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Abstract

A non-local, ordinary-state-based, peridynamics viscoelasticity model is developed.
In this model, viscous effects are added to deviatoric deformations and the bulk re-
sponse remains elastic. The model uses internal state variables and is conceptually
similar to linearized isotropic viscolelasticity in the local theory [7]. The modulus state,
which is used to form the Jacobian matrix in Newton-Raphson algorithms, is presented.
The model is shown to satisfy the 2nd law of thermodynamics and is applicable to prob-
lems in solid continuum mechanics where fracture and rate effects are important; it
inherits all the advantages for modeling fracture associated with peridynamics [4, 5].
By combining this work with the previously published ordinary-state-based plasticity
model [2], the model may be amenable to viscoplasticity problems where plasticity and
rate effects are simultaneously important. Also, the model may be extended to include
viscous effects for spherical deformations as well. The later two extensions are not
presented and may be the subject of further work.
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Figure 1. Peridynamics: bonds and states

1 Introduction and Approach

This report focuses on the recent development of a viscoelasticity model for peridynamics.
It builds upon the state-based peridynamics theory [5] and is conceptually similar to the
plasticity model developed by Mitchell [2]. The model uses internal state variables which
are analogous to back strain(s) in the local theory. In its most elementary form, the model
is conceptually similar to the standard linear solid [8] used in the local theory.

Section 2 provides an introduction to the kinematics associated with peridynamics. Nearly
all variables relevant to ordinary state-based materials are presented. Peridynamic treatment
of the momentum equation is briefly presented with an emphasis on its relationship with
explicit time integration of the momentum equation. Section 3 defines an ordinary material
and introduces the modulus state for ordinary materials.

The main content of this report is presented in Sections 4 and 5. A standard linear solid

is presented for peridynamics in Section 4. Viscoelasticity is introduced via an evolution
equation for a deviatoric extension state-like field. The auxiliary field is out of phase with
the deviatoric extension state and creates the viscoelastic effect. The section develops an
integration algorithm for a load step and demonstrates that the model satisfies the 2nd law
of thermodynamics. The section goes on to linearize the standard linear solid for implicit
dynamics and quasistatic calculations. Section 5 follows the steps taken in Section 4 and
generalizes the standard linear solid to include an arbitrary number of auxiliary fields. Each
auxiliary field has two material parameters: relaxation time and relaxation modulus. Time
integration, linearization, and analysis of the 2nd law of thermodynamics for the general-
ized model is given by a straightforward extension of results obtained for the peridynamics
standard linear solid.
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2 Notation and Preliminary Development

In this Section, a review of the kinematics associated with peridynamics is given. The
notation used closely follows [3, 5]. Figure 1 may be helpful for following the discussion.

2.1 Definitions

A bond vector ξ is defined between an arbitrary point x in an undeformed body, and a
second point Q ∈ Hx, where Hx = {x′ | 0 < ‖x − x′‖ ≤ δ} denotes the neighborhood of x.
The horizon at x is denoted by δ.

Bond: ξ = Q − x. (1)

States are functions that act on bonds. There are scalar, vector and modulus states used
and developed in this report. These correspond with functions that act on bonds to produce
scalars, vectors and 2nd order tensors, respectively.

The deformed configuration of a body is described using the following states. Note that
these are vector states unless specifically identified as a scalar state.

Scalar reference state: x = |X|〈ξ〉

= |Q − x|

= |ξ| (2)

Deformation state: Y [x]〈ξ〉 = y(x + ξ) − y(x)

= y(Q) − y(x), (3)

where x is a point and should not to be confused with the scalar reference state x and y(x) is
the location of the point x in the deformed configuration. The angle brackets 〈·〉 are used to
indicate the action of a state on a particular bond ξ while the [·] notation is used to indicate
that the associated state depends upon the quantity within the square brackets.

Scalar deformation state: |Y |〈ξ〉 = [Y [x]〈ξ〉 · Y [x]〈ξ〉]
1
2 (4)

Deformed direction state: M(Y ) =
Y

|Y |
, |Y | 6= 0 (5)

Note that M(Y ) is a unit vector directed along Y .

Displacement state: U [x]〈ξ〉 = u(x + ξ) − u(x)

= u(Q) − u(x) (6)
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Scalar extension state: e(Y ) = |Y | − |X| (7)

The following definitions require the use of a dot product between two states. The formal
definition for the dot product between two states is given in [5] and is denoted here as
a • b for states a and b. The value of the dot product depends upon the point x ∈ R

3,
its neighborhood Hx, and the order and values of the states a and b. To evaluate the dot
product, the states a and b are evaluated at x. The dot product consists of an integral over
all bonds ξ in the neighborhood Hx. The integrand for this integral is given by contracting
a[x]〈ξ〉 and b[x]〈ξ〉. For scalar states the contraction is multiplication. For vector states,
this contraction is the usual Euclidean dot product of vectors. These two cases cover all dot
products between states in this report.

The following two scalars are used in conjunction with a constitutive model and the scalar
extension state e to evaluate internal forces.

Weighted volume: m = (ωx) • x

=

∫

Hx

ω(|ξ|)|ξ|2 dVQ (8)

Dilatation: θ(Y ) =
3

m
(ωx) • e

=
3

m

∫

Hx

ω|X|〈ξ〉|Y |〈ξ〉 dVQ − 3 (9)

A new state, ω, called the influence function is introduced in the proceeding two equations.
A formal definition for ω is given in [5, Definition 2.1]. Note that the definitions for weighted
volume and dilatation introduce the dot product between two states. Each state in the dot
product is defined at a point x within the undeformed body, and the integral associated
with the dot product is over the neighborhood, Hx. Therefore the dot product produces a
quantity (in these two cases a scalar) that depends upon the point x. One application of ω

is as a weight function in the above dot products.

A key element for constitutive model development is the additive decomposition of the scalar
extension state (7) into spherical and deviatoric parts.

e(Y ) = ei(Y ) + ed(Y ) (10)

Spherical extension state: ei(Y ) =
θ(Y )|X|

3
(11)
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Deviatoric extension state: ed(Y ) = e(Y ) − ei(Y )

= e(Y ) −
θ(Y )|X|

3

= |Y | − |X| −
θ(Y )|X|

3
(12)

2.2 Peridynamic treatment of the momentum equation for solids

Solution algorithms used for the momentum equation under finite element and peridynamic
discretizations are very similar. The internal force for peridynamics is identical to that
used in nonlinear finite element codes in the sense that forces are summed at a point. In
quasi-statics, the balance of forces at a point defines equilibrium, while in dynamics the sum
of forces equals the product of density and acceleration at that point. In each case, it is
necessary to evaluate the sum of forces at a point arising from deformations of the solid.
The method for evaluation of this force at a point is what differentiates peridynamics [4, 5]
from local continuum mechanics. This section is a brief introduction to the the internal force
vector associated with peridynamics with an emphasis on its relation to constitutive models.

Using the state-based theory of peridynamics, the momentum equation is given as:

ρ(x)ü(x, t) =

∫

Hx

{T (Y [x]) 〈p − x〉 − T (Y [p]) 〈x − p〉} dVp + b(x, t).

= f(x, Y, t) + b(x, t) (13)

The above equation is the peridynamic representation of Newton’s 2nd law for the Lagrangian
point x and defines the internal force vector f(x, Y, t). The function b(x, t) denotes a body
force per unit volume. T (Y [x]) is a vector force state function (to be defined later) and is
somewhat analogous to the stress tensor in local continuum mechanics in the sense that it
represents the material response due to deformations. For a specific material, T (Y [x]) would
be represented by a constitutive model. Note the notation T (Y [x]) is used to denote the
force state dependency upon the deformation state Y at the point x. This dependency is
used later to linearize the internal force vector about a deformation state Y 0[x].
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Figure 2. Ordinary material.

3 Ordinary State Based Constitutive Models

The vector force state for an ordinary material is defined as:

T (Y ) = t(Y ) M(Y ), (14)

where M is the deformed direction state (5). An ordinary material is such that T (Y )〈ξ〉
acts along the direction defined by Y [x]〈ξ〉, with a magnitude given by the scalar force state
t(Y )〈ξ〉, that is, the bond force between two points x and Q acts along the line connecting
the two points. A graphical representation of an ordinary material is shown if Figure 2.

The modulus state, K, is used to calculate the Jacobian associated with Newton iterations.
It represents a change in force at a point in the body for a given configuration y0 when a
small change to the configuration is superposed. The modulus state is given by linearizing
the vector force state, T (Y ), using the Fréchet derivative. T (Y ) is linearized about the
deformation state Y 0 associated with configuration y0. Note that U is the displacement state
(6) associated with a small displacement field u(x) superposed upon a deformed configuration
y0.

T (Y 0 + U) = T (Y 0) + ▽T • U (15)

▽T • U =
∂

∂ǫ
T (Y 0 + ǫU)|ǫ=0

= M(Y 0)
∂

∂ǫ
t(Y 0 + ǫU)|ǫ=0 + t(Y 0)

∂

∂ǫ
M(Y 0 + ǫU)|ǫ=0

= K • U (16)

The above relations define the modulus state for an ordinary material. Note that it consists
of two parts: 1) a constitutive model component defined by the Fréchet derivative of the
scalar force state; 2) a geometric component that arises due to rotation of a force carrying
bond.
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4 Two Parameter Peridynamic Standard Linear Solid

The viscoelasticity model developed here utilizes an additive decomposition of the scalar
extension state into its scalar volumetric and deviatoric parts. The model applies viscoelas-
ticity concepts from the local theory to the deviatoric part of the scalar extension state in
peridynamics. Just as in the case of plasticity [2], there are state variables and associated
evolution equations for those state variables. Using the additive decomposition, the constitu-
tive model remains reliant upon the elastic form of the constitutive model for the deviatoric
force state. There is no restriction or reason why similar concepts cannot also be applied to
the volumetric piece of the scalar extension state. Conceptually, applying viscoelasticity to
the deviatoric part creates a logical intermediate step between a fluid, which has little or no
elastic resistance to shear but may resist compressive volumetric deformations, and a solid
which has both volumetric and deviatoric resistance to deformation. Because isotropic ordi-
nary state based constitutive models use a scalar extension state decomposed into volumetric
and deviatoric parts, the viscoelasticity model is conceptually identical to one dimensional
spring/dashpot systems. The model extends the additive decomposition of the deviatoric
extension state to include a back extension state. For the case of a standard linear solid,
there is one back extension state and an associated evolution equation, relaxation time, and
relaxation modulus. In the generalized model, an arbitrary number of Maxwell models are
added in parallel with the standard linear solid, each with its own evolution equation, relax-
ation time, and relaxation modulus. This is conceptually identical to the way many local
viscoelasticity models are handled.

The remainder of this section is devoted to the detailed development of the two parameter
peridynamic standard linear solid.

4.1 Elastic stored energy and decomposition of scalar deformation

state

A key ingredient in the viscoelastic constitutive model is the decomposition of the scalar
extension state into dilatation and deviatoric parts, as well as the additive decomposition
of the deviatoric extension state into elastic ede and back extension edb(i) parts. This de-
composition is represented by the schematic of the standard linear solid shown in Figure 3.
Notation using the superscript db(i) is in anticipation of the more generalized version of this
model in Section 5.

The total deviatoric extension state (12) is additively decomposed into elastic and back parts
as:

ed = ede + edb(i). (17)

Using the above decomposition for the deviatoric extension state, an elastic stored energy
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Figure 3. Standard Linear Solid

functional W is assumed (see [5], Eq. 104)

W (θ, ed, edb(i)) =
kθ2

2
+

α∞

2
ed • ωed +

αi

2
(ed − edb(i)) • ω(ed − edb(i)). (18)

The scalar volumetric and deviatoric force states, ti and td respectively, are derived using W

as follows:

ti =
∂W

∂θ

∂θ

∂ei
, td =

∂W

∂ed
. (19)

With these expressions, the scalar force state t is given by

t = ti + td

= −
3p

m
ωx + (α∞ + αi)e

d − αiωedb(i), (20)

where p = −kθ is the the peridynamic pressure and k is the bulk modulus. Note that

∂θ

∂ei
=

3ωx

m
(21)

is given using the definition for the dilatation (9) and the decomposition of the scalar exten-
sion state (10). The elastic parameters α∞ and αi are defined by the following relationships:

α =
15µ

m
= α∞ + αi, (22)

where µ is the elastic shear modulus and m is the weighted volume (8). To prevent unbounded
creep of this model, α∞ > 0 must be used. It is assumed that αi > 0, otherwise the model
degenerates to a Kelvin model [7] which is not practical for implementation in explicit
or implicit codes with kinematically driven constitutive models. Therefore, the following
additional constraint is given:

0 < αi <
15µ

m
. (23)
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4.2 Evolution equation

Introduction of an evolution equation for the scalar deviatoric back extension is the key
ingredient of the viscoelasticity model. The evolution equation is given based upon the
following assumptions:

td(i) = ηiė
db(i)

= αi(e
d − edb(i)) (24)

where td(i) is the scalar deviatoric force state in the dashpot and by Newton’s 3rd law also
the force in the adjoining spring. Therefore, the evolution equation for the standard linear

solid, is given by:

ėdb(i) =
1

τ b
i

(ed − edb(i)), (25)

where τ b
i = ηi

αi
is a time constant associated with material response. The state of viscoelastic

materials is history dependent. It is assumed that edb(i)(t) → 0 as t → −∞. This assumption
will play a role in the convolution integral discussed in the following section. Selection of τ b

i

is constrained by thermodynamics, and expected or relevant material response. Note that
for physical and practical reasons ηi > 0. If ηi < 0, then the viscous effect would not oppose
motion and therefore this case is disallowed. If ηi = 0, then the model degenerates to two
springs in parallel which is physically sound but under practical conditions causes 1

τb

i

to be

undefined and therefore this case is disallowed. Since αi > 0, it follows that τ b
i > 0.

Note that the evolution equation (25) is driven by ed which is particularly suitable for
peridynamics codes which use either explicit and implicit time integration.

4.3 Time integration over a load step

Existence of a solution to the evolution equation depends upon τ b
i and the form of ed(t). A

solution is sought over the range t ∈ (0,∞). It is assumed that a solution exists; when it
does, it takes the following form [7]:

edb(i)(t) =
1

τ b
i

∫ t

−∞

e
−(t−s)

τb
i ed(s) ds (26)

Conceptually, the benefit of the above convolution integral is that it allows for an account-
ing of the complete time history of material loading. However, this is not convenient for
implementation as a constitutive model. In particular, it is inconvenient to integrate from
s = −∞ to s = t for every time step t = tn+1. This would require knowledge of the complete
time history of ed(t) which is not known in practice. In explicit or implicit codes, ed(t) is
only given or implied at two discrete points in time (previous step and current step) and
therefore the solution must be adapted to this use case. The approach taken here converts
the requirement that the complete time history of ed(t) be given into an equivalent require-
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ment for an initial condition on edb(i)(t). This is perhaps equivalently difficult to deliver in
practice but from a numerical implementation point of view this value is easily taken as zero.
The resulting model retains all the generality associated with (26) but in a more convenient
form.

Subscripts n denote function values evaluated at time tn, and subscripts n+1 denote function
values at time tn+1 = tn +∆t. Given {ed

n+1, e
d
n, e

db
n }, the problem is to find edb

n+1. To proceed,
the convolution integral (26) is first integrated by parts over s ∈ (−∞, tn+1) using the
assumption that edb(i)(t) → 0 as t → −∞. In the next step, the integral is broken into two
separate integrals over domains s ∈ (−∞, tn) and s ∈ (tn, tn+1). In the last step, ed(tn+1) is
written as ed(tn+1) = ed

n + ∆ed. These steps (shown below) produce a more practical form
of the convolution integral.

e
db(i)
n+1 = ed

n+1 −

∫ tn+1

−∞

e

−(tn+1−s)

τ
b
i ėd(s) ds

= ed
n + ∆ed − e

−∆t

τb
i

∫ tn

−∞

e
−(tn−s)

τb
i ėd(s) ds −

∫ tn+1

tn

e

−(tn+1−s)

τb
i ėd(s) ds. (27)

In the above expression, recognize that the third term can be written in the following form:

e
−∆t

τb
i

∫ tn

−∞

e
−(tn−s)

τb
i ėd(s) ds = e

−∆t

τb
i (ed

n − edb(i)
n ) (28)

Substituting this expression gives:

e
db(i)
n+1 = ed

n(1 − e
−∆t

τb
i ) + edb(i)

n e
−∆t

τb
i + ∆ed −

∫ tn+1

tn

e

−(tn+1−s)

τb
i ėd(s) ds (29)

The final step is to estimate the scalar deviatoric extension state ed(t) by linearly interpo-
lating over the time step as follows:

ed(t) ≈ ed
n +

∆ed

∆t
(t − tn), tn ≤ t ≤ tn+1. (30)

With this assumption on ed(t), the integral (29) can be evaluated which gives the update for

e
db(i)
n+1 :

e
db(i)
n+1 = ed

n(1 − e
−∆t

τb
i ) + edb(i)

n e
−∆t

τb
i + ∆ed −

∆ed

∆t
(1 − e

−∆t

τb
i )τ b

i

= ed
n(1 − e

−∆t

τb
i ) + edb(i)

n e
−∆t

τb
i + βi∆ed (31)

where βi is given by:

βi = 1 −
τ b
i

∆t
(1 − e

−∆t

τb
i ). (32)

After computing edb
n+1 with this update, it is straightforward to compute the deviatoric force

state from (20).

15



4.4 2nd Law of thermodynamics

The purpose of this section is to demonstrate that the proposed nonlocal viscoelasticity
model does not violate the 2nd law of thermodynamics. This is shown by demonstrating
that the rate of entropy production is positive. The approach used is equivalent to demon-
strating that power due to viscoelastic deformations is always positive thus satisfying the
dissipation inequality [1]. Following the procedure developed in [2, 6], the 1st and 2nd laws
of thermodynamics are combined to produce the following condition

ti • ėi + td • ėd − θ̇T η − φ̇ ≥ 0, (33)

where ti and td are the spherical and deviatoric force states (20) respectively, ei and ed are
the spherical and deviatoric extension states (11) and (12) respectively, φ is the free energy,
θT is the absolute temperature, and η is entropy. To proceed, a specific form for the free
energy will be taken as follows:

φ = W (θ, ed, edb(i)) + h(θT ) (34)

where W is the elastic stored energy functional (18), θ is the dilatation (9), edb(i) is the back
extension portion of the deviatoric extension state ed, and h is an arbitrary function of the
temperature θT . With this functional, (33) is written as:

(

ti −
∂W

∂θ

∂θ

∂ei

)

• ėi +

(

td −
∂W

∂ed

)

• ėd −
∂W

∂edb(i)
• ėdb(i) −

(

η +
∂h

∂θT

)

θ̇T ≥ 0 (35)

From this equation, the following relations are established:

ti =
∂W

∂θ

∂θ

∂ei
, td =

∂W

∂ed
, η = −

∂h

∂θT

, −
∂W

∂edb(i)
• ėdb(i) ≥ 0 (36)

The first two of the above relations were used in Section 4.1 to derive the elastic mate-
rial response (see (20)). The last condition is of particular interest here because it is the
power dissipation Pd associated with viscoelasticity. Using this expression and the evolution
equations (24) and (25), the viscoelastic power dissipated is

Pd = −
∂W

∂edb(i)
• ėdb(i)

= td(i) • ėdb(i)

= ηiė
db(i) • ėdb(i). (37)

Therefore Pd ≥ 0 for all values ηi ≥ 0 and the model satisfies the 2nd law constraint (33).

4.5 Relaxation response: time integration of single bond

When developing and studying viscoelasticity models, it is common to consider creep and
relaxation response. The creep response is measured/simulated by applying a fixed load
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Figure 4. Single Bond: Relaxation Schematic

and measuring/simulating the strain/displacement evolution over time. The creep response
can only be computed using a quasi-static or dynamic simulation because displacements
are unknown. On the other hand, the relaxation response is determined by applying and
holding a step displacement input and measuring or simulating the force relaxation over time.
Therefore a relaxation response can be calculated on a single bond using the time integration
algorithm developed above. The basic idea is to use (25) to evolve the back extension state
for a given step extension state input. Once the back extension state is computed, the elastic
extension state can be computed using the additive decomposition and then the force state
is computed using the elastic constitutive model.

It is also possible to write down an exact solution for the evolution of the scalar force state
td directly and thus compare the computed numerical solution with the exact solution. For a
constant step input ed

0, of the deviatoric extension state, the governing equation for evolution
of td is

ṫd +
1

τ b
i

td =
α∞ω

τ b
i

ed
0, (38)

where the right hand side term ed
0 is given by the step input. This equation is found by

combining the elastic constitutive model (20) with the evolution equation (24). An initial
condition td0 is needed for the scalar force state. At t = 0, the initial deviatoric scalar force
state induced by the step input is carried by the elastic portion of the standard linear solid,
that is, the back extension in the dashpot is zero. Therefore,

td0 = αωed
0

= (α∞ + αi)ωed
0. (39)

As the back extension state evolves, the scalar force state relaxes towards its long term value
which is dictated by α∞. In the discussion to follow, it is useful to define αi = λiα where
0 < λi < 1. When λi is close to zero, the model response is very nearly elastic whereas when
λi is close to one, the model approximates the Maxwell model which has unbounded creep.
For both cases, the analytic solution over time is given by

td(t) = ed
0(α∞ + αie

−t

τ
b
i ). (40)
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Figure 5. Single Bond: Relaxation Response

The above cases can be used to verify calculations in a peridynamics implementation of
the standard linear solid. Figure 4 depicts a simulation of the scalar force state in a single
bond. The initial condition is applied to the upper point, that is, it is given an initial
infinitesimal displacement of δ in the x-direction, where h(t) is the heaviside step function.
The relaxation response for τ i

b = 2 mili-seconds is shown in Figure 5 for three cases: λi = .01,
λi = .5, and λi = .99. In practical terms, these cases span the full range of possible responses
for the model. Solid lines were computed with the time integration algorithm developed in
Section 4.3; dots were computed with the analytical solution given in this section. When
λi = .99, α∞ ≈ α and the relaxation force state tends to 0 after long times t >> τ b

i . When
λi = .01, α∞ ≈ 0, viscous effects are nearly eliminated, and the response tends to be elastic.

4.6 Linearization: analytical formulae for the modulus state

To facilitate implicit solution methods, it is necessary to evaluate the modulus state. The
peridynamics standard linear solid presented here is geometrically nonlinear with respect
to displacements. The context is one in which a configuration Y 0 (deformation state) cor-
responds with an un-converged iterate to a solution for step n + 1 in a nonlinear solution
algorithm that requires linearization of the internal force. This is accomplished using the
linearization framework [3] by Silling and uses many of the elementary Fréchet derivative
results [2] for computing the modulus state. Note that the modulus state derived here is
based upon the discrete time integration algorithm given in Section 4.3.
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The linearization begins with the definition of the time discretized deviatoric force state (20):

tdn+1 = (α∞ + αi)ωed
n+1 − αiωe

db(i)
n+1

= αωed
n+1 − αiωe

db(i)
n+1 . (41)

The Fréchet derivative of tdn+1 requires evaluation of ∇ed
n+1 • U and ∇e

db(i)
n+1 • U of which the

former was given in [2, Eq. 14].

∇tdn+1 • U = αω∇ed
n+1 • U − αiω∇e

db(i)
n+1 • U (42)

Recall e
db(i)
n+1 given in (31), and observe that with respect to the Fréchet derivative, ed

n, and

e
db(i)
n are constant. Therefore,

∇e
db(i)
n+1 • U = βi∇ed

n+1 • U (43)

and the Fréchet derivative of t
d(i)
n+1 is defined by:

∇t
d(i)
n+1 • U = (α − αiβ

i)ω∇ed
n+1 • U

= α(1 − λiβ
i)ω∇ed

n+1 • U

= αωΓ∇ed
n+1 • U (44)

where

Γ = (1 − λiβ
i), αi = λiα. (45)

Repeated here for convenience, the value for βi is

βi = 1 −
τ b
i

∆t
(1 − e

−∆t

τb
i ). (46)

Using (44), the modulus state for the peridynamics standard linear solid is

K〈ζ, ξ〉 =

(

9k − α m Γ

m2

)

ω(|ζ |)ω(|ξ|)|ζ | |ξ|M(Y 0)〈ζ〉 ⊗ M(Y 0)〈ξ〉

+ αΓω(|ζ |)M(Y 0)〈ζ〉 ⊗ M(Y 0)〈ξ〉∆(ζ − ξ)

+ t(Y 0)〈ζ〉

(

I − M(Y 0)〈ξ〉 ⊗ M(Y 0)〈ξ〉

|Y 0|〈ξ〉

)

∆(ζ − ξ). (47)
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5 Generalized Peridynamic Standard Linear Solid

The peridynamics standard linear solid is generalized to include an arbitrary number of
time constants τ b

i , and relaxation moduli αi. This extension is given by simply adding
an arbitrary number of Maxwell models (spring/dashpot) in parallel with the peridynamics
standard linear solid. Most results presented in this section follow directly from the analogous
results described in Section 4.

5.1 Elastic stored energy and decomposition of scalar deformation

state

The elastic stored energy functional W , given in (18), is generalized to include N Maxwell
model mechanisms as follows:

W (θ, ed, edb(1), ..., edb(N)) =
kθ2

2
+

α∞

2
ed • ωed +

N
∑

i=1

αi

2
(ed − edb(i)) • ω(ed − edb(i)). (48)

The scalar volumetric and deviatoric force states, ti and td respectively, are derived similarly
as before using W as follows:

ti =
∂W

∂θ

∂θ

∂ei
, td =

∂W

∂ed
, (49)

where

t = ti + td

= −
3p

m
ωx + α∞ed +

N
∑

i=1

αiω(ed − edb(i))

= ti + α∞ed +
N

∑

i=1

td(i), (50)

where p = −kθ is the the peridynamic pressure and k is the bulk modulus. The elastic
parameter α∞ and relaxation moduli αi are defined by the following relationships:

α =
15µ

m

= α∞ +

N
∑

i=1

αi, (51)
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where µ is the elastic shear modulus, and m is the weighted volume. It is convenient to
normalize the relaxation moduli as αi = αλi so that

α∞ = α(1 −

N
∑

i=1

λi). (52)

As before, α∞ is bounded below by zero to prevent unbounded creep and thus the constraint
on the normalized relaxation moduli is given as

N
∑

i=1

λi < 1. (53)

Also, λi, each of which corresponds to a spring, must be positive. Otherwise, the ith

Maxwell mechanism would consist of a dashpot only which would produce a degenerate
evolution equation that is incompatible with the extension-state-driven relaxation approach
here. Combining this constraint with (53) fully defines the range of allowable values for each
λi.

0 < λi < 1. (54)

5.2 Evolution equations

For each relaxation time constant τ b
i , an evolution equation (25) is given. Motivated by

Newton’s 3rd law, the force state td(i) in each mechanism is assumed to be the same in both
the spring and dashpot. Mathematically, this is expressed in the following equations:

td = α∞ed +

N
∑

i=1

td(i)

= α∞ed + α

N
∑

i=1

λiω(ed − edb(i))

= α∞ed + α

N
∑

i=1

ηiė
db(i), (55)

where for each i

ηiė
db(i) = αi(e

d − edb(i)). (56)

To maintain consistency with the two parameter peridynamic standard linear solid, the
evolution equation for each i is written as

ėdb(i) =
1

τ b
i

(ed − edb(i)), (57)

where τ b
i = ηi

αi
= ηi

αλi
.
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5.3 Time integration over a load step

Results from section 4.3 are directly applicable. The time discretized form of (55) is written
as

tdn+1 = α∞ed
n+1 + α

N
∑

i=1

λiω(ed
n+1 − e

db(i)
n+1 ), (58)

where the update of e
db(i)
n+1 for each mechanism i is given by (31).

5.4 2nd Law of thermodynamics

The approach here follows directly from the treatment in Section 4.4. The viscoelastic power
dissipated Pd is

Pd = −
N

∑

i=1

∂W

∂edb(i)
• ėdb(i)

=

N
∑

i=1

td(i) • ėdb(i)

=
N

∑

i=1

ηiė
db(i) • ėdb(i). (59)

Therefore Pd ≥ 0 for all values ηi ≥ 0 and the model satisfies the 2nd law constraint (33).

5.5 Linearization: analytical formulae for the modulus state

The modulus state for the generalized model follows directly from results given in Section 4.6.
The modulus state (47) can be re-used with the parameter Γ given in (45) replaced with the
following value:

Γ = 1 −

N
∑

i=1

λiβ
i. (60)

The resulting modulus state and value for βi is repeated here for convenience:

βi = 1 −
τ b
i

∆t
(1 − e

−∆t

τb
i ),
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K〈ζ, ξ〉 =

(

9k − α m Γ

m2

)

ω(|ζ |)ω(|ξ|)|ζ | |ξ|M(Y 0)〈ζ〉 ⊗ M(Y 0)〈ξ〉

+ αΓω(|ζ |)M(Y 0)〈ζ〉 ⊗ M(Y 0)〈ξ〉∆(ζ − ξ)

+ t(Y 0)〈ζ〉

(

I − M(Y 0)〈ξ〉 ⊗ M(Y 0)〈ξ〉

|Y 0|〈ξ〉

)

∆(ζ − ξ). (61)
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6 Summary

The peridynamics viscoelasticity model developed here is applicable to problems in solid
continuum mechanics where fracture and rate effects are important. The model is applicable
to both explicit and implicit time integration of the momentum equation and inherits all the
advantages for modeling fracture that are associated with peridynamics. It was shown that
the model satisfies the dissipation inequality associated with 2nd law of thermodynamics.
All of the necessary ingredients for implementation in explicit or implicit time integrated
peridynamics codes are presented. This includes time discretization of evolution equations
and their updates, and the modulus state required for computation of the Jacobian used in
Newton iterations.
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