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ABSTRACT

We present a semi-supervised source separation methodology
to denoise speech by modeling speech as one source and noise
as the other source. We model speech using the recently pro-
posed non-negative hidden Markov model, which uses mul-
tiple non-negative dictionaries and a Markov chain to jointly
model spectral structure and temporal dynamics of speech.
We perform separation of the speech and noise using the re-
cently proposed non-negative factorial hidden Markov model.
Although the speech model is learned from training data, the
noise model is learned during the separation process and re-
quires no training data. We show that the proposed method
achieves superior results to using non-negative spectrogram
factorization, which ignores the non-stationarity and tempo-
ral dynamics of speech.

Index Terms— Semi-supervised source separation, De-
noising

1. INTRODUCTION

Denoising of speech has been a problem of interest for sev-
eral decades [1, 2]. It has various applications such as im-
proved speech recognition performance and enhanced intelli-
gibility in telephony. We approach this problem using a semi-
supervised source separation methodology. This is well suited
to the problem of interest because we can model one source
as speech and the other source as noise.

Non-negative spectrogram factorization techniques have
had a great deal of success in the source separation litera-
ture. This class of techniques refers to the use of non-negative
matrix factorization (NMF) [3] as well as its probabilistic
counterparts such as probabilistic latent component analysis
(PLCA) [4] for source separation [5]. These techniques use
a single non-negative dictionary to model each source. They
can be quite powerful in modeling the spectral structure of the
sources. However, they ignore the non-stationarity and tem-
poral dynamics of the sources, which is an important aspect
of speech.

Wilson et. al [6] proposed a non-negative spectrogram
factorization approach to denoising by including temporal
dependency constraints across time frames. Although this
method does capture some amount of temporal structure and
shows an improved performance over naive non-negative
spectrogram factorization, it still uses a single dictionary for
each source (ignoring non-stationarity) and does not have a
model of the temporal dynamics of speech.

We use a recently proposed source separation technique
[7] that jointly models the spectral structure and temporal
dynamics of speech using a non-negative hidden Markov
model (N-HMM). Using this model, speech is modeled using
multiple non-negative dictionaries and a Markov chain. The
mixture of speech and noise is modeled using a non-negative
factorial hidden Markov model (N-FHMM). Unlike the re-
cently proposed methodology, we perform separation in a
semi-supervised manner. Specifically, we learn a model of
speech from training data but we learn the model of noise
while actually performing separation. Therefore, no training
data is required for the noise. We show superior results to
using non-negative spectrogram factorization in the presence
of heavy real world noise.

2. PROPOSED METHOD

In this section, we describe the proposed denoising method.
We start with an overview of the modeling strategy. We then
briefly describe the probabilistic models that we employ. Fi-
nally, we describe the actual denoising methodology.

2.1. Overview

Speech and noise are both modeled in the spectrogram do-
main. Particularly, each time frame of the spectrogram is
modeled as a linear combination of the spectral components
from a dictionary. Previous non-negative spectrogram fac-
torization techniques use a single dictionary to model an en-
tire source. Therefore, when the mixture is composed of two
sources, every single column of the mixture spectrogram is
modeled as a linear combination of spectral components from
the concatenation of the dictionaries of the two individual
sources.

We also model noise using a single dictionary. However,
we use a N-HMM [7] to model speech. This model uses
multiple dictionaries in order to model the non-stationarity
of speech. The speech in a given time frame of the spectro-
gram is modeled by a linear combination of the spectral com-
ponents from one (of the many) dictionaries of the speech
model. However, the noise (in any time frame of the spec-
trogram) is modeled by a linear combination of the spectral
components from a single dictionary. A given time frame
of the noisy speech (mixture) is therefore modeled as a lin-
ear combination of spectral components from the concatena-
tion of one of the dictionaries of speech and the dictionary of
noise. This is illustrated in Fig.1. An example of dictionaries
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Fig. 1: Illustration of the possible combinations of dictio-
naries using the proposed method. In this simple example,
speech is modeled using only two dictionaries.

Fig. 2: Dictionaries of spectral components of speech. Eigh-
teen (of the forty) dictionaries that were learned from a spe-
cific sample of speech are shown. Each dictionary contains
ten spectral components and roughly corresponds to a subunit
of speech.

that are used to model a specific sample of speech is shown in
Fig.2. These dictionaries were learned from training data.

2.2. Probabilistic Model

The graphical model of the N-HMM is shown in Fig.3. Each
dictionary corresponds to a state q. At time t, the N-HMM is
in state qt. Each spectral component of a given dictionary q
is represented by z. A given spectral component is a multi-
nomial distribution. Therefore, spectral component z of dic-
tionary q is represented by P (f |z, q). Since each column of
the spectrogram of speech is modeled as a linear combination
of spectral components, time frame t (modeled by state q) is
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Fig. 3: Graphical model of the N-HMM.

Ft

Q
(1)
t Q

(1)
t+1

Ft+1

Q(2)

v
(1)
t+1 + v

(2)
t+1v

(1)
t + v

(2)
t

St Zt Zt+1St+1

Fig. 4: Graphical model of the N-FHMM for denoising.

given by the following observation model:

P (ft|qt) =
∑
zt

P (ft|zt, qt)P (zt|qt),

where P (zt|qt) is a multinomial distribution of mixture
weights for time t. The transitions between states are modeled
with a Markov chain, given by P (qt+1|qt).

We model the mixture of speech and noise with a N-
FHMM [7], whose graphical model is shown in Fig.4. A
N-HMM of speech can be seen in the upper half of the graph-
ical model. A degenerate N-HMM (single state for all time
frames) of noise can be seen in the lower half of the graphical
model. A given time frame is modeled by a pair of dictionar-
ies, {q(1)t , q(2)}, one for each source. Of course, speech can
be modeled by any one of many dictionaries whereas noise
is modeled by a single dictionary. The interaction model (of
the two sources) introduces a new variable st that indicates
the ratio of the sources at a given time frame. P (st|q(1)t , q(2))
is a Bernoulli distribution that depends on the states of the
sources at the given time frame. The interaction model is
given by:

P (ft|q(1)t , q(2)) =
∑
st

∑
zt

P (ft|zt, st, q(st)t )P (zt, st|q(1)t , q(2)),

where P (ft|zt, st, q(st)t ) is spectral component zt of state
q
(st)
t of source st. Of course, there is only one valid state for

noise. P (zt, st|q(1)t , q(2)) gives the mixture weights for the
spectral components of state q

(1)
t of source q(2).

2.3. Denoising Methodology

The denoising procedure is as follows:

1. Learn the parameters of a N-HMM model of speech
from clean speech training data (spectrogram), using
the expectation-maximization (EM) algorithm.
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(b) Original data corrupted with noise.
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(c) Denoised data using the proposed
method.
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(d) Denoised data using non-negative
spectrogram factorization.

Fig. 5: Illustration of denoising on a toy example using the
proposed method and non-negative spectrogram factorization.
The noise source is uniformly distributed random noise.

2. Model the spectrogram of noisy speech using a N-
FHMM. Specify a subset of the parameters of the
N-FHMM using the above learned parameters. Specifi-
cally, specify the parameters of the spectral components
and transition matrix of speech.

3. Learn the remaining parameters of the N-FHMM using
the EM algorithm.

4. Using these parameters, construct a soft mask by which
to modulate the mixture spectrogram to obtain the de-
noised speech spectrogram.

5. Obtain the denoised speech waveform using the above
denoised speech spectrogram.

The specific details of the EM equations and the construc-
tion of the soft mask can be found in [7]. The results of us-
ing this methodology are illustrated on toy data (representing
toy spectrograms) in Fig.5. Two dictionaries of two spectral
components each were used to model the clean toy data. As
a comparison, the same experiment was repeated using non-
negative spectrogram factorization [5]. In this case, four spec-
tral components were used to model the clean toy data. There-
fore, both methods use the same number of spectral compo-
nents to model the clean training data. In both cases, an oracle
example is used (noisy test data is obtained by adding ran-
dom noise to the clean training data). As shown in the Fig.5,
the proposed method does a better job of denoising than non-
negative spectrogram factorization.

3. RESULTS AND DISCUSSION

We performed speech denoising experiments using the pro-
posed method. As a comparison, we repeated the same exper-
iments using non-negative spectrogram factorization. Specif-
ically, we performed experiments on sixteen speakers (eight
male and eight female) from the TIMIT database. For each
speaker, we performed experiments using three different real
world noises (ambient noise at an airport, traffic junction, and

cafeteria). Therefore, we performed a total of forty-eight ex-
periments for a given SNR.

For a given experiment, we obtained the training data by
concatenating nine sentences of the given speaker. We ob-
tained the spectrogram of this data using a window size of
1024 and a hop size of 256 (at Fs=16,000). We learned the
N-HMM parameters from this data. Specifically, we learned
40 dictionaries of 10 spectral components each as well as the
transition matrix. When using non-negative spectrogram fac-
torization, we learned 1 dictionary of 30 spectral components
each. These values were used because they were found to
be optimal for source separation and a decrease in separation
performance was observed when more than 30 spectral com-
ponents per source were used for non-negative spectrogram
factorization [7]. 1 dictionary of 10 spectral components was
used to model noise in both cases.

We then obtained the noisy speech by adding noise to an
unseen sentence of the same speaker. Finally, we learned the
unspecified parameters of the N-FHMM and reconstructed
the clean speech. We repeated the experiment at three dif-
ferent SNRs.

Since this is essentially a source separation problem, we
used the BSS-EVAL metrics [8] for evaluation. For each
SNR, we report the average metrics (Table 1) on all sixteen
speakers using all three types of noise. As a comparison, we
report the same metrics using non-negative spectrogram fac-
torization. One specific example is shown in Fig.6.

The actual suppression of the noise is reflected in the
source to interference ratio (SIR). As shown in Table 1, the
proposed method achieves superior results at all noise levels.
The superior performance of the proposed method is more
pronounced as the noise level increases (lower SNR). The
artifacts that are introduced by the denoising process are re-
flected in the source to artifacts ratio (SAR). Non-negative
spectrogram factorization introduces less artifacts than the
proposed method. However, the difference is quite small for
high noise levels (0dB and -3dB SNR). The overall perfor-
mance is reflected in the source to distortion ratio (SDR). The
proposed method performs better at high noise levels due to
the higher noise suppression and only a small increase in ar-
tifacts. At 3dB SNR, non-negative spectrogram factorization
does better due to a smaller difference in noise suppression
and a larger difference in artifacts

The main reason for increased noise suppression capa-
bility (SIR) when using the proposed method is that it is a
more structured and constrained model than non-negative
spectrogram factorization. Particularly, every time frame of
the speech part of the noisy speech spectrogram is explained
by one (out of forty) dictionaries. Each dictionary contains
spectral components that correspond roughly to one specific
subunit of speech. Therefore, unless a given time frame cor-
responds to an unvoiced phoneme, the speech model will
not be able to explain the noise very well, thus suppressing
it. Moreover, the temporal dynamics help in deciding which
dictionary is used to explain a given time frame of the data.

On the other hand non-negative spectrogram factorization
uses a single dictionary to explain all of the voiced and un-
voiced phonemes. Therefore, even if a time frame of the
speech part of the noisy speech spectrogram corresponds to
a voiced phoneme, certain spectral components from the dic-
tionary will be able to explain noise in the same time frame.
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(a) Noisy speech.
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(b) Denoised speech using the proposed method.
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(c) Denoised speech using non-negative spectrogram factorization.

Fig. 6: Illustration of speech denoising using the proposed
method and non-negative spectrogram factorization. The
noise source is ambient noise in an airport.

A similar argument can be used to explain the slightly
higher artifacts that are introduced when using the proposed
method. Since non-negative spectrogram factorization can
use more spectral components to explain a given time frame
of speech (thirty components rather than ten components), it
can sometimes do a better job of explaining some of the sub-
tleties of speech. It should be stressed that the difference in
SAR is quite small at high noise levels.

These results suggest that the proposed method is prefer-
able to non-negative spectrogram factorization for denoising
at high noise levels.

4. CONCLUSIONS

We have presented a new method for denoising of speech
by framing it as a semi-supervised source separation prob-
lem, using recently proposed probabilistic models. We have
shown that it achieves superior results to using non-negative

SIR (dB) 3dB 0dB -3dB
Proposed Method 17.24 12.95 6.66

Factorization 12.26 6.49 0.61

SAR (dB) 3dB 0dB -3dB
Proposed Method 8.17 7.82 4.70

Factorization 12.27 8.90 5.38

SDR (dB) 3dB 0dB -3dB
Proposed Method 7.41 6.22 1.49

Factorization 8.81 3.83 -1.89

Table 1: Source separation metrics for various mixing levels
(SNR) of speech and noise.

spectrogram factorization in heavy noise conditions. This is
attributed mainly to the fact the N-HMM and N-FHMM are
more structured models than non-negative spectrogram fac-
torization, as they explicitly model non-stationarity and tem-
poral dynamics of speech.
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