
A Non-Parametric Generative Model for Human Trajectories

Kun Ouyang1,2, Reza Shokri1, David S. Rosenblum1, Wenzhuo Yang2

1 National University of Singapore
2 SAP Innovation Center Singapore

{ouyangk, reza, david}@comp.nus.edu.sg, wenzhuo.yang01@sap.com

Abstract

Modeling human mobility and generating synthetic
yet realistic location trajectories play a fundamental
role in many (privacy-aware) analysis and design
processes that operate on location data. In this pa-
per, we propose a non-parametric generative model
for location trajectories that can capture high-order
geographic and semantic features of human mobil-
ity. We design a simple and intuitive yet effective
embedding for locations traces, and use generative
adversarial networks to produce data points in this
space, which will finally be transformed back to
a sequential location trajectory form. We evalu-
ate our method on realistic location trajectories and
compare our synthetic traces with multiple exist-
ing methods on how they preserve geographic and
semantic features of real traces at both aggregated
and individual levels. Our empirical results prove
the capability of our generative model in preserv-
ing various useful properties of real data.

1 Introduction

Modeling human mobility is a challenging task due to many
reasons: (1) Human trajectories are extremely high dimen-
sional; (2) the trajectory of each individual is very unique
in the geographical space [De Montjoye et al., 2013]; nev-
ertheless, (3) human mobilities are similar in an underlying
semantic space, which gives meaning to a trajectory [Bind-
schaedler and Shokri, 2016]. For example, majority of peo-
ple leave their respective home in the morning and go to their
respective work places, spend time for lunch at their favorite
cafe, visit their points of interest, etc. This is not substan-
tially different among individuals; (4) the semantics and ge-
ographic features of locations in a trajectory are all corre-
lated with each other. There is also a correlation between the
mobility features of different individuals in an area. Thus,
it’s extremely hard to generate (geographically and semanti-
cally) meaningful location trajectories using sequential mod-
els, where a location is generated given only a short list of
its preceding visited locations. The whole trajectory, instead,
needs to be generated in a consistent manner, using a model
that captures all its features.

Existing models for the human mobility are mostly sequen-
tial. They include Markov Chains [Song et al., 2004; Shokri

et al., 2011] and Hidden (semi) Markov Models [Krumm and
Horvitz, 2004; Baratchi et al., 2014], and Recurrent Neu-
ral Networks [Lin et al., 2017; Song et al., 2016; Gao et
al., 2017]. Although such models capture useful patterns
in sub-trajectories, they are prone to declining accuracy for
large trajectories, when used as generative models. A more
fundamental limitations of these methods is that they only
model the geographic features of the trajectories. The state
of the art in generating location trajectories, while explicitly
incorporating their semantic features is the generative model
used in the plausible deniability framework [Bindschaedler
and Shokri, 2016]. But, this model is also a parametric se-
quential model, and has a high computational complexity for
preserving high-order semantic features.

In this paper, we present a non-sequential non-parametric
generative model for human trajectories. We assume loca-
tions are discretized, and the map of the considered area is
modeled as a two-dimensional matrix, where each element of
the matrix is corresponding to one location. We flatten and
embed a trajectory in such matrix form, where each cell con-
tains information about the time and duration of visiting that
cell in the given trajectory. This could be visualized as a col-
ored trajectory on a map where the color reflects the time of
the visit and its intensity captures duration of the visit. We
train a generative adversarial neural network to model and
then produce data in such representation. We then transfer a
generated output to a sequential trajectory. The advantage of
this technique is that all locations in a trajectory are consid-
ered at once by the model, and we do not impose any paramet-
ric model that decomposes the locations. The model not only
can find the correlation between visited locations in a trajec-
tory, but also can learn the common semantic/geographic pat-
terns of mobilities across the training data.

Via extensive experiments on real data, we demonstrate the
efficacy of our model in synthesizing location trajectories that
preserve aggregate and individual statistics, such as location
inter- and intra-similarity across trajectories, in a real dataset.
We show that the model is able to generate trajectories that
are indistinguishable from real data.

2 Problem Definition

Let Traj = {(x, y)t1 , . . . , (x, y)tT } be a location trajectory,
where (x, y)ti is a visit to a location with coordinates (x, y)
at time ti. It is very difficult, if not impossible, to directly
model and learn the joint probability distribution p(Traj),
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Figure 1: The framework for our generative model. In the training phase, location data is discretized and transformed into a location map
tensor following Section 3.1. The discriminator takes Mreal and Msynthetic as input and is simultaneously trained with a generator that is
fed with random noise. In the sampling phase, we generate tensors which after post-processing are transformed to location trajectories. We
compare the synthetic trajectories with real ones using various geographic and semantic measures.

especially for large T , without making independence assump-
tions about location visits. One tractable approach is to use a
sequential model, which factorizes the joint probability as

p((x,y)t=1,...,T ) = p((x, y)t1)

T∏

t=2

p((x, y)t|(x, y)<t) (1)

and to use a parametric function to model the conditional
probability, p((x, y)t|(x, y)<t). In Markov models (MC,
HMM, HSMM), the history (x, y)<t is summarized as
(x, y)t−1. Recently, Recurrent Neural Network (RNN) mod-
els such as the Long Short Term Memory (LSTM) uses a
memory matrix and non-linear mappings to learn the con-
ditional probability of moving between locations. However,
training LSTM with maximum likelihood estimation suf-
fers from the exposure bias problem, where the generated
samples might deviate from a realistic path with longer se-
quences [Ranzato et al., 2015].

In this paper, we represent a trajectory in a slightly different
way, by changing the conventional time-major representation
to a location-major representation. This means that instead
of asking where a visit happens given the time, we ask when
and for how long a visit happens (or does not happen) given
a location. A mobility sample can be viewed as a “drawing”
of a trajectory onto a 2D map, where each pixel represents a
specific location, and the value of the pixel is the time and the
duration of the visit.

3 Method

Transforming a trajectory to its location-major representation
results in a sparse matrix with a large volume. In this section,
we present our transformation process. Then, given location
data in the location-major representation, we demonstrate our
non-parametric generative model for approximating the joint

probability of p(Traj). Figure 1 presents our overall method-
ology for modeling and generating location trajectories.

3.1 Representation

We discretize the region into a N1×N2 grid where each visit
of a trajectory falls into one of these cells. The human tra-
jectory usually includes stationary activities [Lin et al., 2017]

where the location is relatively stable for a certain period of
time, for example, having lunch, working, etc. Thus, we de-
fine these visits as a stay rti:tj = {(x, y)ti , . . . , (x, y)tj}. Us-
ing this, we can transform a trajectory into a sequence of stays
R, where each r ∈ R has a location, a start time, and a dura-
tion (denoted as d). Note that an individual might have mul-
tiple stays at the same location but at different times (of the
day). This happens when multiple activities that happen at
different locations are interleaved with each other, e.g., work-
ing, having lunch, working. However, the frequency of such
interrupted stays is small [Park et al., 2017]. It rarely happen
that people leave and return to a location for many times. Let
K denote the maximum number of stay repetition for each lo-
cation that we can model in our trajectory embedding. Let M
be a matrix of dimension N1×N2×K to be used for embed-
ding Traj. We set Mx,y,k = (t, d) for the kth stay at location
(x, y) at time t for duration d. In Section 4.1, we show that
even a small K is enough to encode almost all locations of all
trajectories in our dataset.

3.2 Generative Model

Non-parametric generative models, trained in adversarial pro-
cess, are able to approximate and sample from the joint dis-
tribution over input features of complex data [?; Goodfellow
et al., 2014]. The non-parametric generative model does not
assume an explicit parametric function of the target distribu-
tion. Instead, it uses a model (e.g., a deep neural network) to
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JSD(preal, psynthetic)
p(r) p(r, t) p(r, d) p(r, dtotal)

First-order MC 0.226045 (2.455) 0.377977 (1.898) 0.617615 (2.158) 0.282112 (2.235)
Time-dep MC 0.244647 (4.208) 0.383154 (2.756) 0.617357 (0.216) 0.299368 (3.789)

HMM 0.274112 (5.654) 0.438551 (3.497) 0.619812 (0.624) 0.420264 (0.819)
LSTM-MLE 0.386385 (14.140) 0.555498 (8.778) 0.642768 (6.427) 0.603640 (0.981)
Our method 0.066109(1.818) 0.355129(1.779) 0.213122(7.308) 0.245102 (2.188)

Table 1: The mean (standard deviation) of JSDs of four probabilistic measures between real data and the synthetic data generated using
different generative models. The standard deviation is scaled by e−3. The result shows our method achieves a significantly lower JS
divergences (i.e., higher similarity to real data) across all metrics as compared to the existing models.

learn the target function.

In this work, we make use of generative adversarial net-
works to train a non-parametric model that generates loca-
tion trajectories in their map matrix representation from the
joint distribution p(Traj). Our model is constituted of Con-
volution Layers. In each layer, a rectangular filter is used to
convolve the feature map from lower layer to generate higher
level representation. This structure, as compared to fully con-
nected layer, is able to detect local patterns and is useful in our
case since the visit of a particular location is highly correlated
to its adjacent locations.

Let Preal be the joint distribution of location trajectories
from real data. During the training process, the discrimina-
tor network Dw is trained to distinguish between the samples
from Preal and from PG(z), where z is a random seed, and G
is the generative model. The model Gθ is trained to generate
samples that cannot be distinguish from real data by the dis-
criminator. We train our model using the loss function from
WGAN-GP [Gulrajani et al., 2017], as it is known to provide
stable gradients. The loss function is

L =Ez∼Pz
[D(G(z)]− Ex∼Preal

[D(x)]

+ λEx̃∼px̃
[(‖∇x̃D(x̃)‖ − 1)2]

where Gθ and Dw are two neural networks with stacked con-
volution layers, and the x̃ is drawn from a convex combina-
tion of PG(z) and Preal.

4 Evaluation

We evaluate the utility of synthetic data by comparing its sim-
ilarity to real data on its geographic and semantic features.

4.1 Dataset

We use Nokia Lausanne location trajectories [Kiukkonen et
al., 2010], and pre-process them the same way as in [Bind-
schaedler and Shokri, 2016] to construct the trajectories.
Each trace sample contains 288 data points per day (i.e., one
location visit per 5 minute). We filter out the region of interest
within Lausanne area, which is a rectangular region bounded
between (45.09429, 5.86211) and (47.79493, 10.66721) co-
ordinates. We discretized the area into a 64×64 grid. The size
of our dataset is 2, 661, 647 trajectories. We set K, maximum
stay repetition, to 4, and transformed trajectories to their map
matrix representation.

4.2 Experiments

Baselines

We compare our method with the following baseline models.

• First-order MC [Song et al., 2004]: this model defines
the current state as the current location, and assumes
p(rt|r0, . . . , rt−1) = p(rt|rt−1) with space-complexity
O(N2) where N is the number of the total locations, and
r the location variable.

• Time-dependent MC model [Shokri et al., 2011]: it as-
sumes the transition probability is time-dependent, by
splitting time into multiple time periods (e.g, morning,
afternoon, evening).

• HMM [Krumm and Horvitz, 2004]: this model is set
up with discrete emission probability and 7 hidden vari-
ables according to [Yin et al., 2017] and is optimized
using the Baum-Welch [Rabiner, 1989] algorithm.

• LSTM-MLE [Song et al., 2016]: the LSTM model is
trained by maximizing log likelihood log p(θ|Traj)
where θ is the model parameter, and the joint probabil-
ity is factorized according to (1). In the training phase,
the whole sequence is given, whereas in the generation
phrase, the model generates a location given its preced-
ing location (generated by the model).

Geographical Statistics

Instead of directly measuring the quality of the joint distri-
bution of trajectories, which is computationally infeasible for
large dimensions, we use three marginal distributions, (i.e.
p(r), p(r, t), p(r, d) to evaluate the general performance of
the model.

• p(r) measures the visiting probability for a location r,
reflecting the popularity of locations.

• p(r, t) measures the visiting probability for a location r
at any time t, reflecting the temporal popularity of loca-
tions (e.g. bars, homes).

• p(r, d) measures the probability of visiting a location r
for a duration d, reflecting the staying patterns in differ-
ent places.

• p(r, dtotal) measures the probability of visiting a loca-
tion r for (multiple times) during a day and staying for a
total duration of dtotal, reflecting the overall importance
of a location.
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Figure 2: JSD convergence w.r.t. the training epochs. From top left
to bottom right, we compute four aggregate statistics, namely p(r),
p(r, t), p(r, d), p(r, dtotal) from synthetic samples, and calculate
the JSD of these statistics from synthetic samples to real data (test
set), and from synthetic samples to training set respectively. We run
the experiment for 150 epochs, and notice the convergence at the
end. Since the training and testing set are sampled in a balanced
way, the difference between JSD score of both sets is small.

From the original dataset, we randomly select 50% trajec-
tories of each user to construct the training set, and another
50% as the test set. To evaluate the distance between the syn-
thetic data and the original real data, we use Jensen-Shannon
Divergence (JSD), which is a symmetric measure of the dis-
tance between two probability distributions. The JS diver-
gence of two probability P and Q is computed as

JS divergence(P ||Q) =
1

2
EP [log

P

X
] +

1

2
EQ[log

Q

X
],

where X = 1
2 (P +Q).

During each evaluation period, we generated 2000 syn-
thetic trajectories to compute the p(r), p(r, t), p(r, d) and
p(r, dtotal) and the JS divergence between the aggregate
statistics over the synthetic data and the real data. Figure 2
shows the results of our comparison. As the optimization
(in training the generative model) progresses, the JSD be-
tween the distributions of generated data and the real data
decreases significantly. The scores at the convergence point
are presented in Table 1, where we also compare the quality
of our synthetic traces with that of existing methods. The re-
sults show that the geographic features of our synthetic data
is significantly more similar to real data at the aggregate level,
compared to any other sequential model.

Absolute Semantics

Human trajectories reflect the abundant semantics of different
locations, which are important features for various machine

(a) Histogram for proportion of visits in top-50 visited
location w.r.t real data

(b) Precision of top-N visited location w.r.t. real data

Figure 3: Normalized histograms showing the absolute semantics
preserved by the synthetic data. In (a), we compute the proportion
of visit across all locations in the real data, and sort them by popu-
larity. Among the top visited locations computed from real data, we
present the respective visit proportion retrieved from the synthetic
data and the samples drawn from MC. In (b), we compute the pre-
cision for the Top-N visited locations w.r.t. the synthetic set and the
MC samples. The precision measures among the Top-N visited lo-
cations in real set, i.e., the coverage rate of Top-N visited locations
as in the other dataset.

learning and data mining tasks. Due to the high cost of anno-
tation for locations, the labels are not available in our dataset.
Nevertheless, some semantic of the location can be told by the
way it is visited. We measure the top visited locations, which
tells the significance of a specific location [Do and Gatica-
Perez, 2014; Zheng et al., 2009]. As is shown in Figure 3, we
compare the distribution of visits for top-50 most popular lo-
cations, and precision of top-N locations using the synthetic
set, real dataset and the samples from a Markov Chain (as the
baseline). Both metrics suggest our model outperforms the
baseline in capturing popular locations.

Relative Semantics

Various studies show that two trajectories that might differ ge-
ographically, in many cases, are semantically similar [Jebara,
2009; Bindschaedler and Shokri, 2016]. The relative seman-
tic similarity relates to the intuition that two trajectories that
are semantically similar have close mobility pattern between
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(a) Histograms for pairwise semantic distance within the
synthetic, training and testing dataset.

(b) QQ-plot for pairwise semantic distance for synthetic set
and test set.

Figure 4: For each dataset (Synthetic, Training and Real set), we
randomly select 1000 samples, compute the pairwise semantic dis-
tance within the sample set and plot the normalized histogram as in
(a). As is expected, the majority of the real (synthetic) trajectories
are semantically similar as the pairwise semantic distances are small.
In (b), QQ-plot visualizes the relative semantic relationship between
the synthetic set and the test set, where the points are aligned at the
45-degree reference line, which illustrates the strong correlation be-
tween two distributions.

locations with similar semantics. Since labels are not avail-
able in the dataset, we adopt the semantic distance metric in
[Bindschaedler and Shokri, 2016], which is:

D(Traj1, T raj2) =

Er1∼Traj1,r2∼Traj2 [md(p
r′t+1

r (r1), p
σ(r′′t+1)

σ(r) (r2))]

where σ is the optimal permutation function that maps se-
mantically similar locations, and md is the Mallows distance
function. As finding the optimal σ is computationally pro-
hibitive, we use a greedy method to find it, as follows.

σ(r) = f−1
2,j (f1,j(r)),

where fj(r) = arg sort
r=rj

pdtotal
(r) (2)

More concretely, for an individual trajectory Traji, we

compute pdtotal
(r) = dtotal(r)∑

r′
dtotal(r′)

, where dtotal(r) is the

total stay duration in location r, and we interpret dtotal as the
semantic importance of a location. We sort r according to the

weight p(r) in decreasing order, then σ(r) is the j-th impor-
tant location in one trajectory w.r.t. to the other. Then the
semantic equivalence between r1 and σ(r2) lies in that the
two locations are both of the j-th importance as for Traj1
and Traj2, respectively. Another difference in our evalua-
tion is that, in [Bindschaedler and Shokri, 2016] the authors
use the Earth Mover Distance as a measure of the distance for
Md, instead we use JSD for the reason of consistency.

We denote the relative semantic distance of a pair of tra-
jectory sample as pair-wise semantic distance, and the eval-
uation results are diagrammed in Figure 4. In summary, our
model correctly preserves the relative semantic property of
trajectories even without explicitly modeling it.

5 Related Work

Various generative probabilistic models have been developed
in recent years for approximately modeling the mobility dis-
tribution, which allows to simulate human behavior and mov-
ing patterns.

The most widely-used models are state-space models.
Markov Chain models the location as the state, and the proba-
bility of the current state only depends on the previous K-step
visits, which results in the order-K MC [Song et al., 2004]

and time dependent MC [Shokri et al., 2011]. Since native
MC models require exponential growth of state space when
one expects a finer-grain model, people resorts to Hidden
Markov Chain for computational efficiency. HMM assumes
the data sequence can be encoded by a sequence of hidden
variables z, and the transition between hidden variables to
be Markovian. Using hidden variables reduces the magni-
tude of state space, and allows complicated modeling of the
posterior p(z|x) and the likelihood p(x|z). Recently, Yin et
al. [Yin et al., 2017] use Input-Output HMM to model the
Call Deal Records, by adding the contextual condition to the
transition probability. Bindschaedler et al. [Bindschaedler
and Shokri, 2016] categorize the state as the semantics of
the visit, and model the transition between different seman-
tics with HMM. The main drawback of HMMs is that they
don’t completely model the temporal dependency of states.
As such, Baratchi et al. [Baratchi et al., 2014] use HSMM to
improve the HMMs by including the duration of the state into
the hidden variables. Overall, the MC or H(S)MM based re-
quires pre-defined parametric probability of hidden variables,
while the learned functions do not necessarily correspond to
the real data distribution.

To tackle this problem, [Lin et al., 2017; Song et al., 2016;
Gao et al., 2017; Varshneya and Srinivasaraghavan, 2017]

take advantage of the modern deep neural networks, and build
LSTM models to capture the complicated transition between
locations. Deep neural networks are universal approximators,
with hierarchal structures to abstract high-level representa-
tions, which turn out to outperform H(S)MM-models. How-
ever, these works are learned by maximizing log-likelihood,
which suffer from the problem of exposure bias when gener-
ating samples by self-unrolling. In contrast, our model does
not depend on likelihood optimization, and is able to generate
samples (as a whole) with high fidelity.
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6 Conclusion

In this paper we have presented a non-parametric generative
model of human mobility for synthesizing realistic human
trajectories. To the best of our knowledge, this is the first
such work on trajectory synthesis to employ a non-parametric
generative model. We have presented experimental results
demonstrating that the model preserves not only the statis-
tical characteristics of the trajectories used for training, but
also their intrinsic semantics.

In future work we will continue to investigate techniques
for incorporating structural and semantic information into the
model in order to improve its fidelity to the training data. We
also will investigate improvements that will allow the model
to be used in applications requiring differential privacy.
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