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Abstract
We present a non-overlapping domain decomposition method for the obstacle prob-
lem. In this approach, the original problem is reformulated into two subproblems
such that the first problem is a variational inequality in subdomain Ω i and the other
is a variational equality in the complementary subdomain Ω e, where Ω e and Ω i are
multiply-connected, in general. The main challenge is to obtain the global solution
through coupling of the two subdomain solutions, which requires the solution of a
nonlinear interface problem. This is achieved via a fixed point iteration. This new
formulation reduces the computational cost as the variational inequality is solved in
a smaller region. The algorithm requires some mild assumption about the location of
Ω i, which is the domain containing the region corresponding to the coincidence set.
Numerical experiments are included to illustrate the performance of the resulting
method.
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1 Obstacle problem

The obstacle problem is to determine the equilibrium position of an elastic mem-
brane in a domain Ω ⊆R2 with closed boundary ∂Ω , which lies above an obstacle
function ψ : Ω → R+ under the vertical force f . The classical solution u of this
model problem is the vertical displacement of the membrane. Since the membrane
is fixed on ∂Ω , we have boundary conditions of Dirichlet type (say u = 0). The
problem can be written as −∆u− f ≥ 0 in Ω ,

u−ψ ≥ 0 in Ω ,
u = 0 on ∂Ω ,

(1)

subject to the pointwise complementarity condition (u−ψ)(−∆u− f ) = 0.
Let C = {x ∈ Ω : u(x) = ψ(x)} denote the coincidence set. Then the complemen-
tarity conditions yields the PDE −∆u− f = 0 in Ω \C . The weak formulation of
(1) can be written as [10]
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Find u ∈ K such that ∀v ∈ K,
a(u,v−u)≥ ( f ,v−u), (2)

which can be shown to be equivalent to the following minimization problem{
Find u ∈ K, such that ∀ v ∈ K,
J(u)≤ J(v),

where K = {v ∈V := H1
0 (Ω) : v ≥ ψ in Ω} is convex and

J(v) =
1
2

a(∇v,∇v)− ( f ,v), ( f ,v) =
∫

Ω

f vdΩ , a(u,v) =
∫

Ω

∇u ·∇vdΩ .

An important class of solution techniques for (2) is that of multilevel and multigrid
methods for constrained minimization problems, first introduced by [6] and [2] some
variants of these method were studied in [4] and were analyzed in [5]. A challenging
task for multigrid is the representation of the coincidence set on a coarse grid, as
shown in the review paper [3]. Some multi-grid and two level domain decomposition
methods are given in [9] [7] in which it is shown that the overlapping DDM has a
linear convergence for constrained obstacle problem if the obstacle and computed
functions decomposed properly. Some more variants of multi-grid method are given
in [1], where the decomposition of the closed convex set for minimization problem
is introduced as a sum of closed convex level subsets; the convergence rate is shown
to depend on the number of levels.

2 A non-overlapping domain decomposition method
Let Ω i denote an open subset of Ω containing the coincidence set C and let
Ω e = Ω \ Ω̄ i. Let Γ denote the interface between Ω i and Ω e. This decomposi-
tion allows us to reformulate our problem into two subproblems: one which is a
partial differential inequality (PDI) in subdomain Ω i and the other which is a partial
differential equation (PDE) in Ω e.
Let z = u|Ω e ,w = u|Ω i , f e = f |Ω e and f i = f |Ω i be the restrictions of u and f to
Ω e and Ω i respectively; let also λ = u|Γ be the trace of u on Γ . Assuming for now
that λ is known, problem (1) decouples into the two subproblems

PDE:

{−∆z = f e in Ω
e,

z = 0 on ∂Ω \Γ ,
z = λ on Γ ,

PDI:


−∆w≥ f i in Ω

i,
w≥ ψ

i in Ω
i,

w = 0 on ∂Ω \Γ ,
w = λ on Γ .

with (−∆w− f i)(w−ψ i) = 0 satisfied in a pointwise sense in Ω i. The subproblem
PDE can be further decoupled as follows:

(3)PDE1 :

{−∆z1 = f e in Ω
e,

z1 = 0 on ∂Ω \Γ ,
z1 = 0 on Γ ,

PDE2 :

{−∆z2 = 0 in Ω
e,

z2 = 0 on ∂Ω \Γ ,
z2 = λ on Γ ,
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where z|Ω e = z1 + z2 with z2 = Eλ where E is the harmonic extension operator
to Ω e. Writing the weak formulation (2) as

ae(z,v− z)+ai(w,v−w)≥ ( f e,v− z)Ω e +( f i,v−w)Ω i , (4)

where
ae(z,v) =

∫
Ω e

∇z ·∇v dΩ
e and ai(w,v) =

∫
Ω i

∇w ·∇v dΩ
i

the variational formulations of (3) and PDI are

(5)

{
find z1 ∈ H1

0 (Ω
e) such that ∀v ∈ H1

0 (Ω
e)

ae(z1,v− z)−
∫

Γ

n1 ·∇z1 · (v− z) dΓ = ( f e,v− z)Ω e ,

(6)

{
find z2 ∈ H1(Ω e) such that ∀v ∈ H1(Ω e)

ae(z2,v− z)−
∫

Γ

n1 ·∇z2 · (v− z) dΓ = 0,

(7)

{
find w ∈ H1(Ω i) such that ∀v ∈ H1(Ω i)

ai(w,v−w)−
∫

Γ

n2 ·∇w · (v−w)dΓ ≥ ( f i,v−w)Ω i .

For i = 1,2, ni, is the normal direction from Ω e and Ω i respectively. Adding
the above weak formulations, where z1 = 0, z2 = λ = w on Γ and using the weak
formulation (4) yields a partial Steklov-Poincaré inequality for λ (corresponding to
the splitting of PDE)

(S e
λ ,µ−λ )≤ (g(λ ),µ−λ ).

Using the assumption that the interface Γ lies outside the support of the obstacle we
obtain the following nonlinear equation on the interface

(S e
λ ,µ) = (g(λ ),µ). (8)

The Steklov-Poincaré operator S e : Λ → Λ ′ (where Λ = H1/2(Γ ), H1/2
0 (Γ ) or

H1/2
00 (Γ ) depending on the nature of the problem) is defined as

(S e
λ ,µ) :=

∫
Γ

(n1 ·∇(Eλ ))µ dΓ ,

and
(g(λ ),µ) :=−

∫
Γ

(n1 ·∇z1 +n2 ·∇w)µ dΓ

Applying Green’s formula we get the alternative representation of S e

(S e
λ ,µ) := ae(Eλ ,Fµ) ∀λ ,µ ∈Λ

where F denotes an arbitrary extension operator to Ω e. By using the above defini-
tion of S e, our classical problem can be written as an ordered sequence of three
decoupled problems involving Poisson problem on subdomain Ω e together with a
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problem set on the interface Γ which is coupled with the problem on Ω i.{−∆z1 = f e in Ω
e,

z1 = 0 on ∂Ω \Γ ,
z1 = 0 on Γ ,

(i){S e
λ =−n1 ·∇z1−n2 ·∇w, (ii)


−∆w≥ f i in Ω

i,
w≥ ψ in Ω

i,
w = 0 on ∂Ω \Γ ,
w = λ on Γ ,{−∆z2 = 0 in Ω

e,
z2 = 0 on ∂Ω \Γ ,
z2 = λ on Γ ,

The resulting solution in Ω e, is u|Ω e = z = z1 + z2. The solutions of (i),(ii), i.e. λ

and w can be approximated in an iterative manner by using a fixed point iteration
(see section 2.3). The weak formulations of the above problems are given below.

(9a)

{
find z1 ∈ H1

0 (Ω
e) such that ∀v ∈ H1

0 (Ω
e),

ae(z1,v) = ( f e,v)Ω e ,

(9b)


find λ ∈Λand w ∈ Eλ +Ki such that ∀µ ∈Λand v ∈ Ki,
(S e

λ ,µ) = (( f e,Fe
µ

e)−ae(z1,Fe
µ

e))+(( f i,F i
µ

i)−ai(w,F i
µ

i)),

ai(w,v−w)≥ ( f i,v−w)Ω i ,

(9c)
{

find z2 ∈ Eλ +H1
0 (Ω

e) such that ∀v ∈ H1
0 (Ω

e),
ae(z2,v) = 0,

where Ki = {v ∈V := H1
0 (Ω

i) : v ≥ ψ}.

2.1 Finite element discretization

Let Ω ⊂ R2 be a bounded open convex subset and let Th be a conforming isotropic
subdivision of Ω into simplices t. Let V e

h ,V
i
h denote the spaces of continuous piece-

wise polynomials defined on the corresponding subdivision of Ω e,Ω i.

Ke
h := {vh ∈V e

h : vh|∂Ω e∩∂Ω = 0}, Ki
h := {vh ∈V i

h : vh ≥ ψ, v|∂Ω i∩∂Ω = 0}.

Let N e,N i,N Γ denote the sets of nodes located, respectively, in the subdomains
Ω e,Ω i and on the interface Γ . Let

Ke
h = span{φk, k ∈N e}, Ki

h = span{φk, k ∈N i} ,KΓ
h = span{φk, k ∈N Γ }

and let
Sh = span{γ0(Γ )φk, k ∈N Γ

i }.
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By using above definitions, we have the following finite element discretization for
the two-domains method:

(10)

{
find zh

1 ∈ Ke
h ∀vh ∈ Ke

h
ae(zh

1,vh) = ( f e,vh),

(11)


find λh ∈ Sh and wh ∈ Ki

h such that ∀vh ∈ Ki
h, ∀ µh ∈ Sh,

(S e
λh,µh) = (( f e,Fe

µ
e
h)−ae(zh

1,F
e
µ

e
h))+(( f i,F i

µ
i
h)−ai(wh,F i

µ
i
h)),

ai(wh,vh−wh)≥ ( f i,vh−wh)

(12)
{

find zh
2 = (Eλ )h +Ke

h such that ∀vh ∈ Ke
h ,

ae(zh,vh) = 0.

2.2 Matrix formulation

To obtain the matrix formulation of the above discrete formulation of the domain
decomposition problem let us denote the unknown vectors by ue,ui,uΓ and the
right hand side vectors by fe, fi, fΓ of lengths Ne,Ni,NΓ respectively, such that N =
Ne +Ni +NΓ , with A ∈ RN×N and f ∈ RN . Then the matrix representation of (1)
can be written as {

Au ≥ f,
u ≥Ψ ,

subject to the complementarity conditions (f−Au) j(u−Ψ) j = 0, with Ae
II O Ae

IΓ
O Ai

II Ai
IΓ

Ae
Γ I Ai

Γ I AΓ Γ

 , u =

 ue
I

ui
I

uΓ

 , f =

 fe
I

fi
I

fΓ

 , (13)

where we have partitioned the degrees of freedom into those internal to Ω e and to
Ω i and those on the interface Γ . By using this notation, the above discrete weak
formulations have the following matrix form

(14a)Ae
IIu

e,1
I = fe

I ,

(14b)SeuΓ = fΓ −Ae
Γ Iu

e,1
I −Ai

Γ Iu
i
I ,

(14c)Ai
IIu

i
I ≥ fi

I−Ai
IΓ uΓ ,

(14d)Ae
IIu

e,2
I =−Ae

IΓ uΓ ,

subject to conditions (fi
I −Ai

IIui
I −Ai

IΓ uΓ ) j(ui
I −ΨI) j = 0, which represent the

complementarity conditions for (14c).
The set of equations (14a)-(14d) could be seen as a partial Schur complement

approach for the system (13). The solutions ui
I and uΓ will be approximated in an

iterative manner. The resulting solution is then [ue,1
I +ue,2

I ,ui
I ,uΓ ].
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2.3 Domain decomposition algorithm

Equations (14b) and (14c) form a coupled system which we solve by using a fixed
point iteration. We note here that, given ui

I , the solution of (14b) involving the Schur
complement matrix Se can be implemented by using a Krylov subspace solver with
domain decomposition preconditioning, corresponding to some partition of Ω e into
several subdomains. On the other hand, (14c) is a standard linear complementarity
problem posed on a small subdomain Ω i. The proposed algorithm is included below.

Picard reduced QP algorithm

1: step 0: Find an initial guess by using coarse mesh solution
2: step 1: find ue{1}

I = (Ae
II)
−1fe

I ,
3: step 2:
4: for k = 0,1,2, ..., till convergence do
5: Solve Se(uΓ )

k+1 = (fΓ −Ae
Γ Iu

e{1}
I −Ai

Γ I(u
i
I)

k)
6: Find (ui

I)
k+1 ∈ Ki such that

J((ui
I)

k+1)≤ J(v) ∀v ∈Ki

7: where

J(v) :=
1
2
(v)T Ai

IIv− (v)T (fi
I −Ai

IΓ uk+1
Γ

)

8: If converged, set uΓ = uk+1
Γ

and exit
9: end for

10: step 3: Compute
ue{2}

I =−(Ae
II)
−1Ae

IΓ uΓ

11: The resulting solution is then
u = [ue{1}

I +ue{2}
I ,ui

I ,uΓ ].

3 Numerical Experiments

Test 1:One obstacle

For our first test problem, we consider an elastic membrane which lies above an
obstacle of height 1 centered at the origin with square cross-section with side length
`o = 0.3 under the forcing function f = 1 with Ω = (−1,1)2. We choose Ω i to be
a square region with side-length `i which contains the support of the obstacle such
that the interface boundary Γ lies outside of the obstacle support. In the given algo-
rithm we solved PDI, in the step 2(ii) by using the matlab function quadprog, a
built-in quadratic programming solver. The PDI is coupled together with the inter-
face equality problem in step 2(i) in an iterative manner. The relation to constrained
minimization problems with quadratic programming problem can be found in [8].
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We apply fixed point DD algorithm with global complementarity condition as a
stopping criterion max

1≤i≤n
| (Łu− f)i(u−Ψ)i |≤ 10−3. The initial guess was com-

puted on a fixed coarse mesh with n0 nodes. Note that the variational inequality
problem is now posed over a small subdomain, and hence has low complexity - we
therefore decided not to report on it. Table 1 displays the number of fixed point iter-
ations required to solve the coupled equations (14b), (14c). We see that the number
of iterations grows logarithmically as we increase the level of refinement. On the
other hand, reducing the size of Ω i leads to a smaller number of iterations, while
preserving the dependence behaviour on the refinement level.

Table 1 Fixed point iterations for test problem 1.

`i= 0.4 0.5 0.6

n = 1,089 8 10 10
4,225 12 16 17
16,641 17 25 26

Test 2: Three obstacles

For the same domain Ω we consider the obstacle problem with three square obsta-
cles of height 1 with centers located at (0.5,0.5),(−0.5,0.5),(0,−0.5) and equal
sides `o = 0.3. We performed the same investigation, where we chose Ω i to be a
multiply-connected domain consisting of square regions of side-length `i (see Fig.
1. The numerical results are displayed in Table 2. For this harder problem, the num-
ber of iterations displays a logarithmic dependence for `i sufficiently small, but de-
teriorates for larger Ω i. However, this is not the context we devised our algorithm
for. Finally, we note that for this test problem the variational inequality in step (ii)
decouples into three independent variational inequalities.

Table 2 Fixed point iterations for test problem 2.

`i= 0.4 0.5 0.6

n = 1,089 9 14 14
4,225 14 21 24
16,641 19 32 38
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Fig. 1 Test problem 2: the choice of Ω i for `i = 0.4 and the corresponding solution.

4 Summary and future work
We described an algorithm for the solution of obstacle problems using a two-domain
formulation. In the larger subdomain we solved a PDE, while in the smaller region
containing the coincidence set we solved a variational inequality using a minimiza-
tion formulation. The solution of the PDE, as well as the solution involving a re-
duced Schur complement problem can in practice be achieved via a parallel im-
plementation of a Krylov method coupled with a domain decomposition precondi-
tioner. Work in progress includes a Newton-Krylov solution of the non-linear prob-
lem (8). Future work is expected to include results validating this approach as well
as an analysis of our algorithm. We are also interested to implement this method on
general elliptic and parabolic problems.
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