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Abstract We use the non-oscillatory balanced numerical scheme developed in Part I to track the dynamics
of a dry highly nonlinear barotropic/baroclinic coupled solitary wave, as introduced by Biello and Majda
(2004), and of the moisture fronts of Frierson et al. (2004) in the presence of dry gravity waves, a barotropic
trade wind, and the beta effect. It is demonstrated that, for the barotropic/baroclinic solitary wave, except for
a little numerical dissipation, the scheme utilized here preserves total energy despite the strong interactions
and exchange of energy between the baroclinic and barotropic components of the flow. After a short transient
period where the numerical solution stays close to the asymptotic predictions, the flow develops small scale
eddies and ultimately becomes highly turbulent. It is found here that the interaction of a dry gravity wave
with a moisture front can either result in a reflection of a fast moistening front or the pure extinction of the
precipitation. The barotropic trade wind stretches the precipitation patches and increases the lifetime of the
moisture fronts which decay naturally by the effects of dissipation through precipitation while the Coriolis
effect makes the moving precipitation patches disappear and appear at other times and places.

Keywords Non-oscillatory balanced schemes · Barotropic-baroclinic nonlinear interactions · Precipitation
fronts · Large scale equatorial waves

PACS 02.70.Bf; 02.30.Jr; 92.60.Bh; 92.60.Dj; 92.60.Jq

1 Introduction

It is argued in the introduction of Part I of this series of papers that simplified models with a crude vertical
resolution are an important tool for the study of both lateral energy exchange between the tropics and the
midlatitudes and for model parametrizations of tropical deep convection and convectively coupled waves,
see [1–9] and [10–15] for references. Here we test and use the idealized model developed in Part I for the
case of a dry equatorial solitary wave composed of two barotropic and baroclinic components, nonlinearly
interacting with each other, and we use it to study the effect of moisture through the interactions of dry gravity
waves, a barotropic trade wind, and the Earth’s rotation with propagating precipitation fronts. The solitary
wave solution was discovered by Biello and Majda [16] as a result of the resonant interactions of equatorial
barotropic and baroclinic Rossby waves while the precipitation fronts were recently introduced by Frierson et
al. [17] as a zero limiting solution for the linearized equatorial shallow water equations with moisture.
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Recall that our idealized model, discussed in Part I, carries a barotropic mode and a baroclinic mode
interacting through highly non-linear terms and is augmented with a vertically integrated moisture equation
to add the moisture effects in a fashion mimicking a tropical deep convective parametrization. The governing
equations are summarized below for convenience.

∂v

∂t
+ v · ∇v + yv⊥ + ∇ p = −1

2
(v · ∇v + vdivv)

= −1

2
div (v ⊗ v)

divv = 0, (1.1)

∂v

∂t
+ v · ∇v − ∇θ + yv⊥ = −v · ∇v

∂θ

∂t
+ v · ∇θ − divv = C − Q R (1.2)

and
∂q

∂t
+ v · ∇q + Q̃divv = −P + E . (1.3)

The equations in (1.1) through (1.3) constitute, respectively, an incompressible system for the barotropic
waves and a (linear) shallow water system for the advected equatorial baroclinic waves, forced and coupled
through highly nonlinear terms, plus a vertically integrated moisture equation, providing a closure for the
deep convective-like heating forcing the baroclinic system. The equations in (1.1) and (1.2) are obtained by a
Galerkin projection of the beta-plane primitive equations onto the barotropic and the first baroclinic modes.
More discussions of these equations and their detailed derivation are found in Part I and [1]. Here v̄ is the
barotropic velocity, p̄ is the barotropic pressure, v is the first baroclinic velocity component, θ is the associated
potential temperature, C is a deep convective-like heating, and Q R is the radiative cooling. In (1.3), q is the

vertically averaged moisture content with Q̃ the moisture stratification. The term P is the bulk precipitation
rate while E is the surface evaporation rate.

Moreover, a fractional stepping–operator splitting algorithm for solving the coupled system formed by
(1.1) and (1.2) was introduced in Part I. When the effects of moisture and radiation are ignored, C = Q R = 0,
this system is decomposed into a linear subsystem for the advected equatorial baroclinic waves, an incom-
pressible system for the barotropic flow, and a nonlinear ODE system gathering the interaction terms on the
right hand sides of (1.1) and (1.2).

As in Part I, we consider a zonally oriented channel domain centered at the equator with periodic boundary
conditions in the zonal variable x and no-flow boundary conditions at the North/South channel walls, v(x, y =
±Y ) = v̄(x, y = ±Y ) = 0. Here Y is the distance of the walls from the equator which is fixed to Y =
5, 000 km (unless otherwise specified) while the zonal period is set to X = 40, 000 km, the Earth perimeter
at the equator. It is particularly interesting to recall that, under the given boundary conditions, the dry system
conserves energy in the absence of external forces and the three split subsystems conserve their own energies
by design. More precisely, the baroclinic energy,

EC (t) = 1

4

∫ Y

−Y

∫ X

0

|v|2 + θ2 dxdy, (1.4)

and the barotropic energy,

ET (t) ≡ 1

2

∫ Y

−Y

∫ X

0

|v|2, dxdy (1.5)

are conserved in the absence of the interaction terms on the right hand sides of (1.1) and (1.2) and C = Q R = 0
while the total dry energy

Ed ≡ EC + ET (1.6)

is conserved when C = Q R = 0. We will see in Sect. 3 that the whole system formed by (1.1), (1.2), and (1.3)
dissipates energy through precipitation.

The advected baroclinic equations are discretized by the f -wave algorithm of Bale et al. [18] and the
barotropic system is handled by the non-oscillatory central scheme of Levy and Tadmor [19] while the
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decoupled ODE’s are solved by a second order Runge-Kutta method. Recall that the f -wave method con-
stitutes a non-oscillatory balanced scheme for hyperbolic systems with varying flux functions and source
terms. The three systems communicate with each other in an overall fractional step–splitting procedure. Re-
call also that the f -wave algorithm and the central scheme are validated independently for the equatorial
channel domain by using exact solutions, consisting of a variety of equatorial baroclinic waves and Rossby
wave packets, respectively.

The remainder of the paper is organized as follows. In Sect. 2, the solitary wave solution of Biello and
Majda [16] is formulated explicitly and used to initialize the dry system formed by (1.1) and (1.2) when
C = Q R = 0. In other words, the overall time splitting strategy coupling the f -wave algorithm for the
advected baroclinic waves, the central scheme for the barotropic flow, and the Runge-Kutta ODE solver for
the interacting terms is tested for the first time. The results reported in Sect. 2 reveal that the overall scheme
preserves total energy up to little numerical dissipation despite the highly non-linear interactions between the
baroclinic and barotropic components of the wave. It is also demonstrated that the numerical solution stays
close to the asymptotic predictions during a short transient period after which the flow develops small scale
eddies and ultimately becomes highly turbulent.

In Sect. 3, we reintroduce the moisture equation into the system and consider some (exact) limiting so-
lutions constructed recently by Frierson et al. [17] in the form of precipitation fronts. Namely, solutions for
the linear one-dimensional shallow water equations with moisture forced by a convective heating-like relax-
ation scheme in the limit of zero relaxation time, for the simple case without rotation and without barotropic
advection. The precipitation fronts consist of moving interfaces separating moist-saturated regions and dry-
unsaturated regions. We then use these solutions to construct appropriate initial conditions to use the non-
oscillatory balanced code for the case with moisture. Our setup consists of a moving and areally decaying
moist region surrounded by two dry regions; a dying moisture wave (see Figs. 4 and 5 below). After the
validation of our setup with a finite (non zero) convective time and the exploration of the interactions of dry
gravity waves with the precipitation fronts, we gradually add the effect of advection by a trade-wind like
barotropic wind, the effect of rotation (beta-effect), and then both rotation and barotropic advection. The re-
sults reported in Sect. 3 demonstrate that, in the simplest setup of no barotropic advection and no rotation,
the interaction of a dry gravity wave with a moisture front can either result in a reflection of a fast moistening
front or the pure extinction of the precipitation, depending on the strength and steepness of the wave itself.
The barotropic trade wind serves to stretch the precipitation patch and increases the lifetime of the precip-
itation front, which decays naturally by the effects of dissipation through precipitation. The Coriolis effect
makes the moving precipitation patches disappear and appear at other times and places in a highly chaotic
and intermittent process, given the abundance of equatorial waves with which they can interact. A concluding
discussion is given in Sect. 3 while the algorithm yielding the dying moisture wave–initial data of Sect. 3 is
summarized in the Appendix at the end.

2 Nonlinear barotropic/baroclinic coupling

We use the overall algorithm obtained by coupling the schemes described in Sects. 4 and 5 of Part I via the
interaction ODE system (Eq. (3.4) of Part I) via the Strang’s fractional step procedure. This test particularly
demonstrates the robustness of the code and its usefulness for studying the baroclinic-barotropic interactions
near the equator. We use, for this purpose, an asymptotic (KdV-like) solution, to the coupled equations in
(1.1) and (1.2), which was discovered recently by Biello and Majda [16], in the long-wave limit [20] where
the zonal wavelength is assumed to be larger than the meridional wavelength of about 5400 km. This partic-
ular value for the meridional wavelength is dictated by a resonance condition which leads to a relationship
between the meridional wavenumber of the barotropic Rossby wave and the meridional index of the baroclinic
Rossby wave. The width of our channel is thus adjusted accordingly. For simplicity, we skip the details of
the derivation of the solitary waves. The interested reader is referred to [16]. The solitary wave of Biello and
Majda is given in the form

ψ(x, y, t) = B(x, t) sin(k2 y)

u(x, y, t) = A(x, t)

(

Dm−1 − 1

m + 1
Dm+1

)
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Fig. 1 Time history of the total (solid), the baroclinic (dashed), and the barotropic (dash-dotted) energies, normalized by their
corresponding initial values, for the barotropic-baroclinic interacting solitary wave

v(x, y, t) = 2
√

2

2m + 1

∂ A(x, t)

∂x
Dm

θ(x, y, t) = A(x, t)

(

Dm−1 + 1

m + 1
Dm+1

)

(2.1)

where the amplitude functions A and B, which solve a highly nonlinear dispersive PDE system in (x, t), are
given by the formulas

A(x, t) = Ā + αsech2(k1(x − cs t)); B(x, t) = B̄ − βsech2(k1(x − cs t))

with Ā and B̄ are two closely related parameters which fix a mean barotropic wind at the equator, while α and
β are two constants setting the wave amplitudes. The Dm’s, m = 1, 2, are the parabolic cylinder functions
[20, 21]. k1 is the zonal wavenumber and k2 =

√
2m + 1 is the meridional wavenumber. In our simulation

below we pick m = 1 and cs a negative real number; the westward traveling speed of the solitary wave.
We run the fractional step algorithm, linking the three different routines as discussed above, with the

initial data provided by the solitary wave in (2.1). We fix the parameters so that the mean barotropic wind at
the equator blows eastward with a magnitude of 5 m/s and the zonal wavelength is on the order of 10,000 km.
The resulting (total) wave speed of the solitary wave is cs = −23 m/s. We use a resolution of 512 × 150 grid
points, yielding approximately a mesh size of 75 km in each direction x and y, and a CFL = .9 based time
step of about 15 minutes.

The history plots of the total (solid), the baroclinic (dashed), and the barotropic (dash-dotted) energies,
normalized by their corresponding initial values, up to 20 days are shown in Fig. 1. In spite of the strong
interactions between the two flow components during this long-time run, reflected by the auto-compensating
ups and downs of the barotropic and baroclinic energies, the total energy is essentially preserved as should be
the case, except for some small numerical dissipation becoming noticeable after about t = 5 days when some
small scale structures start to develop. Nevertheless, this rather small diminishing in total energy with time is
expected to decrease with grid refinement.

Also from Fig. 1 we can see that during the first two days or so the barotropic and baroclinic energies
do not change much. This actually marks the time period during which the numerical solution remains fairly
close to the asymptotic (initial) solution depicted in (2.1). In fact, in Fig. 2 we display both the baroclinic (left
panels) and barotropic (right panels) flow structures by plotting the contours of the potential temperature, θ ,
for the baroclinic flow and those of the vorticity, ω, with the corresponding velocity profiles on top of them,
for the asymptotic solution (E), in (2.1), and the numerical solution (N), obtained by the coupled code, at time
t = 2 days.

Up to this time, the two solutions stay fairly close to each other both qualitatively and quantitatively.
Especially, we notice that the two solutions are overall well aligned with each other, suggesting that the phase



A non-oscillatory balanced scheme for an idealized tropical climate model. Part II 359

0 10 20 30

−5

0

5

Baroclinic

0 10 20 30

−5

0

5

E

Barotropic

0 10 20 30

−5

0

5

Y
 (

1
0

0
0

 k
m

)

0 10 20 30

−5

0

5

N

X (1000 km)

Fig. 2 Baroclinic and barotropic structure of the solitary wave at time t = 2 days. Comparison of the KdV-asymptotic solu-
tion (top panels) and the numerical solution (bottom panels). Contours of the potential temperature and those of the vorticity,
respectively, with the corresponding velocity profiles overlaid. Contour interval 0.2. Solid: positive, Dash: negative, Dots: zero

speeds are in good agreement. However, we do see that the numerical (which provides an approximation to
the full equations; with no asymptotics) deviates from its asymptotic analogue by showing a tilted oval shape
at the center of the θ -contours on the left panel and a speed up of the front of the off equatorial vortices shown
on the right bottom panel.

Figure 3 displays the flow structures (similarly to Fig. 2) of the numerical solution at times t =
5.7, 11.5, 17 days. Particularly apparent from the contours of θ , some small scale structures are starting to
form at time t = 5.7 days, also we see that the two vortices which are closer to the equator are amplifying,
thus, yielding very steep gradients. By the time t = 11.5 days, the original vortices are split on half, thus,
transferring energy into small scales.

This energy cascade becomes even more visible at time t = 17 days and the numerical solution does no
longer look like the original solitary wave. One plausible explanation for this bifurcation would be the shear
instability which is associated with the sudden increase of the barotropic energy starting from time t ≈ 2 days.
The amount of energy permitting the increase of the barotropic energy is being extracted from the baroclinic
flow (thanks to the energy conservation principle of the scheme) thus completely destroying the initial solitary
wave structure. It is worth mentioning here that the barotropic mean profile utilized in the solitary wave exact
solution in (2.1) is linearly unstable; however, the asymptotic theory [1, 16] allows a general, possibly linearly
stable, barotropic shear, constrained to have only the same Fourier coefficient B for ψ from (2.1). While it is
not important for us here, it would be interesting to see if such solutions are stable to be expected to occur in
nature.

3 Effects of moisture

3.1 The convective relaxation scheme

Now we re-couple the equation for the vertically averaged moisture with a background gradient in (1.3) into
the barotropic-baroclinic interaction equations in (1.1) and (1.2) via a simple convective parametrization-like
relaxation scheme. Our goal is to test our non-oscillatory balanced scheme on the equations with moisture.
Realistic convective parametrizations involve a large number of parameters and variables representing the
different complex processes associated with the atmospheric convection such as the different cloud types,
condensation and evaporation, radiative effects, etc. and would also likely invoke an active boundary layer
[15, 22, etc.]. For the sake of simplicity, as in [17, 23] we use rather a simple relaxation scheme to parametrize
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Fig. 3 Same as Fig. 2 but for the numerical solution at times t = 5.7, 11.5, 17 days

the precipitation rate, P , which is set equal to the convective heating, C, in (1.2). In order to access a certain
family of exact solutions in the form of precipitation fronts, which have recently been discovered by Frierson
et al. [17] and briefly summarized below, all the external forces, such as the sea-surface evaporation flux E ,
the momentum friction (not added to the equations), and the radiative cooling Q R , are also ignored here, i.e.,
we set E ≡ 0, and Q R ≡ 0 in (1.1) and (1.3). Nevertheless, it is argued in [17] that those terms do not
affect much the dynamics of the moisture fronts on which we focus here. Namely, we consider the following
barotropic-baroclinic system with a moisture relaxation scheme.

(A)
∂v

∂t
+ v · ∇v + yv⊥ + ∇ p = −1

2
div (v ⊗ v)

(B) ∇ · v = 0

(C)
∂v

∂t
+ v · ∇v − ∇θ + yv⊥ = −v · ∇v (3.1)

(D)
∂θ

∂t
+ v · ∇θ − div (v) = P

(E)
∂q

∂t
+ v · ∇q + Q̃div (v) = −P.

The precipitation rate is parametrized according to the relaxation scheme

P = 1

τc
(q − q̃(θ))+ (3.2)
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where q̃(θ), which measures a significant factor of the saturation value of environmental moisture, sets a
moisture threshold beyond which the environment can sustain deep convection and hence produces precipita-
tion. (Precipitation occurs only if the moisture content, q , exceeds the ‘saturation’ value, q̃(θ).) In (3.2) τc is
a convective characteristic time which is fixed to τc = 2 hours, see [17, 23] and

q̃(θ) = q̂ + αcθ (3.3)

with αc is a positive parameter and q̂ is a fixed positive threshold constant. A relationship between αc and

Q̃ is obtained by imposing a fixed gravity wave speed, of 15 m/s, roughly consistent with observations [24],
within the moist regions where P > 0. This is done below. Versions of this “convective adjustment scheme”
are often used in realistic general circulation models for climate; see [17, 23] for references.

3.2 Conservation of moist-equivalent potential temperature and moist gravity waves

When the radiative cooling and the surface evaporation are ignored, the equivalent potential temperature

θe = θ + q

satisfies the equation

∂θe

∂t
+ v · ∇θe − (1 − Q̃)divv = 0 (3.4)

i.e., θe satisfies a divergence equation; therefore, it is conserved. As noted in [17], for rapid convective adjust-
ments (small τc’s), within the precipitation regions where P > 0, we have

q = q̂ + αcθ + O(τc).

(Otherwise, P will explode when τc −→ 0.) Therefore, (3.4) yields a new equation for the dry potential
temperature, when τc −→ 0,

∂θ

∂t
+ v · ∇θ − 1 − Q̃

1 + αc
divv = 0. (3.5)

By substituting (3.5) to the θ -equation in (3.1) and gathering the momentum equations (3.1)(C), a new system
of shallow water equations with gravity waves moving at a speed

cm =

√

1 − Q̃

1 + αc
(3.6)

emerges. As in [17], we call these new waves ‘moist gravity waves’. By relating cm to the speed of observed
convectively coupled Kelvin waves (e.g., [24]) which is about 15 m/s, the relationship in (3.6) links the

parameters Q̃ and αc when the moist gravity wave speed cm is given. We use in our calculations the value

cm = 15 m/s. To close this equation and obtain plausible values for both Q̃ and αc, we need to impose a
value for the moisture gradient Q̄. For a moisture gradient of Q̄ = 1.49 g kg−1 km−1, and the hight of the
troposphere of HT = 16 km (see Part I for details), we obtain

Q̃ ≈ .9 =⇒ αc ≈ .025.

Still, we need to fix a value for the convective threshold, q̂ in (3.3), for the moisture anomalies. By looking at
Fig. 9.33 in Emanuel’s book [25], we suggest the value q̂ ≡ 2 g/kg.
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3.3 Dissipation of moist energy and entropy

We introduce the moist energy

Em(t) = 1

4

∫ X

0

∫ Y

−Y

(q + Q̃θ)2

(1 − Q̃)(αc + Q̃)
dxdy. (3.7)

As discussed in [17], the total energy,
E = Em + Ed ,

obtained by adding the moist energy in (3.7) to the dry energy introduced in (1.6), associated with the
equations in (3.1), (3.2), and (3.3), satisfies the following equation,

∂

∂t
E(t) = − 1

2(αc + Q̃)

∫ X

0

∫ Y

−Y

(q − αcθ)P dxdy ≤ 0. (3.8)

Notice that q ≥ q̂ + αcθ > αcθ , if P > 0 which guarantees the energy dissipation in (3.8). Therefore,
as pointed out in [17], the system in (3.1), (3.2), and (3.3), possesses a principle of energy dissipation via
precipitation. Furthermore, it is shown in [17], by similar arguments, that, in the absence of the barotropic
flow, the gradients of v, θ and q also satisfy an energy principle where an L2-like norm involving ∇v, ∇θ, ∇q ,
namely the total energy for the gradient system, is similarly dissipated by precipitation. Therefore, the system
in (3.1) will not develop (first order) discontinuities such as shocks during time integration. However, as we
will see below, kinks in the level set contours of (i.e., discontinuities in the first derivatives of) v, θ and q are
permitted. Moreover, following [17], the moisture system in (3.1) possesses an entropy-like function given by

Z = q + Q̃θ , which is always decreasing along the trajectories of the barotropic flow. In fact, combining the
equations (D) and (E) in (3.1) yields

∂ Z

∂t
+ v · ∇Z = −(1 − Q̃)P ≤ 0. (3.9)

This equation will be used below to design a numerical scheme for the moisture system using the different
methods discussed in Sects. 3–5.

3.4 Numerical solver for the moisture equation and its coupling into the barotropic-baroclinic
interaction code

Now we incorporate the moisture equation into the barotropic-baroclinic interaction algorithm discussed in
Sects. 3–5 to obtain a global solver for the equations with moisture in (3.1) with the precipitation rate, P , given
by the relaxation scheme described in (3.2) and (3.3). Since the Z -equation in (3.9) possesses a monotonicity
principle and involves less terms than the q-equation in (3.1) (E), it is meaningful and more practical to use
the former, instead of the latter, in (3.1).

We expand the fractional step scheme developed Part I and used in Sect. 2 to include the moisture equation.
The forcing terms in (3.1) (D) and (3.9) are added to the interaction system in Eq. (3.4) of Part I which is
augmented with an equation for θ and an other equation for Z accounting for the dynamics induced by the
forcing terms on the right-hand side while the barotropic advection part of the Z -equation forms the fourth
piece of the new algorithm. The following two systems are substituted/added into the global fractional step
(Strang-splitting) strategy.

∂v

∂t
= −1

2
div (v ⊗ v) − cdv

∂v

∂t
= −v · v − cdv

∂θ

∂t
= P − Q R (3.10)

∂ Z

∂t
= −(1 − Q̃)P + E

divv = 0
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and

∂ Z

∂t
+ v · ∇Z = 0. (3.11)

The discretization of (3.11) combines the predictor-corrector method in time and the NT scheme of Sect. 5
while the algorithm for solving (3.10) remains essentially the same as described in Sect. 3.2 except for the
addition of the new forcing terms and the new equations for θ and Z . (The forcing terms E, Q R and the
frictional drag coefficient cd are set to zero during the numerical tests described below, we included them in
(3.10) for the sake of illustration only.)

3.5 Limiting dynamics and precipitation fronts

In this section we consider a simplified version of the equations in (3.1), reduced mainly to one space di-
mension with no barotropic advection, in the limit of small convective adjustment times, τc −→ 0. We recall
some interesting solutions recently introduced by Frierson et al. [17], in the form of propagating precipi-
tation fronts separating dry-unsaturated and saturated-precipitating regions. Below we will interchangeably
use the adjectives moist and dry versus the adjectives saturated and unsaturated. We then use these limiting
solutions to define initial conditions for our full two-dimensional model in (3.1). Particularly, we investi-
gate the beta-effect and the effect of the advection by a barotropic trade wind-like flow on the precipitation
fronts.

The detailed discussion leading to the construction of the precipitation fronts is given in [17]. Next
we give a brief summary for convenience. We consider the one-dimensional system involving only u, θ

and q .

(A)
∂u

∂t
− ∂θ

∂x
= 0

(D)
∂θ

∂t
− ∂u

∂x
= P (3.12)

(E)
∂q

∂t
+ Q̃

∂u

∂x
= −P

with

P = 1

τc
(q − q̂ − αcθ)+.

It is established by Frierson et al. [17] that in the limit of τc −→ 0, the simplified moisture equations in (3.12)
admit three groups of simple solutions on the from of propagation fronts with jumps in the precipitation, P ,
separating moist regions with P > 0 and dry regions where P = 0. They are continuous piecewise linear
solutions, (u, θ, q), with jumps in their first derivatives, (ux , θx , qx ), at the interface between moist and dry
regions. In the limit of τc −→ 0, the convective system adjusts quickly so that to leading order we have
(q = q̂ + αcθ) within the moist regions. Therefore, in this limit, the moist and dry regions are characterized
by [17]

Dry region: P = 0 ⇐⇒ q < q̂ + αcθ or q = q̂ + αcθ and
∂q
∂t

< 0

Moist region: P > 0 ⇐⇒ q = q̂ + αcθ and
∂q
∂t

> 0.
(3.13)

The exact solutions with the form of moving precipitation fronts for the the simplified system in (3.12) at the
limit τc −→ 0 are given below in terms of the jumps in the derivatives, ux , θx , qx , at the interface. First, the
Rankine-Hugoniot jump conditions are written [17]

s[w] = [θx ]
s[θx ] = [w] − [P] (3.14)

s[qx ] = −Q̃[w] + [P]

where [ f ] = f + − f − is the jump in f at the interface located at x = 0 with f ± ≡ f (0±) and w ≡ −ux

is the vertical velocity (rescaled by a factor of π L
HT

) while s is the speed of the moving precipitation front. For

simplicity we assume that at time t = 0 the moist region is the entire half real line with x > 0 while x < 0
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defines the dry region. Therefore, since the precipitation is positive in the moist region and identically zero in
the dry region we have

[P] = P
+ = αc + Q̃

1 + αc
w+, (3.15)

by using (3.12) on the moist side together with the conditions in (3.13). Notice that the positivity of P+

implies that w+ > 0. In addition we have

q+
x = αcθ

+
x , q−

x ≥ αcθ
−
x , and q(0) = q̂ + αcθ(0). (3.16)

The most left equality in (3.16) follows directly from (3.13), the middle one expresses the fact that q − q̂ −αcθ

is a non-decreasing function of x < 0 so that the region on the left of the interface remains dry, and the
most right condition follows from a continuity argument. Combining the jump conditions in (3.14) with the
constraints in (3.15) and (3.16) leads to the following set of solutions [17]

s = ±
(

1 − αc + Q̃

1 + αc

w+

[w]

)1/2

[θx ] = s[w] (3.17)

[qx ] =
(

1 − Q̃

s
− s

)

[w].

The equations in (3.17) form a parameter family of solutions to the convective system in (3.12) under the
constraints in (3.15) and (3.16). Furthermore, in order to get a real valued propagation speed, one of the
following conditions is required

w− ≤
(

1 − αc + Q̃

αc + 1

)

w+ or w− ≥ w+ > 0.

Therefore, according to Frierson et al. [17], the following three groups of precipitation fronts are possible.

– Drying fronts with the interface moving toward the moist region at a speed s such that

cm ≤ s ≤ 1

where cm is the moist gravity wave speed introduced above. (Recall that the dry gravity wave speed is the
unity here.)

– Slow moistening fronts with the interface moving toward the dry region at a speed satisfying

−cm ≤ s ≤ 0.

– Fast moistening fronts with speeds satisfying

s ≤ −1.

Although only the drying fronts satisfy the Lax stability criterion for moving fronts [17, 26, 27], somewhat
surprisingly all the three groups of precipitation fronts are successfully demonstrated, by numerical simula-
tions in [17], to persist for small but reasonably finite adjustment times τc of a few hours. In our simulations
below we pick τc = 2 hours as utilized for example in [23].
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Dry region
Dry region

Slow moistening frontDrying front

Moist region

s<cm
cm<s<cd

Fig. 4 Sketch of the dying moisture wave: two interfaces separating the dry regions and the moist (shaded) region. They are
moving in the same direction with different speeds (slow moistening and drying fronts). The thick arrows represent the direction
and magnitude, s, of the front speeds

3.6 Dying moisture wave

Our setup for numerical simulation using the equations with moisture in (3.1) consists on the design of a
dying moisture wave by the aid of the precipitations fronts of Frierson et al. [17] discussed above. Recall
our computational channel-domain covers the equatorial belt [0, X ] × [−Y, Y ] where X is the perimeter of
the earth at the equator and Y is the distance of the channel walls from the equator. We divide this domain
perpendicular to the equator into three regions: two dry regions on the zonal edges of the domain and a moist
region in the middle. We then have two moist-dry interfaces. We design a dying-moisture-wave structure by
inserting a slow moistening front at the right interface making the moist region move toward the dry region
on the right and a drying front on the left interface to move the other dry region toward the moist region in
the middle, see Fig. 4. Notice that the two interfaces are moving in the same direction, to the right; hence, the
whole structure is moving in that direction but since the drying front is moving faster than the slow moistening
front we expect the moist region to die out in a finite time. This is why we call it a dying moisture wave.

By imposing the constraints listed in the previous section on both interfaces a detailed algorithm for the
construction of the dying-moisture-wave is given in Appendix B. In particular, we have the same-identical
solution within the moist region satisfying the constraints imposed on both interfaces. The initial width of the
moist region is 10,000 km, i.e., one fourth of the total domain width. Next, we discuss the results obtained by
the moisture-scheme using the dying moisture wave as initial condition for the following cases. First, we start
with the simplest case with no rotation and no barotropic advection, where we investigate both the effect of a
finite but small τc on the precipitation fronts and their interactions with dry gravity waves. Then we gradually
add the effect of the advection by a barotropic trade wind, the beta effect, and finally both the advection and
the rotation together.

3.7 Validation with τc = 2 hours and interaction with dry gravity waves

Here we run the simplified one-dimensional system in (3.12) with the initial condition in Fig. 4. (Actually,
we have a two-dimensional flow in the x-z plane through the one-vertical baroclinic mode approximation
with the vertical velocity w given via the divergence constraint.) Our aim is to investigate the effects of a
finite adjustment time for the typical value of τc = 2 hours on the dying-moisture-wave which is in theory
a solution at the limit τc −→ 0. In Fig. 5, we plot the contours of the zonal velocity u together with the
color filled contours of the precipitation rate, P , on top of them in the x-t plane (longitude-time). The dashed
lines represent the position of the precipitation fronts associated with the drying and slow-moistening fronts
as predicted by the limiting analysis.

The agreement between the asymptotic theory and the numerics with the finite τc = 2 hours is well estab-
lished, in Fig. 5, and the scenario of the dying-moisture-wave is reproduced with a good accuracy. However, in
order to achieve this, we had to give up the natural periodic boundary conditions in x and use instead a linear
extrapolation expanding the limiting solution beyond the boundaries. Indeed, periodic boundary conditions
at x = 0, X introduce a jump in the initial conditions from which two opposite dry gravity waves emerge. It
turns out that the interaction of the dry gravity waves with the moisture fronts lead to interesting dynamics of
wave interaction and reflection for the precipitation fronts.

As depicted in Fig. 6, the eastward gravity wave emanating from x = 0 at t = 0 (following the cusps
in the zonal velocity contours on the left of the color-filled precipitation region, a rarefaction wave), which
is weaker but closer to the precipitation wave, first hits the drying front at around time t = 3.5 days. At this
time, a fast moistening front is reflected and propagates backward to the west at a speed larger than 50 m/s
(compare to the shock wave on the right, which propagates at 50 m/s; this is a fast moistening front). The
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Fig. 5 Validation of the dying moisture wave with τc = 2 hours, linear extrapolation boundary conditions at x = 0, X . Contours
of zonal velocity, u, color-filled contours of precipitation, and position of the drying and slow-moistening fronts, as predicted by
the theory [17], moving at 32.5 m/s and 7.5 m/s (dash and dash-dot lines), respectively

second propagating gravity wave emanating from x = X at t = 0 is characterized by the steep gradient
region (called “a shock wave”) is propagating to the west toward the moving precipitation area. When the
shock wave hits the moist region no fronts are reflected, instead it penetrates inside (like a dry intrusion) and
dries out the whole structure while the reflected fast moistening front dies out after having traveled a distance
of about 10,000 km. This last feature is perhaps due to the dissipation of energy by precipitation in (3.8).

3.8 Effect of the advection by a barotropic trade wind

Now, we add the trade wind-like barotropic flow, v = (u, v),

u = −u0 cos

(

3πy

Y

)

, v = 0 (3.18)

with u0 = 5 m/s, depicted in Fig. 7, to the equations in (3.1) (C), (D) and (E). We ignore the rotation effect,
β = 0, the barotropic dynamics governed by (A) and (B), and the baroclinic-barotropic interaction terms
on the right hand side of (C). We set the initial conditions to the dying moisture wave in x modulated by
the cosine function in y to avoid a jump at the boundaries y = ±Y . A truncation of the data by Dirichlet
boundary conditions at y = ±Y , would induce other dry gravity waves traveling in the north-south direction
and may render the simulation very complex. We keep the the periodic boundary conditions in x in spite of
the dry gravity waves emanating from the induced discontinuity, because otherwise (with the linear boundary
conditions in x) the barotropic advection induces overwhelming growth which causes blowup.
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Fig. 8 History of total (dry+moist) energy (dashed) and precipitation rate (solid) for the dying moisture wave experiment: A
with a trade wind barotropic advection, B with beta effect, and C with both barotropic advection and beta effect. The panel D
displays the time histories of the total dry energy (solid) and the baroclinic (dash) and barotropic (dash-dot) contributions for
the case in C

The initial condition for this test is therefore given by

u(x, y, 0) = cos
(πy

2Y

)

ul(x)

v(x, y, 0) = 0 (3.19)

θ(x, y, 0) = cos
(πy

2Y

)

θl(x)

q(x, y, 0) = cos
(πy

2Y

)

ql(x)

where ul , θl , ql is the piecewise linear limiting solution representing the dying moisture wave in Fig. 4.
The histories of both the total (dry + moist) energy in (3.7) and the precipitation rate are plotted in Fig. 8A.

Perhaps, the most interesting thing we notice from Fig. 8A is that, unlike the case without barotropic advection
in Fig. 6, the precipitation survives beyond the nine days time period. Notice the significant dissipation of
total energy which ceases around t = 13 days when the precipitation becomes zero. This indeed confirms
the dissipation of energy by precipitation as stated above. The longitude-latitude (x-y) contours of the water
content, q , and the color filled contours of the precipitation rate, P , at times t = 0, 1, 3, 6, 9, 13 days are
plotted in Fig. 9. Already at time t = 1 day, at some distance away from the equator where the barotropic
wind blows eastward, i.e., in the same direction as the moving moisture wave, the precipitation disappears.
It becomes concentrated at the equator, which explains the first increase of the precipitation maximum on
Fig. 8A.

As the precipitation front, confined to the equator, is trying to make its way forward in the eastward
direction, as it would do in the absence of the barotropic advection, the trade wind, which blows westward
at the equator, is pushing it backward to the west. This double effect stretches the moist region and expands
it from 10,000 km to about 20,000 km wide at time t = 1 day. The effect of the eastward (rarefaction) wave
emanating from the boundary conditions and moving eastward, as noted above, is suspected to be responsible
for the formulation of the bowling pin-like shape located at time t = 1 day, around x = 4300 km (which is
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Fig. 9 Contours of the water content, q , (g/kg) and precipitation rate, P , (color filled, K/day) for the dying moisture wave
experiment with trade wind barotropic advection. Times t = 0, t = 1 day, t = 3 days, t = 6 days, t = 9 days, and t = 13 days

the distance traveled in one day at a speed of 50 m/s), probably, caused by the reflection of a fast moistening
front in a scenario similar to Sect. 7.7 above.

Notice also that at around time t = 1 day the precipitation rate attains a maximum peak of close to
8 K/day as depicted in Fig. 8A. Not much is happening between time t = 1 day and time t = 3 days, except
for poleward spread out of the precipitation while its maximum decreases. Nevertheless, we see the shock
wave emanating from x = X , located between x = 25, 000 km and x = 30, 000 km at time t = 3 days,
approaching toward the moist region. Notice the local peak in the precipitation maximum plot, in Fig. 8A,
just before time t = 6 days. This is suspected to coincide with the arrival of the dry-shock wave. When the
shock hits the moist region, it splits it into two patches of ‘active convection’, as shown in Fig. 9 at time t = 6
days. Later on the two pieces merge together to form again a single convection patch at time t = 9 days and
continues to decay until the precipitation dissipates away and disappears at about time t = 13 days.

3.9 Beta-effect on moisture fronts

We now activate the Coriolis force but switch off the barotropic advection, i.e., we consider the equations in
(3.1) (C), (D) and (E) with v = 0. The corresponding time histories of energy and precipitation are plotted in
Fig. 8B. We see that things have changed and become more complicated. The precipitation maximum displays
peaks, that sometimes exceed 10 K/day, with interference by troughs which are sometimes associated with dry
episodes of up to 1 day. The time scale of these oscillations varies from about 8 to 12 hours, i.e., longer than
the convective characteristic time τc = 2 hours. In Fig. 10, we display a few successive snapshots of the flow
moisture by drawing the contours of the vertically averaged water content, q , and the color-filled contours of
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Fig. 10 Same as in Fig. 9 but for the experiment with the beta effect at times 1 hour, 7 hours, 14 hours, 20 hours, 1 day, 1 day
and 5 hours, 1 day and 15 hours, 2 days, 2 days and 6 hours, and 10 days
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Fig. 11 Profile of the barotropic (top) and the baroclinic (middle) flows on top of the contours of vorticity and potential tempera-
ture, respectively, and contours of the vertically averaged moisture content, q , on top of , color filled contours of the precipitation
rate (bottom). Experiment with both beta effect and barotropic advection (trade wind initially). Time t = 20 hours

the precipitation rate, P , on top of them. Clearly, the moisture dynamics are much more complex than in the
case without rotation. Perhaps, the most striking phenomenon is the way in which the moisture region deforms
and disappears under the beta effect and more excitingly the way in which small islands of precipitation form
and merge together. First, we see that the precipitation region, which is initially distributed across the whole
channel, quickly shrinks to become a narrow strip centered at the equator as depicted in Fig. 10 at time t = 1
hour. Under the effect of rotation the strip elongates poleward while its width diminishes tending to acquire a
roundish shape, as shown at time t = 7 hours.

This rounding in shape happens while the precipitation maximum increases as suggested by the plot in
Fig. 8B. Then suddenly, at time t = 14 hours, two small islands starts to form at some distance symmetrically
away from the equator. The small islands grow quickly resulting in three patches of precipitation which merge
together afterward, at time t = 20 hours, to form again a single roundish region which is somewhat located
ahead of the one at time t = 14 hours. As its front is stretched eastward at the equator, as seen at time t = 29
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Fig. 12 Same as Fig. 11 but at time t = 10 days

hours, it suddenly shrinks backward like a falling spring hitting the ground. This is perhaps due to some effect
of the shock wave formed by the boundary condition at x = X and propagating at the dry gravity wave speed
toward the moisture wave, reflecting back fast inertia-gravity waves, which are now present in the system with
rotation. The structure then becomes a thin stripe oriented north-south as seen at time t = 39 hours which then
splits onto two pieces and disappears. At time t = 2 days we record the first dry episode which lasts about
six hours until two islands of precipitation form at some distance off the equator. Interactions with equatorial
waves of all kind are suspected to be the main mechanisms underlying the rich dynamics of the precipitation
regions.

The dynamics continue under the different scenarios involving formation of small islands of precipitation,
growing, merging, deformation, splitting, and finally dissipation. However, at later times the picture seems to
be more complex with the co-existence of several islands at once, especially after the dry (shock) wave passes
through the moist region and gets smoothed away, as shown on Fig. 10 at time t = 10 days.

Finally, it is worth noting from Fig. 8 (panels (a), (b) and (c)) that the energy dissipation during
the first few days is much more important for the case without rotation in (b) than it is with the case
with rotation in (b) and (c). A simple comparison of the computed total (time integral) dissipation rates,
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Dr = −
∫ t

0

∫ X
0

∫ Y
−Y (q − αcθ)P dx dy dτ (see Eq. (3.8)) from panels (a) and (b) reveals that their ratio,

D
(A)
r /D

(B)
r , is about 8.1130 for t = 5 days and about 7.9214 for t = 10 days as it is reflected by the en-

ergy curves in Panels A) and B), respectively.

3.10 Beta-effect and barotropic advection simultaneously

Now we put together the effect of rotation and barotropic advection and look at their effect on the precipitation
fronts. We run the full coupled system in (3.1) with the initial conditions given by (3.19) for u, v, θ, q , while
the barotropic flow at time t = 0 is given by the trade wind-like barotropic jet in (3.18) and Fig. 7. Notice that
both the barotropic code for the system in Eq. (3.3) of Part I and the baroclinic-barotropic interaction system
are activated so that the barotropic shear also undergoes dynamical changes. In Fig. 8C we plot the history of
the total energy and of the precipitation maximum associated with this last experiment.

We see clearly that if the moisture dynamics are not more complex than the case with rotation alone, they
are at least comparable. Indeed, in Figs. 11 and 12, we plot the structure of the resulting flow at an early
time of 20 hours and at a later time of 10 days during the simulation. We see clearly that the moisture plots
on the bottom resemble their analogues in Fig. 10, for the case with the beta effect alone, except for some
displacement and stretching due to the barotropic flow as experienced above for the case with advection alone.
The two top panels on Figs. 11 and 12 display the barotropic (topest panels) and baroclinic (middle panels)
flows on top of the vorticity and potential temperature contours, respectively. As the time grows, we see that
the barotropic trade wind undergoes interesting changes resulting from its interaction with the baroclinic flow
through energy exchange. This is clearly demonstrated by the plots in Fig. 8D, which represent the time
histories of the total dry energy Ed in 1.6) (solid line) and the baroclinic (dash line) and barotropic (dash-dot
line) contributions. While the baroclinic and barotropic curves undergo violent and mutually compensating
oscillations, their sum (the total dry energy) is relatively smoothly increasing suggesting an extraction of
energy from precipitation (the moist energy). Also notice the overall increase in barotropic energy. Indeed,
from Figs. 11 and 12, the barotropic wind becomes significantly stronger at the equator, increasing to roughly
twice its initial amplitudes, and small scale vortices emerge. The baroclinic flow on the other hand becomes
trapped at the equator where a zone of strong convergence appears particularly at and near the precipitation
patches. The fluid is strongly sucked toward the equator, hence suggesting a local Hadley-like circulation.

4 Concluding discussion

The overall fractional stepping procedure for the nonlinear barotropic/baroclinic interacting system of Majda
and Biello [16], proposed in Part I of this series of papers is tested and applied here for the case of a dry solitary
wave and for the interactions with moisture. Recall that the barotropic/baroclinic system is split into three parts
involving a shallow water system for the advected baroclinic waves, the incompressible equations for the
barotropic flow, and the interaction ODE-system. The resulting subsystems conserve independently their own
energy by design, which permits an effective use of the appropriate state of the art non oscillatory/balanced
high order methods.

The dry version of the algorithm is tested and applied in Sect. 2 for the barotropic/baroclinic interacting
solitary wave of Biello and Majda [16]. It is particularly demonstrated that the numerical scheme developed
here was able to capture the strong-nonlinear interactions between the baroclinic and the barotropic com-
ponents of the flow with little ad hoc dissipation of total energy. This is happening in spite of the apparent
formation of small scale structures which are perhaps due to the development of a shear instability after the
first few days of evolution. Moreover, it is noticed that, during a short transient period of about two days,
before the small scale eddies start to develop, the numerical solution stays close to the asymptotic prediction,
when comparing both their spatial structures and their phase speeds. This particularly proves that the two
solutions are consistent.

The overall algorithm involving the moisture equation is tested and used in Sect. 3. In order to take
advantage of the availability of the precipitation fronts limiting-exact solutions from [17], a simple convective
parametrization-like moisture relaxation scheme is used here. Nevertheless, the precipitation front persists for
the typical convective time of τc = 2 hours as demonstrated in [17] and in Fig. 5. The subsequent tests, adding
the effects of a barotropic trade wind and of rotation, have demonstrated the usefulness of the numerical
scheme developed here for tropical climate studies and especially the interactions of equatorial waves with
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both the midlatitudes and cumulus convection. The results reported in Sect. 3, already, show how rich and
complex the interactions of convection with tropical waves can be. First, it is demonstrated that the interaction
of a moisture front with a dry gravity wave can either lead to the reflection of a new precipitation front or
the complete extinction of the precipitation, depending on the steepness and the strength of the wave itself,
as seen in Fig. 6. Unlike the case with advection alone, the beta effect can make patches of precipitation
appear at different times and places, merge together to form larger regions of saturated air, and disappear,
in an intermittent and chaotic fashion, as demonstrated in Figs. 8–10. This is perhaps due to the capacity of
the beta-plane system to support a large diversity of waves. We saw also that the effect of the advection by a
barotropic trade wind-like flow is mainly to stretch and displace the moisture patches.

Furthermore, the combination of both the barotropic advection and the beta effect is also an interesting
experiment. While the complex dynamics of the precipitation patches induced by the beta effect remained as
in the case with rotation alone, the trade wind interacts with the baroclinic moist dynamics and becomes twice
as strong through energy exchange at the equator, while small scale vortices are clearly seen at time t = 10
days (the top panel of Fig. 12). The other noticeable feature comes from the middle panel of Figs. 11 and 12.
We see clearly a strong convergent flow toward the equator suggesting a local Hadley-like circulation, where
the air rises at the equator and descends at high latitudes.

Finally, the strategy developed here can easily be generalized to a multi-mode model with a more realis-
tic convective parametrization. Such a generalization is now under investigation in collaboration with other
scientists.
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Appendix: Algorithm for a two fronts-moisture wave

Here we give the details of the algorithm used to generate the initial data for the moisture runs. We use the index i = 1, 2, 3 to
denote from left to right the three different regions in Fig. 4. Let

ui = ui
x x + ci , θ i = θ i

x x + d i , q i = q i
x x + ei (A1)

where the slopes X i
x are such that

X1
x = Xx (a

−), X2
x = Xx (a

+) = Xx (b
−), X3

x = Xx (b
+)

where X represents u, θ , or q with ux = −w. Suppose that the interface on the left is at x = a and the one on right is at x = b.

Given the parameters Q̃, αc, and q̂ as in the text, we have the following

Algorithm:

1. Fix the speed, sa , of drying front (on the left of moist region) such that cm ≤ sa ≤ cd = 1

2. Fix the vertical velocity within the moist region w(a+) = w(b−)

3. The vertical velocity in the left dry region is

w(a−) =
(

1 − K

1 − s2
a

)

w(a+), K = αc + Q̃

1 + αc

4. Fix the speed, sb, of moistening front (on the right of moist region) such that 0 ≤ sb ≤ cm

5. The vertical velocity in the right dry region is

w(b+) =
(

1 − K

1 − s2
b

)

w(a+), K = αc + Q̃

1 + αc

6. Fix θx (a
+) = θx (b

−), slope of pot. temp. within the moist region

7. The slope of moisture in the moist region satisfies

qx (b
−) = qx (a

+) = αcθx (a
+)
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8. The rest of the slopes follow

θx (a
−) = θx (a

+) − sa(w(a+) − w(a−)), θx (b
+) = θx (a

+) + sb(w(b+) − w(a+)),

qx (a
−) = qx (a

+) −
(

1 − Q̃

sa
− sa

)

(w(a+) − w(a−)),

qx (b
+) = qx (a

+) +
(

1 − Q̃

sb
− sb

)

(w(b+) − w(a+))
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