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A NON-PLANAR BOUNDARY PROBLEM FOR THE WAVE EQUATION*

BY

GEORGE K. MORIKAWA
(Hughes Aircraft Company, Research and Development Laboratories)

1. Introduction. Notwithstanding the relatively recent outburst of activity on the
part of aerodynamicists concerning problems dealing with the wave-equation, some
problems with radiation type conditions still deserve attention. An important class of
problems of this type are those with non-planar, non-axially-symmetric boundaries, in
particular, wing-body problems in linearized supersonic flow. For slender wing-bodies
[1], where variations in the flow direction are small, the stationary three-dimensional
problem is reduced to a two-dimensional potential (Laplace) problem in the cross-flow
plane. For conical wing-bodies [2], where the surface is generated by linear elements
passing through the vertex, a reduction from three to two-dimensions is evident, and a
transformation (Chaplygin) further reduces the subsequent elliptic problem to a two-
dimensional potential problem. However, for more general type boundaries, the problem
is relatively difficult. One of the first attempts in this direction has been made by
Ferrari [3], using an iteration procedure which is also discussed by Lagerstrom and
Van Dyke [4], In this paper the problem, which the author considers to be the funda-
mental wing-body problem for stationary linearized supersonic flow, is discussed. An
approximate solution is obtained and expressed in terms of the pressure, a quantity of
interest to aerodynamicists.

2. Formulation of the problem. Consider the wing-body configuration shown in Figure
1, where the body is an infinitely long, circular cylinder (normalized to radius = 1)
and the wing is a semi-infinite flat plate with the leading edge normal to the free-stream
direction defined by the velocity W, i.e., zero sweep-back. W is the uniform flow (nomi-
nally in the z-direction) far upstream and away from the body and the dashed lines
from the leading edge-body junction are elements of Mach cones indicating supersonic
leading edges. The problem considered here is the case where both body and wing are
at a small angle of attack, a, with respect to the uniform flow at — ; the more general
case, where the body is at a and the wing has an arbitrary angle of attack distribution,
can be handled as easily. Since the leading edges of the wing are supersonic, the flow
field upstream is known everywhere and the boundary conditions are of the first kind [5],
where one component of the velocity, namely, v = <py , is known everywhere in the
plane* of the wing (x,z plane) and on the body. By a simple super-position procedure
made possible by the linearization, the original problem with both body and wing at a

*Received July 19, 1951. This paper is part of a thesis submitted'in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at California Institute of Technology, June, 1949, and a
subsequent report, "The Wing-Body Problem for Linearized Supersonic Flow", Jet Propulsion Labora-
tory, California Institute of Technology, Progress Report No. 4-116 (Dec. 19, 1949), written under
U. S. Army Ordnance Contract No. W-04-200-ORD-455. A more complete description of the physical
problem (and related aspects) than given in this paper is presented in the report, hereafter referred to as
the "JPL report". The author wishes to thank Professors H. J. Stewart, P. A. Lagerstrom, A. Erdelyi
and C. R. DePrima for their suggestions and criticisms.
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can be replaced by an equivalent problem* with body at zero angle and wing at angle of
attack a, plus an apparent twist imposed by the original flow upstream of the leading

\
Fig. 1. Wing-body Configuration.

edge. Then the boundary conditions in cylindrical polar coordinates, in terms of the
perturbation velocity potential, are:

^ <pt(r,0,z) = —Wa(\ + "*), 2 > 0, <Pr(M,2) = 0, (la)

where <p satisfies the wave equation

AV — <Pzz = <Prr + ~ <Pr + ^2 <PS6 ~ <f>„ = 0. (lb)

For arbitrary Mach number M, the coefficient of is — (M2 — 1), but there is no
loss in generality in taking M = 21/2, since, by a simple similarity transformation [5]
(linear), the arbitrary M case results. The initial condition (z is a time-like direction)
for the equivalent problem is taken to be

<p(r,0,0+) = <p.(r,0,0+) = 0. (lc)

Actually, <pj,r, 0, 0+) ^ 0, that is, <pz ̂  0 if z = 0 is approached from positive z in
the x, z plane, but this condition causes no difficulty here.** Then this radiatioit type
problem given by Equations (la), (lb) and (lc) is a natural problem for the methods
of the Laplace transformation; f and subsequently it will be evident that these methods
lead to an approximate solution of an inherently complicated problem.

*Actually, the equivalent problem consists of two problems, the second consisting of the body alone
at angle of attack a; but since the pressure component <pz is the quantity of usual interest, the second
problem contributes nothing.

**A necessary condition for uniqueness is the condition of outgoing waves.
fSeveral British workers have recently applied Laplace transform methods to supersonic flow

problems; see, e.g. [6,7].
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Assuming that the solution is twice differentiable and that the second derivatives
have Laplace transforms, the equivalent problem, given by Eqs. (1) becomes the trans-
formed problem

Ai/' — s2^ = 0 (2a)

with the boundary conditions

i h(r,0;s) = - V (l + ?)' = °' (2b)

where

<P(r,9;s) = [ e~"<p(r,d,z) dz (2c)
Jo

is the Laplace transform of <p with respect to the free-stream direction, z, and s is the
transform variable. (A convenient notation is to write \p = £{<p; s} and the inverse
Laplace transform <p = z}; then the pressure p = —pW<pz , where p is the free-
stream density and <p, = z\). For convenience in presentation, since none of
the essential features are lost, the sweepback is taken equal to zero. The differential
equation (Eq. 2a) is the two-dimensional modified Helmholtz equation with the param-
eter s(Re s > 0) and the transformed problem is an elliptic boundary-value problem in
the r, 6 plane. For strong conditions [8, 9] on \p exterior and on the boundary of the region,
i.e., is twice continuously differentiable in (r, 0), the solution is expressible as an integral
in terms of ■</< and the outward normal derivative \pn on the boundary by application of
the Green's theorems. But and \f/n are related on the boundary C and the solution
takes the form

«r.»»--s/„(*5F <3a)
where G is the sum of a singular and a regular function in the region. If G is chosen
such that dG/dn = 0 on C

(3b)

where G is called the second Green's function. The Green's function is then characterized
by the following conditions:

1) G(r,d;r',d') = G(P;Q) satisfies Equation (2a) for P(r,&) ^ Q(r',d');

2) G(r,d;r',6') has the proper singularity at P(r,9) — Q(r',d')] ^

3) ^ = 0 on C.dn

A consequence of the first two conditions is that G(r, 6; r', 6') = G(r', 8'-, r, 6) symmetric
in (P; Q). Weaker conditions, e.g., the condition that \pn may be discontinuous, but
integrable on the boundary, are permissible for Eq. (3b) as in potential theory [10].

The fundamental solution of the modified Helmholtz equation (Eq. 3b), i.e., the
solution independent of 6 and singular at the origin, is K0(sr), the modified Bessel func-
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tion of the second kind of zero order [11], For a fixed point P(r, 9) with a variable point
Q(r', 6'), the fundamental solution may be written immediately as K0(sp) since the
differential equation is invariant under translation; p = [r2 + r'2 — 2rr' cos (6 — d')]1/2
is the distance between P and Q. This solution may be interpreted as the Green's function
for the entire x, y plane, since it satisfies the required properties (Eq. 4).

In determining the Green's function for a region with a given boundary, the function
sought will always have the form

G(P; Q) = K0(sp) + h(P; Q), (5)
where h(p; Q) is regular in the region. Since K0(sp) is symmetric in (P; Q) then h(P; Q)
must also be. The invariance properties of the differential equation will be helpful in
determining h(P; Q) and give some intuitive meaning to it. The Helmholtz equation
(Eq. 2a) can easily be verified to be invariant under the following transformations:

1) translation, (x, y) = (x + a, y + b),
where a and b are constants;

2) reflection on the axes, e.g., on the a;-axis, (6)
(ix, y) = (x, —y) or reflection on any straight line;

3) rotation, (f, ff) = (r, 8 + c) where c is a constant.

There appears to be no simple invariant transformation with respect to inversion on the
unit circle, as there is for Laplace's equation. Such a transformation would be helpful
in obtaining an intuitive notion on constructing the Green's function for the circle [12],

For the transformed wing-body problem given by Eqs. (2) the solution can be con-
fined to the upper half-plane and the complete solution obtained later by using the
known symmetry conditions on the solution with respect to the x, z plane. Then the
boundary is that given in Fig. 2. The Green's function for the upper half-plane is

Gi{P-,Q) = K0(sp) + K0(8Pl), (7a)

where

Pi = D-2 + f'2 ~ 2rr' cos (6 + 0')]1/2

is the distance between P and the reflection of Q on the x-axis. The Green's function
for the unit circle is easily obtained by using the addition theorem [11] for K0(sp):

K0(sp) = I0(sr)Ko(sr') + 2 £ In(sr)Kn(sr') cos [n(9 - 6')], r < r' (7b)
n— 1

with r and r' interchanged for r > r', where In and Kn are modified Bessel functions
of the first and second kinds, respectively, of the nth order.

For r < r' consider h(P; Q) of the form
CO

h(P;Q) = A0K0(sr) + £ AnKn(sr) cos [n(8 - 6')], (7c)
n= 1

where A0 and A „ are determined to satisfy the boundary condition

<mp-,Q) _ n.
dr
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then

4o = ~ kB) Ko{sr,)' An= ~2E§j K"(sr,)' (7d)

where the primes on the Bessel functions denote differentiation with respect to r and

]
G,(P;Q) = K0(sr')

+ 2 X X„(sr')[^(sr) - X.(«r)] cos [n{6 - 6')], r < r> (7e)

with r and r' interchanged for r > r'.

P(r,9>

Q(r',-e')

Fig. 2. Boundary for Transformed Problem.

The Green's function for the boundary given in Fig. 2 is obtained simply by using
the reflection property on the z-axis with the results for the circle (Eq. 7e) and

G(P-,Q) = 2K0(sr')[lo(sr) ~ |||

+ 4 £ Kn(Sr')[/„(Sr) - Kn(sr) cos nd cos nd', r < r' (8a)

with r and r' interchanged for r > r'. A convenient equivalent form to Eq. (8a) is

' mG(P)Q) = K0(sP) + Ko(sPl) - 2 K,^ K0(sr)K0(sr')

+ 2 f] Kn(sr)Kn(sr') cos nd cos nd'
n = 1 J

(8b)

With the determination of the Green's function the transformed problem is formally
solved. There follows, for each solution of specific problems, the interpretation by the
inverse Laplace transformation into the solution of the original physical problem; some-
times this is a formidable task.

Some intuitive meaning may be given to the Green's functions for the transformed
problem. For example, the inverse Laplace transform of the fundamental solution
K0(sp) represents a supersonic source singularity in the unobstructed physical space.
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3. Splitting of the transformed solution ip. Since on the circle — — \pr = 0, the
transformed solution by Eqs. (2b) and (3b) is

t(r,0;s) (l + ^p)[G(r,0;r',ir) + G(r,6;r',0)] dr'. (9a)

Using the second form of the Green's function (Eq. 8b)

i(r,9]s) = — [ (l + -Tsjf-K'oKr2 + r'2 - 2rr' cos 0)1/2]
ITS J i \ T J

+ K0[s(r2 + r'2 + 2rr' cos 0')l/2]} dr' - — f (l + 4)
ITS J i \ V J

K0(sr)K0(sr')

+ 2 2 K2n(sr)K2n{sr') cos 2nd dr'

= + im. (9b)

This transformed solution is confined to the first quadrant; the solution in the other
quadrants are obtained by symmetiy arguments. The solution given by Eq. (9b) is
written as two integrals, xpn> and ipi2), respectively, for two reasons: 1) each can be
given a physical interpretation, and 2) the difficult core of the solution, i.e., the second
integral \pl2), is separated from \p(l), the inverse Laplace transform of which can be
obtained simply. By inspection, it is evident that \pll) can be regarded as the transformed
solution for the equivalent problem (cf. first paragraph of Sec. 2) where the circular
cylinder (a = 0) is replaced by a flat plate (a = 0); thus i^(1) is called the "flat plate"
solution. Then the second part of the solution ipf2) can be interpreted as the correction
solution needed to satisfy the boundary condition of zero flow through the circular
cylinder, i.e., the circular cylinder is a stream tube; thus ipi2) is called the "body" solution.
The principal difficulties arise in attempting to perform the inverse Laplace trans-
formation of \p(2>.

4. The "flat plate" solution ip'11. The "flat plate" solution in terms of the pressure
component (cf. foot note following Eq. 2c) <pl'] on the surface is conveniently written
in Cartesian Coordinates. The transformed solution for ^ = £ ~1 {!1'; z} by Eq. (9b) is

stw(x,y,s) = ~f'( 1 + p){K<M* - £)2 + yY2]

+ K0[s((x + £)2 + y2)U2]) df. (9c)

The order of integration can be interchanged and the inverse Laplace transformation
is performed first:

^{KMix - + yY2]-,z}

= 0, $ < [x - (z2 - yy/2] and [x + (z2 - yY") < | (10a)

= [z2 - y2 - (x - £)T1/2, [x - (z2 - yY2] < $ < [x + (z2 - y2)U2]
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and

^{KoMx + + yy/2}-,z\

= o, [(z2 - y2)1/2 - x] < f (10b)

= [z2 - y2 - (x + a)2]'1'2, 0 < £ < [(z2 — y2)1/2 - x]

In addition, since the lower limit of the integral is 1, three regions of integration are

. MACH LINE

Fig. 3. Regions of Influence in the x, z Plane.

defined and have a physical interpretation (cf. Fig. 3, where these regions are shown
in the x, z plane):

Region I, (x — z) > 1: Region of influence of the Mach cones from the wing leading
edge

Region II, — 1 < (x — 2) < 1: Region of influence of the Mach cone from the wing
leading edge-body junction plus Region I.

Region III, (x — z) < — 1: Region of influence of the Mach cones from the opposite
wing leading edge plus Region I plus Region II.

The "flat plate" solution, <p[l\ on the wing surface (x, z plane) in these three regions is
given in terms of elementary functions (cf. JPL report) and is shown graphically in
Fig. 4 by dashed curves. For the chordwise pressure distribution (Fig. 4b) attention is
focused primarily on the body (a fairly complete description of the solutions is given in
the JPL report).

An additional solution which can be obtained immediately is important in the dis-
cussion of the complete solution. The "flat plate" configuration (cf. Sec. 3) is modified
now by inserting a semi-infinite plane barrier at x = 1, parallel to the y, z plane down-
stream from the leading edge-body junction. This modification does not affect the
solution <p(1) outside the Mach cone from the leading edge-body junction; but inside
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this region of influence for x > 1, the inserted plane simulates the limiting case of a
body with infinite radius. Thus, in this region, the solution (called the "modified flat
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plate" solution <p*) can be interpreted as an upper bound (at least in Region II) to the
complete solution. The pressure component is given by

1 <* - e'r"!«

-t /* (z—x + 2) / 1 \
+ ±J (l + p)[22 - (« - 2 + £TI/2 « (11)
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and is given in Fig. 4 by the light solid lines. Note that the first integral is the "flat
plate" solution in Region II (cf. JPL report) and the second integral can be interpreted
as the correction solution needed to satisfy the boundary conditions of zero flow through
the semi-infinite plane barrier (cf. interpretation of "body" solution in Sec. 3).

5. Remarks on the "body" solution <pw. From the comparison of the "flat plate" and
"modified flat plate" solutions in the previous section and the discussion on the splitting
of the complete solution in Section 3, it is evident that the "body" solution, in terms
of the pressure component tp'f, is effective only within the Mach cones from the wing
leading edge-body junction and is identically zero outside this region. The inverse
Laplace transform required in the particular case of pressure on the body, r = 1, is

where the contour r goes from (a — i- <») to (a + i- °°), a real, a > 0 in the complex
s-plane. By a well-known procedure, Eq. (12) leads to

£ i/g„(W) \ _ -jK3H(or')IU>r) ~ K'2n(a)I2n(<jr')\ da
\sK2n(s) 'J Jo I IKU*)]2 + AhMY

, y Res (12b)

The integral probably can be evaluated only by numerical methods, and the residues
of the function (although the singularities, which are in the left-half s-plane, are simple
poles) can be evaluated only after determining the location and number (which are of
the order of 2") of poles. The calculation complexity is then clear, even for this particular
case, r = 1, and an approximate method of solution is sought.

6. An approximate "body" solution <pw and the complete solution <p. The comparison
between the "flat plate" and "modified flat plate" solutions implies that the main
contribution to the pressure of the "body" solution will be found near the leading edge-
body junction, i.e., for small z. With this in mind, an approximation for large s to the
Green's function, G2(P; Q), given by Eq. (7e) for the region exterior to the unit circle
is constructed. Consider a Green's function of the form

G(r,6;r',6') = AT0[s(^2 + — 2rr' cos (6 — d'))in]

+ AK0 4f2 + ~ ~7 cos (0 ~ 0')) J> (13a)r r

where A is to be determined. It is clear, from the invariance properties of the differential
equation (cf. Sec. 2), that the exact Green's function cannot be put in this form, since
the second function on the right side of Eq. (13a) is the fundamental solution (with
respect to P(r, 6)) placed at the inverse point of Q(r', 6') with respect to the unit circle.
But, by the addition formula (cf. Eq. 7b),

Kc s(r2 + ^2 ~ y cos (0 - 0')) ] = K0(sr)I0(^7j

+ 2 X) Kn(sr)In(-A cos [n(d — 6')], r > -7 (13b)
n-l V / r
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Replacing this expression in Eq. (13a) and comparing with the exact Green's function
(Eq. 7e), such that the first term is exactly matched, the arbitrary function A becomes

Ii(s) K0(sr')

Then the approximate Green's function for the region exterior to the unit circle is

G2(r,0;r',6') = tf„[s(r2 + r'3 - 2rr' cos (6 - 6'))1/2]

, I'ojs) K0(sr')
+ K'0(s) I0{s/r') Ao s(r2 + 4s — y cos (0 — 0')) J (13d)

This approximate Green's function satisfies the differential equation, Eq. (2a), with
respect to the point P(r, 6), but it is not symmetric in (r, 0; r', 0') and does not satisfy
the boundary conditions. However, comparing term by term, the difference in the
Green's functions occurs only under the summation sign, where

^ Kn(sr)Kn(sr') cos [n(0 - 0')] (13e)

in the exact Green's function (Eq. 7e) has been replaced by

HI W?j cos W - *')] (i3f)
in the approximate Green's function. Then for fixed r' and large s (for Re s > 0) terms
given by Eq. (13f) approach the exact terms given by Eq. (13e), using the asymptotic
expansions for the modified Bessel function [11],

The approximate Green's function for the region and boundary for the wing-body
problem (Fig. 2) can be written immediately

G(r,6;r',d') = {Z0[s(r2 + r'2 - 2rr' cos (0 - 6'))1/2]

+ K0[s(f2 + r'2 - 2rr' cos (0 + 0'))1/2]}

, m KM') IT,
+ K'Js) I„(s/r') r°

+ K0

(r3 + - y cos (0 - 0')) ]

s(r2 + h ~ vcos + e'^) ]}• (13g)

The approximate Green's function is a good representation for large s (and r' > 1);
this result implies, by a known theorem in Laplace transform theory [13], that the
solution obtained by using this Green's function is a good approximation near the leading
edge-body junction. The transformed approximate "body" solution is

,(2), „ n Wa r (, , 1\ Io(s) K0(sr') /T, \ ( 2 , 1 2r „\1/21
si (r,e,s) ~ T I (1+ r>2) R'q(s) jo(s/r') (#o[s(r + r,2 r, cos 6) J

+ K0 s^r2 + 4s + y cos oj J j dr'. (14a)
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The second term in the braces of Eq. (14a) corresponds to the reflected solution with
respect to the y, z plane (cf. "flat plate" solution, Eq. 9c). Now the solution for the
pressure component, <p{2), can be obtained in Region II (cf. Fig. 3) where the approxi-
mation is best (the reflected solution does not enter here). By the asymptotic expansions
for the modified Bessel functions

I fa) K0(sr') 1 / s(r' - 1)2\/, , Jl\\- m mf) ~ vexp i—? a + °w/- (14b)
Neglecting the higher order terms

I'M K0(sr')
K'0(s) I0(s/r') Ao s(r2 + h ~ 7 cos e) ]

~ 7 exP {- s(r / 1} }^°[s(r2 + 7* - 7 cos e) ]• (14c)

For simplicity, the solution is carried out for 0 = 0, i.e., in the plane of the wing only.
Applying the inverse Laplace transformation to the right side of Eq. (14c)

£"'{7 exP {- S(r 7 ^ V°(s r ~ 7 4 ~ °' r' > (« - r + 2),
1 1 ' J (14d)
= {[zr' - (r' - l)2]2 - (rr' - 1)2}'1/2, 1 < r' < (z - r + 2).

Then the approximate "body" solution in Region II is

^f'2) = I (l + 7^){[zr' - (r' - l)2]2 - (rr' - 1)V1/2 dr'. (15a)

As is to be expected, the integral vanishes for (r — 2) = 1, 2 0. This is an elliptic-
type integral which can be expressed in terms of the standard complete and incomplete
elliptic integrals of the first and third kinds by known methods of reduction [14]. For
example, in the particular case r = 1, Eq. (15a) reduces to

= I [ [1 + (1+ Zt)~2]{{ 1 - r)(l + 2t)[1 + (1 + 2)t - 2t2]j~1/2 dr. (15b)

The complete approximate solution, <p'z" <p"', is shown in Fig. 4 as heavy, solid lines.
This solution also approaches the correct asymptotic value for large 2, i.e., ipJWa = 1.
No estimate has been made for the error, although in the JPL report such an estimate
is indicated for a simpler problem, using the same approximate Green's function for the
circle (Eq. 13d). Also, additional calculations on the body have not been made; however,
it is clear that the complete solution approaches the correct asymptotic value very
rapidly in the downstream direction on the body and in the vicinity of the body on
the wing.*

*A comparison with experimental pressure distributions is made in [15] and results, obtained by
integrating the pressure over finite wings (including cases with swept-back leading edges), have been
used in [16] on supersonic wing-body lift.
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An estimate of the complete solution on the body (r = 1) for large z is readily made.
From Eq. (9b), setting r = 1, the Green's function for small s becomes

w+2 S +2 £ (16a)

Since K0(sr') is the. dominant term for small s (Re s > 0), the transformed complete
solution becomes

«*(M- = 1 + ;^K0(sr') dr'. (16b)Wot.

Taking the inverse Laplace transform of K0(sr'), the pressure component

».(M,rN ° " / 1 \ °'~2 - 1^1/2

and

W1-I II + *' -1 +1 <16c)
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