
A Non-local Method

for Robust Noisy Image Completion

Wei Li, Lei Zhao, Duanqing Xu, and Dongming Lu

Zhejiang University, Hangzhou, China

Abstract. The problem of noisy image completion refers to recovering
an image from a random subset of its noisy intensities. In this paper,
we propose a non-local patch-based algorithm to settle the noisy image
completion problem following the methodology “grouping and collabo-
ratively filtering”. The target of “grouping” is to form patch matrices by
matching and stacking similar image patches. And the “collaboratively
filtering” is achieved by transforming the tasks of simultaneously esti-
mating missing values and removing noises for the stacked patch matri-
ces into low-rank matrix completion problems, which can be efficiently
solved by minimizing the nuclear norm of the matrix with linear con-
straints. The final output is produced by synthesizing all the restored
patches. To improve the robustness of our algorithm, we employ an ef-
ficient and accurate patch matching method with adaptations including
pre-completion and outliers removal, etc. Experiments demonstrate that
our approach achieves state-of-the-art performance for the noisy image
completion problem in terms of both PSNR and subjective visual quality.

1 Introduction

In this paper, we aim at recovering an image from a subset of its noisy entries,
which means that the image not only suffers from information loss, but also is
corrupted by an amount of additive noise. Actually, this problem arises from
various practical applications. For example, the task of simultaneously removing
impulsive noise and mixed additive noise as described in [29] can be regarded as
a practical case of the proposed problem. Since the pixels damaged by impulsive
noise contain no information about the true image, it’s quite natural to treat
them as empty values and thus the task is indeed transformed into a noisy image
completion problem. As another case, the problem is involved in the restoration
of archived photographs and films [17][16][25][26]. As detailed in [16], archived
materials may be degraded due to physical problems or simply chemical decom-
position, which typically lead to noise, Dirt and Sparkle, etc. So there is also a
necessity to develop techniques to deal with noise and missing data jointly. Be-
sides, in certain difficult imaging situations, e.g., capturing images with a faulted
camera or a low-end webcam under low light conditions, it is also a possibility
that the captured data contains both missing and noisy intensities.

Compared with traditional image completion and denoising problems, noisy
image completion problem is obviously more challenging since both completion
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and denoising techniques cannot handle the problem trivially. Numerical meth-
ods are the simplest tools to solve the proposed problem, e.g., total variation
[23] and wavelet [6]. However, those methods generally produce coarse recovered
results with poor visual quality and noticeable artifacts. Another way to solve
the noisy completion problem is to combine image completion and denoising
techniques in a straightforward way: one first estimates the missing entries in
a corrupted image without considering the noise and then applys a denoising
algorithm to the intermediate completed result. This “completion + denoising”
scheme is able to produce visually pleasant results in some situations, but the
disadvantage is also obvious: estimated values for empty pixels by no matter
straightforward interpolation methods or state-of-the-art example-based inpaint-
ing approaches are not sufficiently reliable due to the existence of noise, then
the generated error will not be further corrected by directly applying denoising
techniques. The scheme works even worse when the ratio of the missing pixels
increases, which will be demonstrated in experiments.

Recent studies about non-local and patch-based image processing techniques
following the idea of “grouping and collaboratively filtering” [4,8,14] provide
us a novel way to think about our problem. In general, this kind of methods
builds upon a patch-wise restoration for the corrupted image, where three steps
are commonly involved. Initially, for a given reference patch in the image, an
amount of similar patches are matched and grouped by testing the similarity
between the reference patch and the candidate patch located at different spatial
position. Then, redundant information among the stacked patches is utilized to
perform a restoration, e.g., estimating missing values and removing noises simul-
taneously. At last, the final restored image is synthesized from all the restored
patches. This is also the sketch of our approach proposed in this paper. How-
ever, considering the specific noisy image completion problem here, we make two
major adaptations within the framework. Firstly, an efficient and robust patch
matching algorithm is developed to collect similar patches for each reference
patch in the image. Secondly, for each patch group, a patch matrix is formed by
stacking the patches and the repair of the matrix is transformed into a problem
of low-rank matrix completion from noisy entries, which can be efficiently solved
by minimizing the nuclear norm of the matrix with linear constraints [5,15].

Contributions. We propose a robust and accurate noisy image completion al-
gorithm which fills the missing values and removes the noise in an damaged
image simultaneously. Our algorithm follows the methodology of “grouping and
collaboratively filtering” and combines several recent powerful tools including
total variation (TV) [23], adapted PatchMatch [2], and low rank matrix comple-
tion with ADMM solver [19] in an effective manner. Experiments demonstrate
that our algorithm produces results with better visual quality than existing
techniques.
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2 Related Works

There are many available methods that can handle the noisy image completion
problem. As a straightforwardmethod, the total variation (TV) based image pro-
cessing method was first proposed in [23] as an efficient tool for denoising. And
TV was further extended to deal with more applications like debluring, inpaint-
ing and super-resolution [27,30,9]. Actually, a common TV inpainting method
can be easily modified to handle an incomplete image with noisy entries by re-
laxing the constraints of the observed values. In a similar way, wavelet filtering
methods [6,10] can also be adapted to solve the noisy completion problem. In
[17], a MCMC sampling-based approach was proposed for joint noise reduction
and missing data treatment. In [1], a PDE-based method was proposed to settle
the problem: after filling the missing pixels by solving a PDE, it then employed
the Mean Curvature Flow and a selective diffusion equation to smooth out the
noise for the pixels inside and outside the empty regions respectively. However,
the above mentioned methods generally produce coarse recovered results with
poor visual quality and noticeable artifacts.

The proposed approach in this paper is inspired by the recent progress of the
non-local patch-based techniques, which demonstrated impressive capability in
solving inpainting [28,7,18,24,22] and denoising [4,8,14,11,20,21] problems. To
list a few, in patch-based inpainting algorithms such as [7,24], one first filled
the regions by searching and copying proper content from the observed part of
the image and then synthesized the result in a visually acceptable way. In [22],
the authors extended the traditional quadratic regularization used for inverse
problems to non-smooth energies by defining graph-based TV on images. The
regularized formalization was utilized to solve inverse problems including im-
age completion. As a pioneer of the non-local based denoising algorithm, the
NL-Means algorithm [4] estimated the value of each pixel in an image as an av-
erage of the values of all the pixels whose Gaussian neighborhood looked like the
neighborhood of the current pixel. The K-SVD algorithm [11,21] utilized highly
overcomplete dictionaries obtained via a preliminary training procedure to ex-
ploit the 2-D transform sparsity in image patches for the purpose of patch-wise
denoising. BM3D proposed in [8] stacked similar image patches in a 3D array
based on the similarity between patches and then applied a shrinkage operator
in 3D transform domain on the 3D array. The denoised image is synthesized
from denoised patches after inverse 3D transform.

3 The Proposed Algorithm

3.1 Overview

Let I ∈ R
m×n be a damaged image which is represented as:

I = (G+N)Ω, (1)

where G ∈ R
m×n is the original image, N is an additive noise and Ω indexes a

random subset of pixels which are observed. How to accurately recover original
image G from its noisy and incomplete observation I is the main target.
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Following the methodology of “grouping and collaboratively filtering”, we
propose a non-local and patch-based approach for the noisy image completion
problem, where “grouping” and “collaboratively filtering” are the two major
components. The purpose of “grouping” is to exploit the spatial redundancy in
the corrupted image by matching and staking similar patches. Initially, let pi,j
be an image patch in I of size s × s centered at pixel (i, j), and every pixel in
the image corresponds to such a patch except for those whose s× s surrounding
regions exceed the image bound. Then given a patch pi,j , we search for several
similar patches from all the candidates in terms of ℓ2 distance and put all the
matched patches into a patch group {p0i,j, p

1
i,j , . . . , p

k
i,j}. Here p0i,j refers to the

given patch, or reference patch. By concatenating all columns of each patch
in the group into a long vector and stacking all the vectors, a patch matrix
Pi,j ∈ R

s2×(k+1) is formed as:

Pi,j = (p0
i,j ,p

1
i,j , . . . ,p

k
i,j). (2)

Corresponding to Equ.(1), Pi,j can be also represented as the following equation:

Pi,j = (Qi,j + Ei,j)Ωi,j
, (3)

where Qi,j denote the patch matrix from the underlying groundtruth G, Ei,j is
the noise and Ωi,j indexes the given entries in the patch matrix. Thus recovering
G from its incomplete and noisy observation I equals to firstly decomposing Q

from P for all of the patch matrices and then combining the results. This is what
the “collaboratively filtering” does.

Assuming that I is complete and free of noise (I = G, Pi,j = Qi,j) and the
patch matching is still perfect, the grouped patches should exhibit high mutual
similarity. Thus Qi,j should be low-rank and Ei,j = 0. Then in the existence of
noise and missing values, if the patch matching is still perfect, Qi,j will also be
low-rank and E will contain the noise. Therefore, calculating a low-rank matrix
Qi,j from the noisy incomplete patch matrix Pi,j is actually a problem of low-
rank matrix completion from noisy entries [5,15].

However, as we only have the noisy and incomplete pixels, how to perfectly
perform patch matching is a difficult problem. In our approach, several mea-
sures are taken to ensure the robustness of patch matching. First, we complete
the empty pixels without considering the noise using TV [23]. Then an improved
PatchMatch [2] algorithm is applied to the pre-completion result to efficiently
search for similar patches for each reference patch. The patch matrix Pi,j is
formed by utilizing the patch matching result but taking values from the cor-
rupted image I. A visualized description of the procedure is shown in Fig.1.
Furthermore, in the formed patch matrix Pi,j , elements far away from the aver-
age of its corresponding row vector are considered as highly unreliable elements
to be discarded. Details will be stated in the following sections.
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Fig. 1. The forming of a patch matrix. The patch matching is executed on the pre-
completion result. Then a patch matrix is formed by taking values from the corrupted
image according to the matching result. Reference patch (red box with a ‘R’) and
matched patches (green boxes) are drawn in the two images. For all the patches in-
cluding the reference patch, by concatenating all of its columns into a long vector and
staking all the vectors, we get the right patch matrix. Each column in the patch matrix
corresponds to a columns-concatenated patch. And in each column, we represent the
missing pixels as the blue grids.

3.2 Robust Patch Matching and Grouping

In this section, we describe how we perform the efficient and robust patch match-
ing and grouping process to search and stack similar patches for each reference
patch, where three stages are involved.

Pre-completion. Before we really execute patch matching, we should firstly
give proper values to the empty pixels. This is even more necessary in working
over highly incomplete data because the captured entries may be insufficient to
provide a reliable computation of the similarity between patches. Here we adopt
a TV-based image completion algorithm for the pre-completion process which is
described as the following equation:

min
X

{

TV (X) =
∑

i,j

(

|DhXi,j |+ |DvXi,j |
)}

s.t. XΩ = IΩ .

(4)

where DhXi,j and DvXi,j are the horizontal and vertical components of the
gradient of elementXi,j respectively. For colored images, vectorial total variation
(VTV) [12] is a better choice than applying TV in a channel-by-channel manner,
which is defined as:

V TV (X) =
∑

i,j,k

(

|DhXi,j,k|+ |DvXi,j,k|
)

, (5)

where k represent channels. We refer interesting readers to [27,30,9,13,3] for
details and efficient solvers for TV and VTV.

Actually, as we will further employ an improved PatchMatch method and an
outlier remover in this robust patch matching stage, excessive computation in-
volved in estimating the missing entries is unnecessary. Therefore, we adopt TV
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Fig. 2. Two examples of the pre-completion process. The left gray-scale image is com-
pleted using TV formulation while the right colored image is processed using VTV.

in the pre-completion mainly for its computational efficiency and that the pri-
mary completed result is also accurate enough for the following patch matching
process. Fig.2 gives two examples of the pre-completion, where the gray-scale
image and the colored image are processed with TV and VTV respectively.

Improved PatchMatch. PatchMatch proposed in [2] is an efficient nearest
neighbour searching algorithm, which is employed in our approach for the patch
matching and grouping purpose. Applying the PatchMatch algorithm to the pre-
completion result will help us find out a given number of similar patches in terms
of ℓ2 distance for all the reference patches. Then for each reference patch, all the
matched patches are grouped by considering the reference patch as some sort of
“centroid” for the group. Due to the space limitation, the PatchMatch algorithm
is not detailed here, and we mainly discuss the two improvements we make for
our specific application. At first, as there is not a built-in distance restriction
in the PatchMatch algorithm, “diameter” of each group (the largest ℓ2 distance
between any two patches in the group) may be too large that may degrade the
following collaborative filtering process. Therefore, the matched patches in each
group should be pruned by setting a threshold for the distance between any two
patches. Secondly, despite the existence of noise, original captured values are
obviously more reliable than the estimated ones in the pre-completion result,
thus higher importance should be attached to the observed entries in calculating
similarities between two patches. Therefore, the ℓ2 distance used in PatchMatch
is indeed a weighted ℓ2 distance. Specifically, let pA and pB be the two patches
from a pre-completion result, and ω(·) : Rs×s → R

s×s to be a function that
reads the weights of every elements in the patch, then the weighted ℓ2 distance
we use in our implementation is:

Dist(pA, pB) = ‖(pA − pB)⊙ ω(pA)⊙ ω(pB)‖2,

where the symbol ⊙ denotes the element-wise multiplication of two equal-sized
matrices. The weight for the observed pixels must be no smaller than that of the
missing ones, while the specific values should be adapted to the specific noise
level and missing rate.

Outliers Removal. Since a low-rank matrix can be recovered from only a small
fraction of its entries as proved in [5,15], we only keep those elements of high
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reliability and discard all the other elements. So detecting and discarding the
outliers before solving the low-rank matrix completion problem is necessary. For
each row in the formed patch matrix as described in Equ.(2), elements which
deviate away from the mean value of the row vector by an amount larger than
a pre-defined threshold will be treated as outliers to be discarded. Therefore, in
the following low-rank matrix completion problem, the empty elements consist of
two sources, one corresponds to the original missing pixels and the other indexes
the abandoned outliers.

3.3 Collaborative Filtering Using Low-Rank Matrix Completion

For each grouping formed in the previous stage, a corresponding patch matrix
is constructed by concatenating all columns of each patch into a long vector and
staking all the vectors, which is a noisy and incomplete version of the underlying
original patch matrix. As is discussed in Section 3.1, our goal here is to extract
the matrix Q with a low rank from P . Mathematically, the task is generalized
as the problem of low-rank matrix completion with noisy entries [5,15] in the
following form:

min
Q

‖Q‖n

s.t. ‖(Q− P )Ω‖F ≤ δ,
(6)

where δ ≥ 0 measures the noise level, ‖ · ‖n is the nuclear norm defined as
the summation of all singular values which is shown to be the tightest convex
approximation for the rank of matrices, and ‖ · ‖F denotes the Frobenious norm.
Ω indexes all the given elements as discussed in previous sections.

We adopt alternating direction method of multipliers (ADMM) [19] in our ap-
proach for its implementation simplicity and computational efficiency. Initially,
we reformulate Equ.(6) into the following nuclear-norm-regularized least squares
problem which is the ADMM applicable form:

min
Q

‖Q‖n

s.t. Q− T = 0,

T ∈ U = {‖(U − P )Ω‖F ≤ δ}.

(7)

Then the ADMM works by minimizing the augmented Lagrangian function of
the above problem:

L(Q, T, Z, β) = ‖Q‖n − 〈Z,Q − T 〉+
β

2
‖Q− T ‖2F , (8)

with respect to the unknown variables Q, T one at a time. Here Z is the La-
grange multiplier of the linear constraint, β > 0 is the penalty parameter for
the violation of the linear constraint and 〈·, ·〉 denotes the standard trace inner
produce. The ADMM iteratively updates all the variables as follows:

T k+1 = argmin
T∈U

L(Qk, T, Zk, β), (9)
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Qk+1 = argmin
X

L(Q, T k+1, Zk, β), (10)

Zk+1 = Zk − γβ(Qk+1 − T k+1), (11)

where γ ∈ (0,
√
5+1
2 ) is a constant. In this iterative scheme, the computation

of each iteration is dominated by solving the two subproblems Equ.(9) and
Equ.(10). At first, the solution for the subproblem Equ.(9) is given by:

T k+1 =

(

min

{

δ

‖(Bk+1 − P )Ω‖F
, 1

}

− 1

)

(Bk+1 − P )Ω +Bk+1, (12)

where Bk+1 = Qk − 1
β
Zk .

Secondly, let

Ak+1 = T k+1 +
1

β
Zk = Uk+1Σk+1(V k+1)T , (13)

be the singular value decomposition (SVD) for Ak+1, then we get the closed-form
solution for subproblem Equ.(10):

Qk+1 = Uk+1Σ̂k+1(V k+1)T , (14)

where Σ̂k+1 = diag(max (σk+1
i − 1

β
, 0)) with σi(X) denoting the i-th largest

singular value.

Synthesizing the Final Output. With all the restored patch matrices, the
generation of the final output is straightforward. Firstly, the recovered result
of the reference patch in each patch matrix is attached to the corresponding
position in the result image. Thus each pixel is covered by several patches with
overlapping regions. Then, the final value for the pixel is computed as the average
of all the covered patches at this position.

4 Implementation Details and Experiments

In this section, we first give implementation details and then show the advantage
of our algorithm over three existing techniques for the noisy image completion
problem.

4.1 Implementation Details

Firstly, the famous SplitBregman algorithm proposed in [13] is employed for
solving the TV and VTV pre-completion problems. Secondly, in the improved
PatchMatch, the size of each patch is set as 7 × 7 and reference patches are
sampled with 3× 3 interval. For each reference patch, 20 nearest neighbours are
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Table 1. The PSNR values of the recovered results with respect to different missing
rates (MR) and noise levels (σ). A simple observation is made that our approach is
sensitive to the Gaussian noise but robust to the missing values.

σ

PSNR MR
20% 30% 40% 50%

15 35.32 34.66 34.10 33.15
25 34.24 33.80 33.17 32.22
40 32.13 31.59 31.06 30.65
50 30.67 29.84 29.64 28.79

collected in terms of weighted ℓ2 distance as described in Section 3.2. Then,
the threshold used in detecting outlier pixels from the patch matrix is chosen
to be 2σ̄, where σ̄ is defined as the mean of the standard deviation of the given
entries in each row vector. Besides, the noise level δ in the problem of noisy
low-rank matrix completion described in Equ.(6) is evaluated as δ = σ̄‖Ω‖0,
where ‖ · ‖0 counts the amount of the observed entries indexed by Ω. And the
ADMM solver for the low-rank matrix completion problem is terminated if the
tolerance RSE < 1× 10−5 is met.

4.2 Results and Comparisons

As stated before, the problem of noisy image completion arises from several
applications, so images to be restored in the experiments are artificially trimmed-
degraded images rather than real damaged data for the universality. For the same
consideration, without loss of generality, the Gaussian noise is mainly tested here.
Two set of experiments are conducted in this section: one is to demonstrate how
our approach performs with respect to different noise levels and missing rates, the
other is to show the advantage of our algorithm compared with other methods
for the application. Accuracy of the recovered results is evaluated by PSNR.

Robustness Tests. Table 1 exhibits the performance of our method in dealing
with input data of different noise levels and missing rates: the standard deviation
σ of the Gaussian noise varies from 15 to 50 while the missing rate (MR) changes
between 20% and 50%. It can be easily read from each column in the table that
for a certain missing rate, the PSNR drops dramatically when σ increases. On the
contrary, when we keep the noise level unchanged, the recovery quality is more
stable as is shown in each row of Table 1. This merit is easily comprehended:
the estimated value in the pre-completion result is only involved in the patch
matching process but not used in collaborative filtering stage, thus the original
missing entries can be exactly re-computed by low-rank matrix completion.

Comparisons. In the comparison experiments, we compare our algorithm with
three methods, which are mainly derived from state-of-the-art approaches in the
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Fig. 3. From left to right: corrupted images, restored results of TV-based method,
NL-Means, BM3D and our approach. Our approach outperforms the others for all the
situations especially for the examples with high missing rates.

field of image denoising. The first method is similar to the TV pre-completion
stage but with soft constraints, which equals to solving the following function:

min
X

TV (X) +
µ

2
‖XΩ − IΩ‖

2
F , (15)

where µ is a constant denoting the regularization parameter. The above equation
is easily solvable using the gradient decent method. The other two approaches to
be compared with are built upon the scheme of “completion + denoising”, which
means that we first fill the missing pixels using TV or VTV without considering
the noise, which is the same to our pre-completion step, and then apply denoising
methods to the intermediate result. The denoising methods adopted here are the
former mentioned NL-Means [4] and BM3D [8].

Fig.3 shows the performance of our algorithm and three other methods in
dealing with inputs with different missing rates and noise levels. In general, the
primary TV-based method performs poorest among all the involved algorithms,
which can only provide coarse outputs with noticeable visual artifacts. And
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(a) Original (b) Corrupted (c) NL-Means (d) BM3D (e) Ours

Fig. 4. Details are better recovered by our approach than NL-Means and BM3D. And
the PSNR values of the three results (c), (d) and (e) are, 24.28dB, 25.04dB and 27.25dB
respectively.

Fig. 5. The close-ups exhibit the extraordinary capability of our approach in recovering
regular structures in a corrupted image

compared with the two “completion + denoising” methods using NL-Means and
BM3D, our approach generates the best recovered images in terms of both PSNR
and visual quality in all of the examples. Specifically, when we keep the missing
rate of the input data fixed, all the methods are sensitive to the changes of
standard deviation σ of the Gaussian noise, but our approach obviously has
better capability of removing the noise. Things are different when we maintain
σ but change the missing rate. As stated before, our algorithm is robust to
the existence of missing pixels, so it can be seen from the visualized results
in Fig.3 that the final synthesized images are not degraded noticeably when
the missing rate increases. On the contrary, in the two methods based on NL-
Means and BM3D, since denoising operation is directly applied to the completed
result which is indeed not sufficiently reliable, errors produced in estimating the
missing values won’t be further corrected. As a consequence, visual artifacts are
clearly observed in the final repaired results as displayed in Fig.3 especially the
two examples with missing rate 50%.
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Fig. 6. From top to bottom: original images, corrupted images, pre-completion results
and the recovered results of our approach. The damaged images here have a higher
missing rate of 60% and σ = 25. The PSNR values of the recovered results in (a), (b),
(c) and (d) are 28.37dB, 30.35dB, 28.64dB and 30.62dB respectively.

Another two comparison examples with close-ups are displayed in Fig.4 and
Fig.5, where the original images have clear and repetitive structures. Here we
leave out the TV-based method due to its poor performance in processing such
sources. In both of the inputs, the missing rate is 50% and σ = 25. It can be
clearly seen from the close-ups in the two figures that regular structures in the
images are well reconstructed by our approach while the results of NL-Means
and BM3D are quite unpleasant. In Fig.6, we further increase the missing rate of
the images to 60% and apply our approach to these data. The visually pleasant
results exhibit the brilliant applicability of our algorithm in working over such
severely corrupted data. Please refer to the supplementary material for more
results.

In summary, we argue that our algorithm has excellent ability of repairing
noisy incomplete images. And compared with existing techniques, our approach
works much better in processing examples with high missing rate and in recov-
ering structures in images.
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5 Conclusions and Future Works

In this paper, we propose a novel robust algorithm following the scheme “group-
ing and collaboratively filtering” for the problem of noisy image completion.
There are two key steps in our approach: firstly, an efficient and robust patch
matching method is developed for matching and grouping patches; secondly,
the problem of estimating missing values and denoising is transformed to the
problem of low-rank matrix completion from noisy entries. Experiments exhibit
the extraordinary performance of our approach compared with existing tech-
niques and recovered results will benefit much from multiple circulation of the
process. There are also limitations. First, noticeable visual artifacts may exist
in working over corrupted images with large missing regions, e.g., wrong com-
pleted content or overly smoothed regions. Second, like many other methods of
this category, our algorithm also imposes high computational burden. Another
limitation comes from the averaging in the last step which obviously blurs the
result. So settling the remain problems is our future work.
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