the most popular 

methods for reducing the effect of a background (additive) noise is spectral 

subtraction. The popularity of spectral subtraction is largely due to its relative 

simplicity and easy implementation. The spectrum of the noise N(f) is estimated 

during unvoiced periods detected by a VAD,  and subtracted from the spectrum of the 

current frame X(f). This gives an estimate of the spectrum S(f) of the clean speech. 

In recognition, the performance of speech recognition systems is strongly 
influenced by the quality of the speech signal. VAD is a very useful technique for 

improving the performance of these systems working in noisy scenarios. A VAD 

module is used in most of the speech recognition systems within the feature extraction 

process for speech enhancement. The noise statistics such as spectrum are estimated 

during unvoiced periods in order to apply a speech enhancement algorithm (spectral 

subtraction or a Wiener filter). On the other hand, non-speech frame-dropping (FD) is 

also a frequently used technique in speech recognition to reduce the number of 

insertion errors caused by the noise. It consists in dropping unvoiced periods (based 

on the VAD decision) from the input of the speech recognizer. This reduces the 

number of insertion errors due to the noise that can be a serious error source under 

high mismatch training/testing conditions.  

In the last several decades, a number of endpoint detection methods have been 
developed. According to [4] we can approximately classify these methods into two 

classes. One class is based on thresholds [4-7]. Generally, this kind of method first 

extracts acoustic features for each frame of signals and then compares these values of 

features with preset thresholds, in order to classify each frame. Another class is 

pattern-matching [8-9] that requires estimation of model parameters for speech and 

noise signals. The detection process is similar to a recognition process. Compared 

with the pattern-matching method, the thresholds-based method does not need keep 

much training data and training models, is simpler and faster. 

Endpoint detection by the thresholds-based method is a typical classification 

problem. In order to achieve reasonable classification results, it is the most important 

to select appropriate features. Many experiments have proved that short-term energy 
and zero-crossing rate fail under low SNR conditions. It is desirable to find other 

robust features superior to short-term energy and zero-crossing rate. J. L. Shen [10] 

first used the entropy that is broadly used in the field of coding theory on endpoint 

detection. The entropy is a measure of uncertainty for random variables; therefore one 

can guess that the entropy of speech is different from that of noise due to the intrinsic 

characteristics of speech spectrums.  

However, it has been discovered that the basic spectral entropy of speech varies in 

a different manner when the speech spectrum is contaminated by different noise 

signals, especially by high noise signals. High variability makes it very difficult to 

determine thresholds. Moreover, the basic spectral entropy of different noises disturbs 

the detection process. It is expected that there exists a way such that: (i) the entropy of 
different noise signals approaches one another under the same SNR condition, (ii) the 

noise entropy curve is flat, and (iii) the entropy of speech signals is clearly different 

from that of the noise.  

This paper focuses on non-linear transformations of input signals enabling us to 

improve voice activity detection based on the spectral entropy. Earlier experimental 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

results shown that the basic spectral entropy can be improved, especially in the 

presence of non-gaussian noise or colored noise. 

3   Entropy 

Originally, entropy was defined for information purposes by C. Shannon [11] in 1948. 

Entropy is a measure of uncertainty associated with a random variable. For a discrete 

random variable S, it is defined as follows: 

( ) ( ) ( )
1

log
N

i i

i

H S p s p s
=

= -å  (1) 

where S = [s1, ..., si, ..., sN] are all possible values of S, and p(·) is the probability 
function of S.  

In the case of speech, the energy of certain phonemes is concentrated in a few 

frequency bands. Therefore the entropy will be low when the signal spectrum is more 

organized during speech segments. In the case of noise with flat spectrum or low pass 

noise, the entropy will be higher. The measure of entropy is defined in the spectral 

energy domain in the following way: 

( )
( )

( )
1

j

j N

j

m

S k
p k

S m
=

=

å
 

(2) 

where Sj(k) is the kth discrete Fourier transform (DFT) coefficient in the jth frame. 

Then the measure of entropy is defined in the spectral energy domain by the 

following formula: 

( ) ( ) ( )
1

log
N

j j

i

H j p k p k
=

= -å  (3) 

Since H(j) attains its maximum when Sj is a white noise and becomes minimum 

(null) when it is a pure tone, the entropy of the noise frame does not depend on the 

noise level, and the threshold can be estimated a priori. With this observation, the 

entropy-based method fits well for speech detection in white or quasi-white noises, 

but performs poorly for colored or non-Gaussian noises. We will see that application 

of a nonlinear function to the signal will enable the entropy-based method to deal with 

these cases. 

4   Exploring score function as non-linear transformation 

Inspired in BSS/ICA algorithms, see [12] and the references therein, or in blind 

linear/non-linear deconvolution [13-14], we propose to use a score function for a non-
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linear modification of the signal prior to calculation of the entropy for VAD process. 

What we expect is that since the score function is related to pdf of the signal, we will 

enhance the difference between voiced and unvoiced frames, even in very noisy 

environments.     

4.1   Score function 

Given a vector Y, the so-called score is defined as follows: 

( ) ( ) ( )
( )

log Y Y

Y

Y

p u p u
u

u p u
y

¢¶
= =

¶
. (4) 

Since we deal with nonparametric estimation, we will use a kernel density 

estimator [15]. This estimator is easy to implement, its form is very flexible, but the 

choice of the kernel bandwidth is a certain drawback. Formally, we estimate ( )Yp u  

in the following way: 

( ) ( )
1

1
ˆ

T

Y

t

u y t
p u K

hT h=

-æ ö
= ç ÷

è ø
å . (5) 

Then an estimate of ( )Y uy  is obtained by ( ) ( )
( )

ˆ

ˆ

Y

Y

Y

p u
u

p u
y

¢
= . Many kernel shapes 

can be good candidates; we used the Gaussian kernel for our purposes. A "quick and 
dirty" method for choosing the bandwidth consists in using the rule of the thumb 

giving 
1
5ˆ1.06h Ts

-
= . Of course, other estimators may be found and used; what we 

claim is that our estimator behaves fine in simulations. 

4.2   Other functions 

In many BSS/ICA algorithms, the score function is approximated by a fixed function, 

depending on sub-Gaussian or super-Gaussian character of the signal. In this case, 

functions like ( )tanh u , ( )2

2exp uu -  or 
3u are used instead of calculation of the 

true score function ( )Y uy . As a preliminary analysis, we present here some results 

related to the true score function only.  In real-time applications, these simple 

functions can be good candidates, since they avoid the need to estimate the true score 

function. 
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5   Proposed method 

The method proposed for exploration of non-linear functions for VAD is shown in 

Figure 1. The signal is framed and the score function is estimated for each frame, 

using this output as the input to the next block (entropy calculation) instead of the 

original frame. What we are interested in is looking at this entropy of the scored 

frame compared with the original frame (without using the score function).      

 

Fig. 1. Block diagram of the proposed method. 

A pre-processing stage will be done following the ETSI standard [16]. According 

to this standard, a notch filtering operation is applied to digital samples of the input 

speech signal ins  to remove their DC offset, producing the offset-free input 

signal ofs : 

( ) ( ) ( ) ( )1 0.999 1of in in ofs n s n s n s n= - - + -  (6) 

The signal is framed using 25 ms frame length corresponding to 200 samples for 

the sampling rate 8sf kHz=  , with frame shift interval of 10 ms corresponding to 

80 samples for the sampling rate 8sf kHz= . A pre-emphasis filter is applied to the 

framed offset-free input signal: 

( ) ( ) ( )0.97 1 .pe of ofs n s n s n= - -  (7) 

Finally a Hamming window is applied to the output of the pre-emphasis block. Once 

the windowed frame of N samples is obtained, the score function is estimated 
according to Eqns. 4 and 5, and then the spectral entropy is calculated from Eqn. 3. 

The final decision (voiced/unvoiced frame) is taken by means of a threshold. Even if 

more complex and better rules can be used, our purpose is only to explore the 

differences between the estimated entropy with the score function and without it in 

order to simplify the classifier block.    
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6   Experiments 

Several experiments have been carried out in order to investigate the performance of 

the system. First of all, we are interested in looking at a scored frame as compared to 

a simple frame. Figure 2 shows a voiced signal, its estimated entropy and its 

estimated entropy through the score function. In this case, when the voice signal is 

clean (having a good SNR), we can observe a similar shape of the entropy for the 

original frames and the scored frames. 

 

Fig. 2. Signal input (left) and the estimated entropy (without the score function in the middle, 
and with the score function on the right hand) 

If we add a Gaussian noise to the signal, the results begin to be different, as we can 

see in Figure 3 where we show the input signal (top left) and the clean signal for the 

sake of clarity (bottom left), and the estimated entropy without and with the score 

function. Even if the noise is very high, we can observe that the entropy is different in 

those parts of the signal that contain speech.  Of course, the difference is not as clear 

as in Figure 2. We can also observe that the results without and with the score 

function are not as similar as before. If the noise is much harder, entropy estimation 

does not enable us to distinguish between the noise and the speech; therefore no voice 

activity can be detected. 

 

 

Fig. 3. Signal input (top left) with a Gaussian noise, and  the estimated entropy (without the 
score function in the middle, and with the score function on the right hand). 
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Fig. 4. Signal input (top left) with uniform noise, and estimated entropy (without score function 
on the middle, and with score function on the right) 

 

On the other hand, if the noise is uniform we can obtain better results for 

estimation of the entropy using the score function. The results in Figure 4 are obtained 

with a uniform noise, and we observe that function we cannot distinguish between 

noise and speech without the score, while it can be done with the score function.   

Using a simple threshold on the estimated entropy, we can make a decision on the 

signal in order to decide whether or not the frame is voiced. Of course, more 
sophisticated procedures should be used instead of a simple trigger, as explained in 

the literature, but we restrict here to results using a threshold for simplicity.  

Figure 5 shows the results obtained without the score function (left) and with the 

score function (right), with a clean speech signal (no noise added). We can see that a 

simple threshold can give us good results and that they are very similar, since the 

estimated entropy with and without the score function are (approximately) equivalent, 

as we have shown in Figure 2. 

On the other hand, if the speech signal is noisy, and since the estimated entropy is 

no longer equal without or with the score function, speech detection is much more 

complex, and different results are obtained with or without the score function. The 

results in this case are given in Figure 6. 

One can see that the scored frames give better results and therefore the voice is 
better detected even if it is hidden in a noise. Of course VAD does not give perfect 

results, as we can see by comparison of the detection presented in Fig. 6 with the true 

speech signal, plotted on the bottom of the figure for clarity. As we have already 

mentioned before, this can be improved by designing a better classifier.  
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Fig. 5. Voice activity detection obtained using a simple threshold. On the left hand, estimation 
the entropy without the score function. On the right hand, estimation the entropy with the score 
function. Since the estimated entropy is essentially the same, the results are quite similar.  

 

Fig. 6. Voice activity detection obtained using a simple threshold. On the left hand, estimation 
the entropy without the score function. On the right hand, estimation the entropy with the score 
function. Since the speech signal is noisy, the estimated entropy is different and therefore the 
detection is also different. We can observe that the scored signal gives better results.  

 

7   Conclusions 

In this paper, the use of non-linear transformations for improving a voice activity 

detector is explored.  

The score function is used as a non-linear transformation estimated by means of a 

Gaussian kernel, and the entropy is used as a criterion to decide whether or not a 

frame is voiced.  

If the speech signal is clean, the results are essentially the same, since the score 

function does not change the entropy of the signal. However, in the case of a noisy 

speech signal, the estimated entropy is no longer equivalent, giving therefore a 
different result. It is in this case where the frames pre-processed with the score 

function give better results and the voice can be detected in a very noisy signal.  
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A future work should be done for studying other non-linear transformations, in an 

attempt to simplify and reduce complexity of the system, as well for being 

implemented in real-time applications. On the other hand, the classifier should also be 

improved, for example, by deriving some heuristic rules, or by using more complex 

systems as neural networks, in order to minimise incorrect activity detections. Here, 

the results reported in [17-19] should be taken into account. 
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