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S U M M A R Y

We present a numerically exact method for calculating the internal and external gravitational

potential of aspherical and heterogeneous planets. Our approach is based on the transformation

of Poisson’s equation into an equivalent equation posed on a spherical computational domain.

This new problem is solved in an efficient iterative manner based on a hybrid pseudospec-

tral/spectral element discretization. The main advantage of our method is that its computational

cost reflects the planet’s geometric and structural complexity, being in many situations only

marginally more expensive than boundary perturbation theory. Several numerical examples

are presented to illustrate the method’s efficacy and potential range of applications.

Key words: Geopotential theory; Numerical solutions.

1 I N T RO D U C T I O N

The calculation of a planet’s gravitational potential is required in diverse areas of geophysics and planetary science, including studies of

free oscillation seismology (e.g. Woodhouse & Dahlen 1978), body tides (e.g. Wahr 1981), rotational dynamics (e.g. Smith 1977), orbital

evolution (e.g. Kaula 1964) and glacial isostatic adjustment (e.g. Peltier 1974). Neither the Earth nor any other planetary body of interest is

geometrically spherical, where we follow the terminology of Al-Attar & Crawford (2016) and define a planet to be geometrically spherical

if its internal and external boundaries form a series of concentric spheres. Within a geometrically spherical planet Poisson’s equation can be

reduced in an exact manner to a decoupled system of ordinary differential equations for the spherical harmonic coefficients of the potential.

These differential equations can be solved using numerical quadrature, making it easy to calculate the planet’s gravitational potential to any

desired level of accuracy.

A number of approaches have been developed to account for asphericity within calculations of the gravitational potential. It is most

common to assume the deviation of a boundary from an appropriate reference sphere to be small and determine its contribution to the

gravitational potential using first-order boundary perturbation theory. In fact, for many applications, lateral variations in density are also

regarded as first-order quantities, and this allows for the asphericity of the planet to be handled with minimal effort. Higher-order extensions

of this boundary perturbation theory have been developed (e.g. Nakiboglu 1982; Chambat & Valette 2005) and the improvements over the

first-order theory are significant for some terrestrial applications (e.g. Mitrovica et al. 2005; Chambat et al. 2010). The use of higher-order

boundary perturbation theory, however, is both time-consuming and cumbersome, particularly when the coupling of such calculations into

dynamic problems is considered.

Non-perturbative methods for calculating the external gravitational potential of aspherical bodies have been described a number of

times in both the geophysics and planetary science literature. This includes, for example, the work of Parker (1973), Parker & Shure (1985),

Martinec et al. (1989) and Balmino (1994) based on spectral expansions of the exterior gravitational potential of piecewise homogeneous

bodies, and studies by Barnett (1976), Waldvogel (1979) and Werner (1994) using homogeneous polyhedral models for which the necessary

integrals can be performed analytically. Whilst these methods are useful within their intended applications it seems unlikely that they can be

readily extended to the calculation of the internal gravitational potential of a general heterogeneous planet. We note, however, that the method

of Hubbard (2012, 2013), which is based on a combination of spectral and multipole expansions, can be applied to ellipsoidally symmetric

bodies, and allows for accurate calculation of both the internal and external potential.

It is only quite recently that non-perturbative methods for calculating the internal gravitational potential of aspherical planets have been

considered, this being motivated largely by the desire to model their dynamics without unnecessary approximations. At first sight, it might

seem that this should be a simple problem. Indeed, we need only consider a linear partial differential equation with constant coefficients,

whereas problems that are ostensibly far more complicated are now solved routinely using numerical methods. The difficulty with our problem,

however, is that Poisson’s equation is not defined in a finite domain, but within all of space. Of course, one could attempt to approximate the
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1044 M. A. Maitra and D. Al-Attar

whole of space by a sufficiently large computational domain, but this has been shown to be both inaccurate and inefficient (Gharti & Tromp

2017).

Within the geophysics literature three main approaches to this ’infinite-domain problem’ have been discussed. First, Chaljub & Valette

(2004) used a Dirichlet-to-Neumann (DtN) map to reduce Poisson’s equation in R
3 to an equivalent problem defined within a finite spherical

domain containing the body of interest. The DtN map introduces non-local boundary terms into the problem, which comes with an associated

computational cost. Chaljub & Valette’s approach seems to have been impractical for its original application to long period seismology, but it

has subsequently been employed in quasi-static deformation calculations by Métivier et al. (2006), Al-Attar & Tromp (2014), Crawford et al.

(2016) and Crawford et al. (2018).

A second approach to calculating the internal potential field was described by Latychev et al. (2005) within their finite-volume method

for modelling glacial isostatic adjustment. Here the internal gravitational potential was obtained through direct numerical evaluation of the

Newtonian potential integrals at each point within the body. This method, however, is rather costly and care is needed in accounting for the

singular nature of the integrands.

Most recently, a powerful approach known as the ’spectral infinite-element method’ has been described within a series of papers by

Gharti & Tromp (2017), Gharti et al. (2018) and Gharti et al. (2019). This is a variant of the infinite-element method developed within the

engineering literature (e.g. Bettess 1977; Beer & Meek 1981; Medina & Taylor 1983) and reduces the exterior problem to the addition of a

single layer of elements onto the interior domain, but without the need for non-local boundary terms. Numerical tests show this method to be

both accurate and comparatively efficient while offering the flexibility to calculate the gravitational potential of an almost arbitrarily complex

object.

Given the preceding comments it might seem that there is no problem left to solve. But this view leaves us with a rather stark gap

in computational cost: within a geometrically spherical planet the gravitational potential can be determined in an almost trivial manner

using spherical harmonic expansions, while in an aspherical planet the problem requires the assembly and solution of a large system of linear

equations associated with the spectral-infinite-element discretization. The aim of this paper is to present an alternative method for gravitational

potential calculations that fills out the middle ground, providing a numerically exact solution to the problem, but with a computational cost

that reflects the planet’s geometric complexity. In doing this we must sacrifice some generality in the planet’s form, but will see that a usefully

large class of structures can still be accounted for. The solution is ’numerically exact’ in the sense that the only source of error is truncation

of the radial and angular bases on which the problem is discretized: by taking sufficiently many terms in the expansion we can, in principle,

achieve any desired level of accuracy.

The key idea in our method is the transformation of Poisson’s equation into a new equation defined in a geometrically spherical reference

domain (cf. Woodhouse 1976; Jobert 1976; Takeuchi 2005; Al-Attar & Crawford 2016; Leng et al. 2019). The introduction of such a mapping

is similar to, and can be seen as a generalization of, Clairaut’s approach to ellipsoidal equilibrium figures (e.g. Clairaut 1743; Chambat

& Valette 2005). Whilst this transformed equation has laterally varying and tensorial coefficients, the geometrical sphericity of its domain

means that it can be solved numerically using an approach based on generalized spherical harmonic (GSPH) expansions combined with a

spectral element discretization in the radial co-ordinate (e.g. Al-Attar & Tromp 2014; Crawford et al. 2018). The lateral heterogeneity of

the equation’s coefficients leads to coupling between the different spherical harmonic orders and degrees, but the resulting linear system

can be solved using a pre-conditioned iterative method similar to that of Al-Attar et al. (2012). Crucially, the closer the planet is to being

geometrically spherical, the more quickly the iteration converges.

2 T H E O RY

2.1 Poisson’s Equation for the gravitational potential

We begin by recalling the Poisson equation governing a planet’s gravitational potential. The planet is assumed to occupy a compact

subset M ⊆ R
3 with open interior, and smooth external boundary ∂M. Its interior is then further subdivided into a finite number of non-

interpenetrating regions, with the union of all internal and external boundaries denoted by �. The planet’s gravitational potential φ satisfies

the Poisson equation

∇2φ = 4πG̺ , (1)

which is to hold within R
3, where ̺ is the density, G the universal gravitational constant and ∇2 the Laplacian operator; the density is non-zero

only in M. This equation is solved subject to the boundary and regularity conditions

(i) [φ]+− = [〈n̂,∇φ〉]+− = 0 for x ∈ �,

(ii) φ → 0 as ‖x‖ → ∞,

where n̂ is the outward unit normal vector to a boundary, [·]+− denotes the jump in a quantity across the boundary in the direction of n̂, ∇ is

the gradient operator, 〈 ·, ·〉 denotes the standard inner product on R
3, and ‖ · ‖ is the associated norm.
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Gravity calculations for aspherical planets 1045

2.2 Weak form of Poisson’s equation

Following Chaljub & Valette (2004), we will express the problem in weak form on a bounded domain through the use of an appropriate DtN

map. Let B = {x ∈ R
3 | ‖x‖ ≤ b} denote a closed ball of radius b which contains M, and ψ be a sufficiently regular complex-valued function

defined on B. We multiply eq. (1) by the complex-conjugate ψ of this test function and integrate to obtain
∫

B

(∇2φ)ψ d3x = 4πG

∫

M

̺ ψ d3x . (2)

The use of complex-valued functions is to facilitate our later introduction of spherical harmonic expansions. Integrating the left hand side of

eq. (2) by parts we arrive at
∫

B

〈

∇φ, ∇ψ
〉

d3x −
∫

∂B

〈n̂, ∇φ〉ψ d S = −4πG

∫

M

̺ ψ d3x , (3)

where we have used the continuity conditions on φ and its normal derivative across �. To account for the term 〈n̂, ∇φ〉 within the surface

integral over ∂B we use the fact that φ is harmonic in R
3 \ B. It follows that the value of φ within this exterior domain is determined uniquely

by its restriction to ∂B, and we have, in particular, the well-known expansion

φ(r, θ, ϕ) =
∑

lm

(

b

r

)l+1

φlm(b)Y 0
lm(θ, ϕ) . (4)

valid for r ≥ b, where Y N
lm denote the fully normalized GSPHs of degree l, order m, and upper index N (e.g. Dahlen & Tromp 1998). Here the

expansion coefficients of the restriction of the potential to ∂B are given by the integrals

φlm(b) =
∫

S2

φ(b, θ, ϕ)Y 0
lm(θ, ϕ) d S, (5)

where S
2 is the unit two-sphere. Using this result, we find that

〈n̂, φ〉|∂B = −
∑

lm

l + 1

b
φlm(b)Y 0

lm(θ, ϕ), (6)

and hence eq. (3) can be written
∫

B

〈

∇φ, ∇ψ
〉

d3x +
∑

lm

(l + 1)b φlm(b) ψlm(b) = −4πG

∫

M

̺ ψ d3x , (7)

which is to hold for all test functions ψ . This is the desired weak form of the problem. Importantly, the role of the exterior potential has been

reduced to non-local boundary terms involving its spherical harmonic expansion coefficients on ∂B.

2.3 Transformation of Poisson’s equation

The weak form of Poisson’s equation in eq. (7) provides a suitable starting point for numerical discretization using, for example, a 3-D spectral

element method (e.g. Chaljub & Valette 2004). However, we cannot use methods based upon GSPH expansions to tackle this problem if the

planet is not geometrically spherical because the continuity conditions on φ across the boundaries � cannot be readily enforced. In order to

apply such an approach we must transform the problem into an equivalent one defined on a geometrically spherical domain.

Consider a diffeomorphism ξ : B → B (i.e. a smooth mapping, with a smooth inverse) with the following properties:

(i) its restriction to the boundary ∂B is the identity mapping;

(ii) the inverse image M̃ = ξ−1(M) is a ball with centre coincident with that of B;

(iii) the inverse image �̃ = ξ−1(�) of the boundary set is comprised of concentric spheres in M̃.

For general M such a diffeomorphism will not exist, and so we see the fundamental restriction of our method. Nonetheless, for many

applications a suitable diffeomorphism can be found, and later we discuss how this can be done practically. In fact, the requirement that this

mapping be smooth is more stringent than is strictly necessary, and it is possible for it to be defined in a piecewise manner with continuity

enforced at interfaces.

Using this diffeomorphism, we can define a new referential potential field

ζ (x) = (φ ◦ ξ )(x) := φ[ξ (x)], (8)

where ◦ denotes the composition of two functions. Knowledge of ζ is equivalent to that of φ, but ζ is defined on a geometrically spherical

domain. Our first aim is to show that ζ satisfies a suitably generalized form of Poisson’s equation. Using ξ to change variables in eq. (7), we

arrive at
∫

B

J
〈

F−T ∇ζ, F−T ∇χ
〉

d3x +
∑

lm

(l + 1)b ζlm(b) χlm(b) = −4πG

∫

M̃

J̺ ◦ ξ χ d3x . (9)
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1046 M. A. Maitra and D. Al-Attar

where we have defined a new test function χ = ψ ◦ ξ , along with the deformation gradient F of the diffeomorphism, which has components

[F]i j ≡ ∂ξi

∂x j
, (10)

and its Jacobian,

J = det F , (11)

which we assume without loss of generality to be everywhere positive. We have also applied the chain rule to arrive at the identity

(∇φ) ◦ ξ = F−T ∇ζ, (12)

along with a corresponding expression involving the gradients of the test functions. At this stage it is convenient to define the right

Cauchy–Green deformation tensor,

C = FT F , (13)

a tensor derived from it,

a = JC−1 , (14)

and the referential density,

ρ = J̺ ◦ ξ . (15)

With these definitions, the transformed weak form for ζ can be written
∫

B

〈a ∇ζ, ∇χ〉 d3x +
∑

lm

(l + 1)b ζlm(b) χlm(b) = −4πG

∫

M̃

ρ χ d3x , (16)

which is to hold for all test functions χ . This equation broadly resembles the original weak formulation, but involves the tensor field a

determined from the diffeomorphism ξ . By construction, these problems are mathematically equivalent: in essence we have just exchanged

simplicity of the equation for simplicity of the domain in which it is posed. From a numerical perspective, however, it is only in the transformed

problem that we can usefully apply methods based on GSPH expansions.

3 N U M E R I C A L I M P L E M E N TAT I O N

3.1 Numerical discretization of the problem

Our approach to solving eq. (16) numerically is based on GSPH expansions for the angular dependence of the referential potential, along

with a spectral-element discretization in the radial co-ordinate. Within B, the truncated GSPH expansion of the referential potential takes the

form

ζ (r, θ, ϕ) =
L

∑

l=0

l
∑

m=−l

ζlm(r )Y 0
lm(θ, ϕ) , (17)

where the maximum expansion degree L is to be chosen based on the planet’s structure and properties. Each of the radial expansion coefficients

ζ lm is then expanded in a finite set of radial basis functions

ζlm(r ) =
N

∑

n=1

ζlmnhn(r ). (18)

The specific basis functions used are Lagrange polynomials defined on a radial spectral element mesh (e.g. Komatitsch & Tromp 1999;

Al-Attar & Tromp 2014). Importantly, the radial mesh is built to honour the discontinuities within the reference planet M̃, and thus we can

enforce the required continuity of ζ in a trivial manner. The appropriate continuity conditions on the gradient of the referential potential are

built directly into the weak formulation of the problem, and so need not be considered explicitly.

The test functions for the problem are taken in turn to be χ = hnY 0
lm as the indices l, m and n range over appropriate values, and in this

manner we arrive at a system of linear equations

Ax = f, (19)

where the vector x contains the expansion coefficients ζ lmn, while the matrix A and force vector f are obtained through discretization of

the weak form in a manner detailed below. Specifically, we represent x by defining for each l and m an N-component vector xlm the n’th

component of which is ζ lmn,

[xlm]n = ζlmn . (20)
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Gravity calculations for aspherical planets 1047

All the xlm are then bundled together into the [N(L + 1)2]-component column-vector

x =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x00

x1−1

x10

...

xlm

...

xL L

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (21)

and the components of the force, flmn (computed below), are arranged similarly. Importantly, explicit calculation of the components of A,

which can be large, is not required. Instead, we need only ever compute its action on a given vector as part of the iterative solution of the

linear system.

3.2 Hybrid pseudospectral/spectral element calculations

To determine the action of the matrix A and to compute the force vector f , we use a hybrid pseudospectral/spectral element method similar

to that of Crawford (2018) for modelling glacial isostatic adjustment in the presence of laterally varying mantle viscosity. This approach also

closely resembles the method of Leng et al. (2016) and Leng et al. (2019) for modelling global seismic wave propagation, though in their

work a 2-D spectral element method is coupled to a Fourier-series expansion in an azimuthal variable about the source location.

To explain the key ideas, we start with the computation of the force vector, which is part of the preprocessing for the potential calculation.

The components flmn, having been computed once, are stored and used at the first stage of the iterative solution. The (l, m, n)th element of the

force vector is given by the integral

flmn = −4πG

∫

M̃

ρ hn Y 0
lm d3x, (22)

where we note that the radial basis functions are real valued. Using spherical polar co-ordinates the volume integral can be reduced to
∫

M̃

ρ hn Y 0
lm d3x =

∫ a

0

ρlm hn r 2 dr, (23)

where ρ lm is the (l, m)th GSPH coefficient of the referential density and a denotes the radius of the reference planet M̃; once ρ lm is known,

the radial integral can be evaluated using the numerical quadrature formula associated with the spectral element discretization. How we find

ρ lm depends on the way in which the planet’s structure is specified. On the one hand, the density might be described referentially, with ρ and

ξ given, in which case we obtain ρ lm by applying a fast GSPH transformation at each radial node to calculate the GSPH coefficients for an

appropriate range of indices. In detail, this transformation is done using Gauss-Legendre quadrature in colatitude coupled to a fast Fourier

transformation in longitude (cf. Lognonné & Romanowicz 1990). On the other hand, if the model is specified by the physical density ̺(x)

then we must first determine ρ(x). To do this, we use eq. (15) to determine the values of ρ on an appropriate spatial grid and then proceed as

before.

Turning to the action of the matrix A, suppose we wish to determine Ax , with x defined as above to contain the components of the

discretized referential gravitational potential ζ . It will be useful to define an auxiliary vector field

q = a∇ζ, (24)

where we recall that a is the symmetric tensor field introduced in eq. (14). Working in the canonical basis of Phinney & Burridge (1973) (see

Appendix A) the components of this vector field can be expanded as

qα =
∑

lm

qα
lmY α

lm . (25)

Taking the (l, m, n)th test function, we can apply the rules for contravariant differentiation (e.g. Dahlen & Tromp 1998, Appendix C) to reduce

the left-hand side of eq. (16) to

∫ b

0

[

r 2h′
nq0

lm +
k

√
2

rhn

(

q+
lm + q−

lm

)

]

dr + b(l + 1)hn(b)ζlm(b), (26)

where k =
√

l(l + 1). Assuming we know the functions qα
lm , the radial integral can be trivially evaluated using numerical quadrature, and

gives the desired element of Ax .

Calculation of the coefficient functions qα
lm is done in a number of stages, following the standard pseudospectral philosophy by which

we work in either the spatial or spectral domain based on what is simplest (e.g. Boyd 2001). Starting from the expansion coefficient functions

ζ lm, we use the rules for contravariant differentiation along with those for Lagrange polynomial interpolation to determine ζ
|α
lm , the expansion

coefficients of ∇ζ relative to the canonical basis. Inverse fast GSPH transformations are then performed to find the values of ∇ζ on a spatial
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1048 M. A. Maitra and D. Al-Attar

Figure 1. The stages in the calculation of φ for an aspherical, layered planet. Each panel shows a slice through the plane θ = π /2, and a small, homogeneous

sphere has been placed around the origin in order to ensure that ξ and ρ are both regular at the origin. Panel (a) shows the planet before performing any

transformations. In panel (b) the computational domain B has been transformed through the action of ξ : the boundaries of the planet are spherical and the

density has been transformed accordingly. Panel (d) shows ζ , the solution to eq. (16). Moving left from (d) to (c) the planet and potential are mapped from

reference space back to physical space, yielding the potential φ.

mesh. Multiplication by a is performed spatially to obtain q = a∇ζ on this grid, and finally the required coefficient functions qα
lm are obtained

through forward fast GSPH transformations. Within this process forward and inverse fast GSPH transformations must—potentially—be

performed at each node of the radial mesh, and this accounts for a substantial part of our method’s computational cost. Importantly, however,

in regions where the diffeomorphism is the identity we have a (x) = 1, so these transformations are not needed and we can make substantial

computational savings.

3.3 Pre-conditioned iterative solution of the linear system

The numerical solution of eq. (19) is accomplished most efficiently using matrix-free iterative methods. From eq. (16) it is clear that A is

an Hermitian matrix, and so we can apply the pre-conditioned conjugate gradient algorithm (e.g. Saad 2003). In order for this algorithm

to converge rapidly a good pre-conditioner B for the linear system must be found. Here a balance must be struck between B being a good

approximation to the inverse operator A−1—meaning the algorithm will converge in fewer iterations—and the cost of determining the action

of B. The preconditioner which we have used in all our numerical examples is

B =
(

A(0)
)−1

, (27)

where A(0) is the system matrix for the corresponding spherical system, that is the matrix obtained by considering eq. (16) with ξ (x) = x.

The reasoning behind this choice is similar to that of Al-Attar et al. (2012) in the context of normal mode coupling calculations. One

starts by observing that when the planet is geometrically spherical there is a complete decoupling between the coefficients for different

spherical harmonic degrees and orders, which gives the corresponding matrix A(0) a block diagonal structure. The matrix A
(0)
l associated with
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Gravity calculations for aspherical planets 1049

Figure 2. The potential and topography of the body considered in Fig. 1, evaluated on ∂B. Panel (a) shows the numerical potential anomaly. Long-wavelength

features of the topography—shown in panel (c)—are clearly visible. In panel (d) we have plotted the numerical (blue) and analytical (red) values of the

normalized power-spectra, Pl. There is excellent agreement until about l = 100. Thereafter, the two spectra deviate somewhat, but the power at these higher

degrees is so small that the spatial field is not affected noticeably. Indeed, the relative difference between the numerical and analytical fields, normalized by the

maximum absolute value of the analytical field, is only a few parts in 108, as shown in panel (b).

the (l, m)th subsystem is independent of m, and can be readily computed in terms of the radial spectral element discretization (cf. Al-Attar &

Tromp 2014, Appendix D2). Moreover, the matrices A
(0)
l for each l are Hermitian and narrow banded, meaning that their LU-decomposition

can be computed and stored in an efficient manner using standard LAPACK routines for banded matrices. Once these factorizations have been

performed, the action of
(

A(0)
)−1

can be computed rapidly by carrying out (L + 1)2 simple backsubstitutions. The action of the block-diagonal

pre-conditioner on the vector f can then be written

(

A0
)−1

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

A
(0)

0

)−1

f00
(

A
(0)

1

)−1

f1−1
(

A
(0)

1

)−1

f10

...
(

A
(0)
l

)−1

flm

...
(

A
(0)
L

)−1

fL L

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (28)
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1050 M. A. Maitra and D. Al-Attar

Figure 3. A comparison of the referential and physical potentials of two ’different’ homogeneous spheres, each containing a different internal ’boundary’ with

large topography. The bottom two panels show the referential potentials which, being the result of applying different mappings to B, are not the same. By

contrast, the physical potentials, shown above, agree to numerical precision.

Not only is the action of
(

A(0)
)−1

cheap to compute, but we also expect that A(0) will approximate A reasonably well for a body which is

nearly spherical, with the approximation improving as M approaches geometrical sphericity. This suggests that
(

A(0)
)−1

should act as a good

preconditioner in a moderately aspherical system, and this is borne out by later numerical examples.

Within Al-Attar et al. (2012) it was found that for normal mode calculations such a ’spherical earth pre-conditioner’ could usually be

out-performed by allowing some limited coupling between the off-diagonal subblocks. We have not investigated that for the present problem,

but it might be worth considering in future work if applications to very aspherical planets are necessary (see Section 5).

4 N U M E R I C A L E X A M P L E S A N D B E N C H M A R K S

4.1 The form of ξ

Finding a diffeomorphism which maps an aspherical, multilayered planet onto a geometrically spherical reference body is a problem in its

own right. Therefore, for the rest of this work we restrict attention to mappings of the form

ξ (x) = x + h(x)x̂ , (29)

where h is a scalar-valued function. Physically, ξ causes displacement along radial lines: hence, we shall describe these mappings as ’radial’.

This choice of ξ limits our scope somewhat, but despite its apparent simplicity we can still study a broad class of planetary bodies. We

emphasize, though, that the method described above is applicable, in principle, to any body that can be mapped diffeomorphically onto a ball.

For mappings of the form of eq. (29), we show in Appendix B that its Jacobian is

J =
(

1 +
h

r

)2

(1 + ∂r h) . (30)

In order for ξ to be a diffeomorphism it is necessary for J to be everywhere positive, so the form of h is restricted; we emphasize, however,

that this function is not required to be small in any sense.
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Gravity calculations for aspherical planets 1051

Figure 4. An illustration of the numerical method for a highly flattened ellipsoid. The body is homogeneous, which clarifies the mapping procedure visually.

See Fig. 1 for a description of the stages.

Figure 5. A homogeneous body with Terran topography, with the computation performed accurate to maximum degree L = 128. The left-hand panel shows

the topography. On the top right is plotted the potential anomaly at a radius of 1.05, corresponding to an actual altitude of about 300 km.
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1052 M. A. Maitra and D. Al-Attar

In practice, we generate h by specifying the desired topography on each reference boundary and smoothly interpolating between them.

In detail, the topography on the i’th reference boundary is defined to be hi, with the boundary being a sphere of radius Ri, and we demand

that h|r=Ri
= hi . Since it is permissible that ξ be only piecewise-smooth and continuous across referential boundaries, hence we are free,

if desired, to interpolate the form of h within each layer separately, while only enforcing continuity at the boundary radii. Once h has been

specified throughout B we can calculate and store aαβ , the contravariant components of a with respect to the canonical basis (see Appendix B

for details).

4.2 Tests, benchmarks and illustrations

In this section we present some examples and test the accuracy of our method. All physical quantities are presented non-dimensionalized,

with

(i) density scaled by ˜̺ = 5150 kg m−3, Earth’s average density,

(ii) length scaled by L̃ = 6.371 × 106 m, the average radius of the Earth,

(iii) potential itself scaled by φ̃ = G ˜̺ L̃2.

4.2.1 Comparison with semi-analytical solution

In order to test the numerical method we must compare its results with those obtained from semi-analytical calculations. Therefore we

consider the case of a planet composed of NL layers, each layer having arbitrary topography on its surface subject to the constraint that the

boundaries between the layers not interpenetrate. Furthermore, within the i’th layer the density is parametrized as a polynomial of degree Np

with laterally varying coefficients,

̺i (r, θ, ϕ) =
Np
∑

j=1

̺
( j)
i (θ, ϕ) r j . (31)

Generalizing the results of Balmino (1994), the potential on a spherical surface which encloses the planet can be written analytically as a sum

over the planet’s layers and over spherical harmonic degrees and polynomial orders. The potential at a point x, inside or outside the body, is

of course

φ(x) = −G

∫

M

̺(x′)

‖x − x′‖
dx′ . (32)

Let b be the radius of a sphere which completely bounds the body. If ‖x‖ ≥ b, then we may expand the above integral using the identity

1

‖x − x′‖
=

1

r

∑

lm

4π

2l + 1

(

r ′

r

)l

Y 0
lm(θ ′, ϕ′) Y 0

lm(θ, ϕ) , (33)

from Dahlen & Tromp (1998, Appendix B). A simple calculation then shows that the (l, m)th component of the potential on the spherical

surface r = b is given by

φlm(b) = −
4πG

(2l + 1)bl+1

⎧

⎨

⎩

NL
∑

i=1

Np
∑

j=0

[Ri + hi (θ, ϕ)]l+Np+ j
[

̺
( j)
i (θ, ϕ) − ̺

( j)

i+1(θ, ϕ)
]

l + Np + j

⎫

⎬

⎭

lm

, (34)

where ̺
( j)

NL +1 is defined to vanish identically for all j.

For the body considered in Fig. 1 we have plotted in Fig. 2 the numerical potential anomaly,

φanom(r, θ, ϕ) = φ(r, θ, ϕ) − φ00(r ) , (35)

the normalized difference between the numerical and analytical potentials, and the respective normalized power-spectra,

Pl (r ) =
∑

m |φlm(r )|2

|φ00(r )|2
, (36)

on ∂B, corresponding to a radius of r = 1.6. The surface topography is also shown for reference. We see from panel (d) that the numerical

and analytical potentials agree closely, having identical power-spectra up to around l = 100. Although the power-spectra differ beyond that

degree, the potential has so little power in those higher degrees that the spatial field is not affected appreciably.

The difference between the power-spectra at high degrees is due to truncation. If the planet were homogeneous with small topography,

then the potential would have the same maximum degree as the topography. However, the nonlinear interactions between large topography and

heterogeneous density produce a potential with power at all degrees. By truncating the spherical-harmonic expansion we necessarily neglect

some of this behaviour. Therefore, the maximum spherical-harmonic degree required to calculate φ to a given level of accuracy will not just

be the larger of the maximum degree in the density and topography. Rather, it must be chosen based on the roughness of the referential density

ρ and the tensor field a. While this issue has not been investigated fully, we can easily check for convergence in each instance by repeating

calculations at increasing maximum degrees.
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4.2.2 Independence of the form of ξ

A physical planet can be represented by many different reference bodies, each with its own diffeomorphism and associated referential density.

Our numerical method must, of course, be independent of the arbitrary choice of diffeomorphism. To verify this, we consider a homogeneous,

spherical planet along with two distinct referential descriptions as illustrated in Fig. 3. Whilst the respective referential potentials are clearly

different, we see that they map to the same physical potential.

4.3 Further examples

Having shown that our method gives numerically accurate answers we conclude by showing two more illustrative example calculations. First,

in Fig. 4 we show the calculated potential of a highly flattened, homogeneous ellipsoid. Calculations of this type are required in determining

hydrostatic equilibrium figures of rapidly rotating planets, this being a potential future application of this work.

Finally, Fig. 5 shows the potential of a homogeneous body with the Earth’s topography expanded up to degree 128. While the topography

contains relatively short wavelengths, it is only of a very low amplitude compared to the Earth’s radius. We can, therefore, chose the

diffeomorphism to equal the identity mapping everywhere but a thin spherical annulus enclosing the surface. As discussed earlier, this greatly

increases the speed of the calculations.

5 D I S C U S S I O N

We have presented a new method for performing numerically exact calculations of the gravitational potential of aspherical and heterogeneous

planets. The novel feature of this work is the use of a diffeomorphism ξ to map M, a heterogeneous planet with arbitrarily large topography,

onto M̃, a geometrically spherical reference body in which pseudospectral methods can be used in conjunction with 1-D spectral element

methods. The numerical examples demonstrate that the method is accurate, has an efficiency that scales with the planet’s complexity, and

can even be applied to markedly aspherical planets. It is worth noting that all of these examples were run on a desktop computer, and do not

require the use of parallel computations.

The chief motivation behind our work is the desire to perform elastodynamics calculations in aspherical planets efficiently without

approximating the effects of self-gravity and topography. In this context, the geometric transformations we have used can be interpreted

physically as ’particle-relabelling transformations’ as described by Al-Attar & Crawford (2016) and Al-Attar et al. (2018). The necessary

extensions will be described in future work, with application to hydrostatic equilibrium figures, free-oscillation seismology, body tides, and

rotational dynamics. Furthermore, there are bodies of interest in the planetary sciences which, although diffeomorphic to a ball, cannot be

described using the radial mappings currently implemented. A particularly salient example are the ’synestias’ introduced by Lock & Stewart

(2017). An important extension of this work, then, is to investigate the efficient generation of more general diffeomorphisms.
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A P P E N D I X A : G E N E R A L I Z E D S P H E R I C A L H A R M O N I C E X PA N S I O N S

Let (r, θ , ϕ) denote the usual spherical polar coordinates and (r̂, θ̂ , ϕ̂) the associated unit basis vectors. Following Phinney & Burridge (1973),

we define the ’canonical basis vectors’

ê− =
1

√
2

(

θ̂ − i ϕ̂
)

(A1)

ê0 = r̂ (A2)

ê+ = −
1

√
2

(

θ̂ + i ϕ̂
)

, (A3)

and write the contravariant components of a vector u with respect to this basis as u−, u0 and u+. Each component can be expanded in the

form

uα =
∑

lm

uα
lmY α

lm , (A4)

where the Y α
lm are the fully normalized generalized spherical harmonics defined in Appendix C of Dahlen & Tromp (1998) and summation is

over integer values for 0 ≤ l ≤ ∞ and −l ≤ m ≤ l.

A scalar field is expanded in terms of scalar spherical harmonics Y 0
lm in the usual fashion,

φ =
∑

lm

φlmY 0
lm , (A5)
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but we use generalized spherical harmonics to write the contravariant components of its gradient (a vector field) as

(∇φ)α ≡
∑

lm

φ
|α
lmY α

lm , (A6)

where

φ
|0
lm =

dφlm

dr
(A7)

and

φ
|±
lm =

k
√

2

φlm

r
(A8)

with

k =
√

l(l + 1) . (A9)

The expansion of a second-rank tensor looks similar. By analogy, we define the contravariant components of T by

T =
∑

αβ

T αβ êα ⊗ êβ (A10)

and expand each component as

T αβ =
∑

lm

T
αβ

lm Y
α+β

lm . (A11)

Thus T−+, T+− and T00 are all expanded in terms of the Y 0
lm , whilst, for example, T++ is expanded on Y 2

lm . We note in passing that the covariant

components of the metric tensor are

gαβ =

⎛

⎜

⎝

0 0 −1

0 1 0

−1 0 0

⎞

⎟

⎠
. (A12)

A P P E N D I X B : C A L C U L AT I O N O F a F O R A R A D I A L M A P P I N G

When the mapping ξ is radial, that is of the form

ξ (x) = x + h(x)x̂ , (B1)

we can obtain a simple analytic expression for the components of a in terms of (∇h)α . The deformation gradient takes the form

F =
(

1 +
h

r

)

1 + x ⊗
(

1

r
∇h −

h

r 2
x̂

)

, (B2)

whereupon we may use the Sherman–Morrison formula (e.g. Van Loan & Golub 1983) to write down an exact expression for the inverse:

F−1 =
(

1 +
h

r

)−1
(

1 −
x ⊗

(

1
r
∇h − h

r2 x̂
)

1 + ∂r h

)

. (B3)

The matrix-determinant lemma (e.g. Van Loan & Golub 1983) yields the Jacobian,

J =
(

1 +
h

r

)2

(1 + ∂r h) , (B4)

and after a few more lines of algebra we find

a = JC−1 = (1 + ∂r h) 1 + 2
h

r
r̂ ⊗ r̂ − (r̂ ⊗ ∇h + ∇h ⊗ r̂) +

‖∇h − h

r
r̂‖2

1 + ∂r h
r̂ ⊗ r̂ . (B5)

Expanding ∇h in the canonical basis and using the metric eq. (A12) to evaluate the norm, we arrive at

[

aαβ
]

=

⎛

⎜

⎜

⎝

0 − (∇h)− − (1 + ∂r h)

− (∇h)− 1 − ∂r h + 2
h

r
+

(∂r h − h/r )2 − 2 (∇h)− (∇h)+

1 + ∂r h
− (∇h)+

− (1 + ∂r h) − (∇h)+ 0

⎞

⎟

⎟

⎠

. (B6)

Only if the mapping is radial can we use the Sherman–Morrison formula and matrix-determinant lemma. The reader may verify that the

deformation gradient no longer takes the necessary form of ’identity plus tensor-product’ when terms in θ̂ and ϕ̂ are added to eq. (B1). It is

of course possible to find an analytic expression for aαβ in more general cases; it is just not as elegant.
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