AD-A087 doS NAVAL RESEARCH LAB WASHINGTON DC
F/G 12/1 A NON-RECURSIVE INCOMPLETE CHOLESKY DECOMPOSITION METHOD FOR TH-EETC(U) JUN 80 A HAIN
UNCLASSIFIED MRL-MR-4264

SBIE-ADAE000 4AP

NL

16. DISTRIBUTION STATEMENT (Of thfo Report)

Approved for public release; distribution unlimited.

17. DISTRIEUTION STAKEMENT (or the Abstract entered In Block 20, 11 different from Report)

18. SUPPLEMENTARY NOTES

This research was sponsored by the Defense Nuclear Agency under Subtask S99QAXHC066, work unit 12, and work unit title "Late Time Electrostatic Investigations."
19. KEY WORDS (Continue on severe aide If necessary and Identify by block number)

Solution of linear equations
Sparse matrix
Non-recursive operations
Electrostatic potential solutions
20\% AESTRACT (Continue on reverse aldo if nececeary and Identify by block number)
The incomplete Cholesky decomposition and the subsequent iterative solution by the conjugate gradient method has been described recently by D. Kershaw [1]. The drawback of a triangular decomposition on a vector machine is the need for recursive computations. This paper proposes a method which eliminates the need for recursive computations. They are replaced by a number of non-recursive operations. This method can be utilized in the solution of potential equations in late time electrostatic codes.
 SAN 0102-LF.014.6601
security classification of this page timon dena Enteral

CONTENTS

I. INTRODUCTION 1
II. ALGORITHM 1

1) General considerations 1
2) Expansion in connections 3
3) Example 7
4) The conjugate gradient method 9
5) Non-symmetric matrices 10
III. NUMERICAL RESULTS 11
IV. CONCLUSION 15
V. ACKNOWLEDGEMENT 15
VI. REFERENCES 16
VII. DISTRIBUTION LIST 17

A NON-RECURSIVE INCOMPLETE CHOLESKY DECOMPOSITION METHOD FOR the solution of linear equations with a sparse matrix

I. Introduction

The algorithm described in this paper is applicable to diagonally dominant matrices. It makes use of the fact that an incomplete Cholesky or $L U$ decomposition which imposes a certain sparsity is actually an expansion in powers of off diagonal elements. It is therefore pointless to compute the elements of the tridiagonal matrices and the solution to infinite order by recursive procedures. It is self-consistent and sufficient to compute these quantities to the same order as the one introduced by the imposed sparsity of the tridiagonal decomposition.

The first section describes the method for symmetric matrices. The extension to non-symmetric matrices is achieved by iterating the solutions for the symmetric component of the matrix where the source terms contain the non-symmetric contributions from the previous iteration.

The second section gives the times and number of iterations used for a test case taken from a NRL electrostatic code. It involves the solution of an elliptic partial differential equation with variable coefficients in the two dimensions.

The third section gives some conclusions.
II. Algorithm

1) General considerations

The linear system of equations to be solved for the vector x can be written in the form

$$
\begin{equation*}
M x=y \tag{1}
\end{equation*}
$$

x, y are vectors of length N and $\operatorname{Det}(M) \neq 0$.

Manuscript submitted May 2, 1980

In order to explain the following concepts one must introduce the definition of weakly and strongly diagonally dominant matrices. A matrix A is defined to be weakly diagonally dominant if

$$
\begin{aligned}
& \mathrm{w}_{i j}(A) \equiv 1-\frac{\left|A_{i j}\right|}{\min \left(\left|A_{i i}\right|{ }_{n} A_{j j} \mid\right)} \geq 0 \\
& \text { for all } 1, j ; i \neq j
\end{aligned}
$$

A matrix A is defined to be strongly diagonally dominant if

$$
\begin{equation*}
S_{j}(A) \equiv 1-\quad \sum_{k \neq j}\left(\left|A_{j k} A_{k j} / A_{k k}\right|\right) /\left|A_{j j}\right| \geq 0 \tag{3}
\end{equation*}
$$

for all j .
Let L and U be two lower and upper triangular matrices respectively, subject to the following two conditions
a) $W\left(L^{-1} M U^{-1}\right) \geq W(M) \geq 0$
b) The inversions

$$
\begin{align*}
& z=L^{-1} y \\
& x=U^{-1} z \tag{5}
\end{align*}
$$

with z a vector of length N can be performed exactly.
Equation (1) can be transformed into

$$
\begin{equation*}
L^{-1} M U U^{-1}(U X)=L^{-1} y \tag{6}
\end{equation*}
$$

It is obvious that Eq. (6) is easier to solve than Eq. (1). Any iteration scheme will use fewer iterations. One should also remark that neither L, U, or L^{-1}, U^{-1} have to be known, but only the results of $\mathrm{L}^{-1}, \mathrm{U}^{-1}$ applied to a vector.

The real question is how one finds good matrices L, U with a minimum of operations, such that Eq. (6) can be solved with a few
iterations. This is especially important in time-dependent problems where a good approximation to the solution is known from the previous timestep. It is clear that with more operations one could find a better L and U, thereby reducing the number of iterations needed to solve Eq. (6). The problem is to find an algorithm which minimizes the total number of operations.

For most physical problems (elliptic equations in two or three dimensions) the matrix M is sparse with an (average) bandwidth $B \ll N$. The number of operations Op should be

$$
\begin{equation*}
O p \approx B \cdot N f(N) \tag{7}
\end{equation*}
$$

where $f(N)$ is a weakly increasing function of N. Also, the algorithm should not contain recursive formula, which invoke scalar operations on a vector computer (ASC, CRAY, . . .) or parallel computer (ILLIAC).
2) Expansion in connections

In order that the following approximation for L and U be valid the matrix M must have two properties
a) the average bandwidth $B \ll N$
b) M must be expandable.

Condition b) will be explained now.
A connection of $\nu^{\text {th }}$ order is to be defined as

$$
\begin{equation*}
\varepsilon_{i k}^{v+1}=\sum_{\substack{j \neq 1 \\ j \neq k}} \epsilon_{i j}^{v} M_{j k} / M_{j j} ; v \geq 1 \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\varepsilon_{i k}^{1}=M_{i k} \tag{9}
\end{equation*}
$$

Then M is expandable if for all v

$$
\begin{equation*}
\left|\epsilon_{i k}^{v+1}\right| \leq \max _{j}\left(\left|\epsilon_{i j}^{v}\right|,\left|M_{j k}\right|\right) \tag{10}
\end{equation*}
$$

It is obvious that the condition of strong diagonal dominance

$$
S(M)>0
$$

is sufficient. Furthermore, if M is expandable then

$$
W(M)>0
$$

M is weakly diagonally dominant. Therefore, the necessary and sufficient conditions for expandability lie somewhere between weak and strong diagonal dominance. The computation of L, U will be an expansion In the number of connections, thus avoiding recursion procedures. In general, given a recursion formula

$$
\mu_{i}=\sigma_{i}+\varepsilon \mu_{i-1} \quad i=1, n
$$

with $0<\varepsilon<1$.
The iterative formula

$$
\begin{array}{ll}
n_{i}^{\nu}=\sigma_{i}+\varepsilon \eta_{1-1}^{v-1} & i=1, n \\
& \eta_{i}^{0}=\sigma_{i} \tag{12}
\end{array}
$$

will give the same results after n iterations. Terminating after the $v^{\text {th }}$ iteration gives the results to order ϵ^{v+1}. All recursion formula which do occur will be replaced by an iteration with a very small v. The matrices L , U will be computed to a certain order in the expansion in the number of connections. In order to explain this procedure the triangular decomposition is briefly described here without proof.

Let

$$
\begin{align*}
& 1 / D_{j}=L_{i i}=U_{i i}=M_{i i}-\sum_{k<i} L_{i k} D_{k} U_{k i} \\
& L_{i i}=0 \quad j<i \\
& L_{i i}=M_{j i}-\sum_{k<i} L_{j k} D_{k} U_{k i} \quad j \geq i \\
& U_{j i}=0 \quad j>i \\
& U_{j i}=M_{j i}-\sum_{k>i} L_{j k} D_{k} U_{k i} \quad j \leq i . \tag{13}
\end{align*}
$$

Then

$$
\begin{equation*}
M_{i j}=\sum_{k} L_{i k} D_{k} U_{k j} \tag{14}
\end{equation*}
$$

and one can solve

$$
\begin{align*}
& z_{i}=D_{i}\left(y_{i}-\sum_{k<i} L_{i k} z_{k}\right) \\
& x_{i}=z_{i}-\sum_{k>i} U_{i k} D_{k} x_{k} \tag{15}
\end{align*}
$$

directly.
The incomplete Cholesky or incomplete LU decomposition consists of imposing a specified sparsity on L, U. The order of approximation is

$$
\begin{equation*}
n=v_{(s)}+1 \tag{16}
\end{equation*}
$$

where $v(c)$ is the highest possible connectivity given by the sparsity imposed on L and U (or η is first one neglected).

The recursion formulae in computing L, U (Eq. (13)) are reset by iteration to the order μ, which leaves an error of $0(\mu+1)$. These iterations can be written as follows

$$
\begin{align*}
& 1 / D_{i}^{\nu}=M_{j i}-\sum_{k<i} L_{i k}^{\nu-1} D_{k}^{\nu-1} U_{k i}^{\nu-1} \\
& L_{j i}^{\nu}=M_{j i}-\sum_{k<i} L_{j k}^{\nu-1} D_{k}^{\nu-1} U_{k i}^{\nu-1} \quad \nu=1, \mu \tag{17}\\
& U_{j i}^{\nu}=M_{j i}-\sum_{k>i} L_{j k}^{\nu-1} D_{k}^{\nu-1} U_{k i}^{\nu-1}
\end{align*}
$$

with

$$
\begin{align*}
& 1 / D^{o}=M_{i i} \\
& L_{j i}^{o}=M_{j i} \quad j \geq i \\
& U_{j i}^{o}=M_{j i} \quad j \leq i \\
& z_{i}^{\nu}=D_{i}^{\mu}\left(y_{i}-\sum_{k<i} L_{i k}^{\mu} z_{k}^{\nu-1}\right) \tag{18}\\
& x_{i}^{\nu}=z_{i}^{\mu}-\sum_{k>i} U_{i k} D_{k}^{\mu} x_{k}^{\nu-1}
\end{align*}
$$

with

$$
\begin{align*}
& z_{i}^{o}=D_{i}^{\mu} y_{i} \\
& x_{i}^{o}=z_{i}^{\mu} \tag{19}
\end{align*}
$$

This procedure gives a matrix

$$
\mathrm{L}^{-1} \mathrm{MU}^{-1}
$$

whose off diagonal elements consists of errors of order $\nu_{(S)}+1$ left by imposing a specified sparsity S, and errors of order $\mu+1$ caused by resetting the recursion formula by iteration.
3) Example

As an example the five point difference formula for an elliptic equation in two dimensions is taken. M at one point, j, k is then

$$
M \begin{array}{lll|l}
& \begin{array}{l}
-\mu_{y} \\
-\mu_{x} \\
-\mu_{y}
\end{array} & -\mu_{x} & \begin{array}{l}
k-1 \\
k \\
k+1
\end{array} \tag{20}\\
\hline j+1 & j+1 &
\end{array}
$$

Then imposing the same sparsity on L and U and for $v=1,2$ gives:

$-\mu_{y}$		$k-1$	
$U^{(\nu)}=-\mu_{x}$$1 / D^{(\nu)}$ 0	0	k	
$k-1$	k	$k+1$	

with $D^{(1)}=1 \quad D^{(2)}=\frac{1}{1-\mu x^{2-\mu} y^{2}}$

This yields:

$$
\begin{align*}
& \begin{array}{lllll|l}
0 & 0 & -\mu_{y}^{2} & 0 & 0 & k-2
\end{array} \\
& \begin{array}{lllll}
0 & -2 \mu_{x} \mu_{y} & 0 & -\mu_{x} \mu_{y} & 0
\end{array} \quad k-1 \\
& \left(L^{-1} M_{U}^{-1}\right)^{(1)}=-\mu_{x}^{2} \quad 0 \quad 1-\mu_{x}^{2} \mu_{y}^{2} \quad 0 \quad-\mu_{x}^{2} \quad k \tag{24}\\
& \begin{array}{ccccc|c}
0 & -\mu_{x} \mu_{y} & 0 & -2 \mu_{x} \mu_{y} & 0 & k+1 \\
0 & 0 & -\mu_{y}^{2} & 0 & 0 & k+2 \\
\hline j-2 & j-1 & j & j+1 & j+2 &
\end{array}
\end{align*}
$$

This is not a good approximation to a unity matrix. Therefore, one more iteration step has to be taken;

$$
\left(\mathrm{L}^{-1} \mathrm{MU}^{-1}\right)^{(2)}=
$$

0	0	0	$-\mu_{y}^{3}$	0	0	0	k-3
0	0	$-3 \mu_{\mathrm{y}}^{2} \mu_{\mathrm{x}}$	0	$-\mu_{\mathrm{y}}^{2} \mu_{\mathrm{x}}$	0	0	k-2
0	$-3 \mu \mu_{x}^{2}$	0	$-\mu_{y} \mu_{x}^{2}$	$-\mu_{y}{ }^{\mu}$	$-\mu_{y} \mu_{x}^{2}$	0	k-1
$-\mu_{\mathbf{x}}^{3}$	0	$-\mu_{\mathbf{y}}^{2} \mu_{x}$	1	$-\mu^{2} \mu_{x}$	0	$-\mu_{\text {x }}^{3}$	k
0	$-y^{\prime 2}{ }^{2}$	$-\mu_{\mathrm{y}} \mu_{\mathrm{x}}^{2}$	$-\mu y^{\mu}{ }_{x}^{2}$	0	$-3 \mu \mathrm{y} \mu^{2}$	0	k+1
0	0	$-\mu_{y}^{2} \mu_{x}$	0	$-3 \mu_{y}^{2}{ }_{x}$	0	0	k+2
0	0	0	$-\mu_{y}^{3}$	0	0	0	k+3
j-3	j-2	j-1	j	$j+1$	$j+2$	j+3	

This is a much better anproximation to the unity matrix correct to terms of third order, except for the off diagonal terms $\mu_{x} \mu_{y}$ caused Ey the sparsity imposed on L and U. A complete
recursion would give only the expansion of those off diagonal terms. A third order $\left(L^{-1} M^{-1}\right)^{(3)}$ with the inclusion of these off diagonal elements will give 4 th order accuracy.
4) The conjugate gradient method

A short description of the conjugate gradient method which is used to solve the equation

$$
\begin{equation*}
L^{-1} \mathrm{MU}^{-1}(\mathrm{Ux})=\mathrm{L}^{-1} \mathrm{y} \tag{26}
\end{equation*}
$$

is given for completeness. The procedure is taken from Kershaw's [1] paper where further references can be found. It minimizes ($\mathrm{x}, \mathrm{Mx}-\mathrm{y}$). For other norms see the paper by Petravic [2]. The conjugate gradient method can only be applied to symmetric matrices. The handing of asymmetric matrices will be discussed in the next paragraph.

Let the zero order approximation vector r and p be defined by

$$
\begin{align*}
& \mathbf{r}^{(0)}=\mathrm{y}-\mathrm{Mx}^{(0)} \\
& \mathrm{p}^{(0)}=\left(\mathrm{LL}^{T}\right)^{-1} \mathrm{r}^{(0)} \tag{27}
\end{align*}
$$

where $\mathrm{x}^{(0)}$ is an approximation to the solution x . Compute two auxiliary vectors as

$$
\begin{align*}
& q^{(\lambda)}=\mathrm{Mp}^{(\lambda)} \\
& \mathbf{s}^{(\lambda)}=\left(L L^{T}\right)^{-1} \mathbf{r}^{(\lambda)} \tag{28}
\end{align*}
$$

and two scalar products

$$
\begin{align*}
& \alpha^{(\lambda)}=\left(r^{(\lambda)}, s^{(\lambda)}\right) \\
& \beta^{(\lambda)}=\left(^{(\lambda)}, q^{(\lambda)}\right) \tag{29}
\end{align*}
$$

The next iteration vectors are then given by

$$
\begin{align*}
& \mathbf{x}^{(\lambda+1)}=\mathbf{x}^{(\lambda)}+\frac{\alpha^{(\lambda)}}{\beta^{(\lambda)}} p^{(\lambda)} \\
& \mathbf{r}^{(\lambda+1)}=\mathbf{r}^{(\lambda)}-\frac{\alpha^{(\lambda)}}{\beta^{(\lambda)}} \mathbf{p}^{(\lambda)} \tag{30}\\
& \mathbf{p}^{(\lambda+1)}=s^{(\lambda+1)}+\frac{\alpha^{(\lambda+1)}}{\alpha^{(\lambda)}} p^{(\lambda)}
\end{align*}
$$

5) Non-symmetric matrices

Non-symmetric matrices M arise in physical problems from different sources: gradients that can also be present in elliptic equations, non-separable coordinate systems and most important from Neumann boundary conditions. The method proposed by Kershaw ${ }^{[1]}$ did not work very well in test problems. It consists essentially of multiplying

$$
\begin{equation*}
\mathrm{L}^{-1} \mathrm{MU}^{-1}(\mathrm{Ux})=\mathrm{L}^{-1} \mathrm{y} \tag{31}
\end{equation*}
$$

by the transposed matrix $\left(L^{-1} \mathrm{MU}^{-1}\right)^{\mathrm{T}}$ and then solving the resulting linear system. One can easily see that off diagonal elements are multiplied essentially by two. Therefore, the convergence of the conjugate gradient method is slowed. Even worse is to take $M^{T} M$. Then the condition of expandability is not fullfilled for elliptic equations. The method used here is to solve for the asymmetry by iteration. Let

$$
\begin{align*}
& M_{s}=\frac{1}{2}\left(M+M^{T}\right) \\
& \delta M=\frac{1}{2}\left(M-M^{T}\right) \tag{32}
\end{align*}
$$

Let σ denote the iteration for the asymmetry, then

$$
\begin{equation*}
M_{s} x^{(\sigma)}=y-\delta M x^{(\sigma-1)} \tag{33}
\end{equation*}
$$

One can go one step further and correct $\mathrm{x}^{(\sigma-1)}$ as used in the above equation. Let

$$
\begin{equation*}
\mathbf{r}^{(\sigma)}=S-M^{(\sigma)}-\delta M \tilde{x}^{(\sigma-1)} \tag{34}
\end{equation*}
$$

Then

$$
M_{s}\left(r^{\sigma}+\delta x\right)=0
$$

or

$$
\begin{equation*}
M_{s} \delta x=-r^{(\sigma)} \tag{35}
\end{equation*}
$$

Now use $L L^{T}$ in above equation and define

$$
\begin{equation*}
\tilde{\mathbf{x}}^{(\sigma)}=\mathbf{x}^{(\sigma)}-\left(L L^{T}\right)^{-1} r^{(\sigma)} \tag{36}
\end{equation*}
$$

for the right hand side of Eq. (33).
III. Numerical results

Test runs have been made with an elliptic equation which arises in numerical simulations of electrostatic plasma flow:

$$
\begin{array}{r}
\left(\frac{\partial}{\partial x} \sigma \frac{\partial}{\partial x}+\frac{\partial}{\partial y} ; \frac{\partial}{\partial y}\right) f=\frac{\partial \sigma}{\partial x} \tag{37}\\
\sigma=1+\beta \cdot \exp \left[-\left(\frac{x-x_{0}}{\ell x}\right)^{2}-\left(\frac{y}{\ell y}\right)\right]
\end{array}
$$

The partial differential equation was translated into a five point formula in two different ways; a) by leaving σ inside of the second derivative and b) by taking the differentiation of σ out of the second derivatives and treating the first derivatives of σ separately.

$$
\begin{align*}
& \frac{1}{d x^{2}}\left[\left(\sigma_{j+1, k}+\sigma_{j, k}\right)\left(f_{j+1, k}-f_{j, k}\right)-\left(\sigma_{j, k}+\sigma_{j-1, k}\right)\left(f_{j, k}-f_{j-1, k}\right)\right] \\
+ & \frac{1}{d y^{2}}\left[\left(\sigma_{j, k+1}+\sigma_{j, k}\right)\left(f_{j, k+1}-f_{j, k}\right)-\left(\sigma_{j, k}+\sigma_{j, k-1}\right)\left(f_{j, k}-f_{j, k-1}\right)\right] \\
= & \frac{1}{2 d x}\left(\sigma_{j+1, k}-\sigma_{j-1, k}\right) \tag{38}
\end{align*}
$$

while b) gives

$$
\begin{align*}
& \frac{1}{d x^{2}}\left[\left(f_{j+1, k}-2 f_{j, k}+f_{j-1, k}\right)+\frac{1}{4 \sigma_{j, k}}\left(\sigma_{j+1, k}-\sigma_{j \div 1, k}\right)\left(f_{j+1, k}-f_{j-1, k}\right)\right] \\
+ & \frac{1}{d y^{2}}\left[\left(f_{j, k+1}-2 f_{j, k}+f_{j, k-1}\right)+\frac{1}{4 \sigma_{j, k}}\left(\sigma_{j, k+1}-\sigma_{j, k-1}\right)\left(f_{j, k+1}-f_{j, k-1}\right)\right] \\
= & \frac{1}{2 \sigma_{j, k} d x}\left(\sigma_{j+1, k}-\sigma_{j-1, k}\right) . \tag{39}
\end{align*}
$$

Version a) is symmetric; b) is not.
Test runs have been made with β from 10^{4} to $.1, l_{x}$, l_{y} from .1 to .5. The number of points in x and y has been varied between 25 and 100. The rms error:

$$
\text { rms } \equiv \frac{\sqrt{(M x-s)^{2}}}{s^{2}} \text { varied between } 10^{-3} \text { and } 10^{-5}
$$

The general experience gained by the test runs can be summarized as follows.

1) The need for double precision on the ASC (the ASC has a 32-bit word). The reason seems to be that the orthogonalization has to be achieved with high precision.
2) A simple-minded iterative scheme with single precision worked well only for a low accuracy and relatively small $n \leqslant 30$. The scheme eventually did converge but with a great number of iterations.
3) The use of recursion rather than iteration for the incomplete LU decomposition for a specific approximation did not (essentially) change the convergence rate.
4) The use of $\mu=3, v_{(S)}=2$ compared to $\mu=2, v_{(S)}=1$ decreases the number of iterations in about the same ratio as the number of operations per point increases. Therefore, the total time remained essentially constant.
5) The use of recursion in the second index (allowing partial vectorization on a vector-computer) only decreased slightly the number of iterations. It seems to be more appropriate - at least in the test cases run - to use the same approximation in the x and y directions. There may be asymmetric cases where this will not be true.

Timing

The number of operations per point is:
Scalar products 2
Compute $\mathrm{x}, \mathrm{r}, \mathrm{p} \quad 6$
$q=M p \quad 9$
Total 17
rms error 11
The number of operations for $x=\left(L L^{T}\right)^{-1}$ depends on the approximation. Let nsca be the equivalent number of vector operations for one scalar operation; then the ratio of operations for the equivalent number for a recursive procedure becomes for $\mu=2, v_{(S)}=1, \quad$ for $\mu=3, v_{S}=2$

$$
r_{1}=\frac{38}{4 n s c a+24} \quad r_{2}=\frac{58}{4 n s c a+26}
$$

This gives for nsca $=20$ (\approx factor for the ASC)

$$
r_{1}=.37 \quad r_{2}=.55
$$

The iterative procedure can be vectorized over the whole array. For the recursive procedure the remaining vectorization can be only achieved for an inner loop, thus increasing the setup times compared to the iterative procedure. Also the more efficient use of two pipes on the ASC machine decreases the ratio further. Test runs have shown for $\mu=2, \nu_{S}=1$ an overall savings of about a factor of 5 .

The total number of iterations N_{i} seems to be proportional to

$$
N_{i} \approx\left(N_{x} N_{y}\right)^{3 / 2}
$$

The dependence of N_{i} on the error reduction rate seems to be more complicated, roughly speaking 5 iterations per factor 10 , such that the convergence factor is $f_{\text {red }}=(.1)^{1 / 5}$. In contrast to $A D I$ and other methods the convergence factor seems to be more or less constant and independent of the error itself.

Imposing the Neumann boundary condition $\frac{\partial f}{\partial y}=0$ at $y= \pm 1$ introduces an asymmetric matrix M. The number of iterations about the asymmetry is on average two. The program imposes at each iteration an error limit which is about $1 / 2$ the error of the asymmetry. It thereby avoids unnecessary iterations for the symmetric solutions. Test runs have shown that the number of iterations (computing time) increases by about 50%, when compared to the same problem using Dirichlet boundary conditions.

In time dependent problems the computing time depends to a large extent on the guess of f_{0}. Crude time dependent calculations where the
center of the exponential function is simply shifted and f_{0} is set to the previous solution, gives a reduction of about 3 - 10 over that given by $f_{0}=0$, depending on the required rms error and $N x, N y$. The relationships for N_{i} and $f_{r e d}$ still hold approximately. The reduction is about 10 for higher accuracy and lower for a lower accuracy because the change in f is the same.
S. Zalesak has used the scheme extensively in his electrostatic code. For small error (rms $=10^{-3}$) and bad approximations the code runs about as fast as a vectorized ADI. For higher accuracy (10^{-4}) and a good approximation the code runs about two times faster than ADI with an accuracy of 10^{-3}. ADI did not converge after a reasonable number of iterations for a rms error of 10^{-4}.

IV. Conclusion

A vectorized incomplete Cholesky description scheme for the solution of large linear systems for sparse matrices has been developed. The vectorization is achieved by systematically replacing recursive formulae by non-recursive expansions in connection strength, both in the incomplete LU decomposition and in applying (LI) $)^{-1}$ to a vector. The conjugate gradient method assures convergence. The saving in computing time over the recursive solution on a vector machine is about a factor five.

V. Acknowledgement

The author wishes to thank S. Zalesak for many discussions.

VI. References

1. David S, Kershaw, The incomplete Cholesky - conjugate gradient method for the iterative solution of systems of linear equations, Journal of Computational Physics 26, pp. 43-65 (1978).
2. M. Petravic, g. Kuo-Petravic, An ILUUG algorithm which minimizes in the Eulerian norm., Journal of Computational Physics 26, pp. 263-269 (1979).
VII. Distribution List

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COWH, CMO, CONT C INTELL
WASHIMGTON, D.C. 20301
OICY ATTN J. BABCOC
OLCY ATTN M. EPSTEIN
ASSISTANT TO THE SECRETAAY OF DEFENSE
ATOMIC ENERGY
WASHINGTON, D.C. 20301
OICY ATTN EXECUTIVE ASSISTANT
DIRECTOR
COMMNO CONTROL TEONICAL CENTER
PENTAEON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
DICY ATTN C-312 R. MASON
DIRECTOR
DEFENSE ADVANCED RSCH PROJ MGENCY
ARCHITECT OUILOING
1400 WILSON BLVD
ARLINGTON, VA. 22209
OICY ATTN NUCLEAR MONITORING RESEARC-
olcy artn strategic TECH OFFICE
DEFENSE COMMNICATION ENGINEER CENTER
1860 WIEHCE AVENUE
RESTON VA 22090
oicy ATTN COOE r820
OICY ATTN CODE R410 HMES W. MCLEAN
OICY ATTN COOE R720 J. WORTMINGTON
DIRECTOR
DEFENSE COMANICATIONS AGENCY
WASHINGTON, O.C. 20305
(ADR CNWOI: ATTN COCE 240 FOR)
olCy ATtN COOE 1018
DEFENSE DOCUMENTATION CENTER
CAMERCN STATION
ALEXANDRIA, VA, 22314
12 COPIES IF OPEN PUBLICATION, OTHERWISE 2 COPTES)
12CY ATTN TC

```
OIRECTOR
l
l
```



```
    OICY ATTN DE-4C E. OTFARRELL
    OICY ATTN DIANP A. WISE
M,
    OICY ATTN OT-18Z R. MORTON
    OLCY ATTN HQ-TR S. STEMART
    01CY ATTN W. WITTIG DC-7D
```



```
M DEFENSE INTELLIGENCE AC
M DEFENSE INTELLIGENCE AC
```



```
    O3CY ATTN RAME
```


COMmper

FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
OLCY ATTN FCPR
DIRECTOR
INTERSERVICE MUCLEAR WEAPONS SOHOOL
KIRTLAND AFB, NM 87115
OICY ATTN DOCUNENT CONTROL
WINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WHCCS Evaunarion office
OIRECTOR
JOINT STRAT TGT PLANNINE STAFF
OFFUTT AFB
OMAHA, NB 68113
0ICY ATTN UTW-2
OLCY ATTN JPST G. GOETZ
ChIEF
LIVERMORE DIVISION FLD COMMAND ON
DEPARTMENT OF DEFENSE
LANRENCE LIVERMORE LABORATORY
P. O. 80×808

LIVERHORE, CA 94550
OLCY ATTN FCPD

DIRECTOR
MATIONAL SEQURITY AGENCY
DEPARTMENT OF DEFENSE
GEORGE G. MEADE, ND 20155
OICY ATTN JOFN SKILLMAN R52
OICY ATTN FRAMK LEONARD
OICY ATTN W14 PAT CLABRX
OICY ATTN OLIVER H. BARTLETT W32
OICY ATTN RS
COMPANOANT
NATO SCHOOL (SHAPE)
APO NEW YOPK 09172
OICY ATTN U.S. DOCUMENTS OFFICER
UNOER SECY of DEF FOR RSCH \& ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
OICY ATTN STRATEGIC \& SPACE SYSTEMS (OS)
WHECCS STSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
OICY ATTN R. CRANFOR
COMMNDER/D REECTOR
ATMOSPHERIC SCIENCES LABORATONY
U.S. MMY ELECTROWICS COMMNO

WITE SANOS MISSILE RANEE, NM 88002
OLCY ATTN DELAS-EO F. NILES
DIRECTOR
BMD ADVANCED TECH CTR
HNTSVILLE OFFICE
P. O. 80X 1500

MUNTSVILLE, AL 35807
OLCY ATTN ATC-T MELVIN T. CMPPS
DiCY ATTM ATC -0 W DAVIES
OICY ATTN ATC-R DON RUSS

PNOCRM MWMCEA
PND PROCRAM OFFICE
5001 EISENHOWER AVEMUE
hexandala, Va 22333 OLCY ATTN DACS-QMT J. SNEA

CHIEF C-E SERVICES DIVISION
U.S. MMAY COMPNICATIONS CMD

PENTACON RM 12269
MASHINGTON, D.C. 20310
OICY ATTN C-E-SERVICES DIVISION

COMMMDER

FRADCOM TEONICAL SUPPORT ACTIVITY
DEPARTMENT OF TME ABMY
FCRT MONOUTH, N.U. 07703
OICY ATTN DUSEL AL -AD H. BENEET
OIEY GTTN DRSEL-PL-ENN H. BOMXE
OICY ATTN J. E. QUIGLEY

COMPNDER
MARRY DIMOND LNBCRATORIES
OEPMRTMENT OF THE ARPMY
2300 PONOER MILL ROND
ACELPHI, MD 20783
(CMODI-INEER ERNELOPE: ATTN: DELHD-REH)
OICY ATTN DELMD-TI M. WEINER
OICY ATTN DELHD-RB R. WILLIAMS
OICY ATTN DELHONP F. WIMENITZ
OICY ATTN DELHD-NP C. MOAZED

COMMDER
U.S. ANHY COMTELEC ENGRG INSTM AGY FT. HMCHUCA, AZ 85613

OICY ATTN CCC-EMEO GEORGE LANE

COMMNDER
U.S. Weay foreticn science \& tech ctr

220 TTH STREET, NE
CMARLOTTESVILLE, VA 22901
OJCY ATTN DRXST-SD
OICY ATIN R. JDNES

COMmNDER

U.5. hany materiel dev 6 READINESS CMD

5001 EISEMONER AVEREE
ALEXADDRIA, VA 22333
olCy attin drclic J. A. bender

COMMDER
U.5. MOHY MUCLEAR MD CHEMICAL MGENCY

7500 BACKLICK ROAD
BLD6 2073
SOBINEFIELD, VA 22150
01CY ATTN LIBRMR
dinecton
U.5. Mat ballistic resemech laas
necree en phovine crand, mo 21005
DICY ATTN TECH LIS EDWARO BAICY

commider

U.5. Mant SATCOM MGENCY

FT. MONOUTH, NW 07703
OLCY ATTN DOCUMENT CONTRO.
COMPMDEA
U.S. MNY MISSILE INTELLIGENCE ACENCY REDSTONE ARSEMLC, AL 35809 oicy atin Jim gmele

DIRECTOR

U.S. Man TRADOC SYSTEMS ANLYSIS ACTIVITY

WHITE SAOS MISSILE RNGEE, NM 88002
OICY ATTN ATAM-SA
OICY ATTN TCC/F. PAYAN UR.
olcy aftn atan-tac lit J. hesse
comminer
MAVAL ELECTRONIC SYSTEMS COMMNO
WASMINGTON, O.C. 20360
oICY ATTN MAVALEX 034 T. Huctes
OLCY ATTN PME 117
oicy attm pre 117-T
OLCY ATTN COOE SOLI
COMMAOING OFFICER
MAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLANO ROAD, BLDG. S
WASHINGTON, D.C. 20390
OICY ATTN MR. DUBBIN STIC 12
OLCY ATTN NISC-50
OICY ATTN CODE 5404 J . GALET

COMMNDER

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
OSCY ATTN CCOE 532 w. MOLER
OICY ATTN COOE 0230 C. BAGGETT
OICY ATTN CODE 81 R. EASTMAN
OIRECTOR
NAVAL RESEARCH LaBCRATORT
WASHINGTON, D.C. 20375
DICY ATIN CODE 4700 TIMOTHY P. COFFEY (25 CYS
If unclass, 1 CY IF Class)
OICY ATTN COOE 4701 nex O. BROMN
OICY ATTN COOE 4780 BRWOT HEAD (150 cYs
IF UNCLASS, 1 CY IF CLASS)
OICY ATTN COOE 7500 HQ COMM OIR BRUCE WALD
OICY ATIN COOE 7550 J. DAVIS
OICY ATTN CODE 7580
OLCY ATTN CODE 7551
OLCY ATTN COOE 7555
olct ATTN COOE 4730 E. MCLEAN
OICY ATIN COOE 4127 C. JONWSON

COMPNOER

MAVAL SEA SYSTEMS COMMND
WASHINGTON, D.C. 20362
OICY ATIN CAPT R. PITKIN
COMMNDER
maval space surveillance system
OMLEREN, VA 22448
OICY ATTN CAPT J. H. BURTON
OFFICER-IN-CTMRGE
MaVAL SURFACE WEAMONS CENTER
WHITE OWX, SILVER SPRING, MD 20910
OICY ATTN CODE F31
oirector
STRATEGIC SYSTEMS PROUECT OFFICE
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20376
O1CT ATTN NSP-2141
01CY ATTN NSSP-2722 FRED WIMEERLY
Naval space system activity
P. O. 80X 92960
morloway postal center
LOS ANCELES, CNLIF. 90009
DICY ATTN A. B. MAZZARD
commander
Maval SURFACE WEAPONS CENTER
DAHLLGREN LABORATORY
DAFLGREN, VA 22448
OICY ATTN CODE OF-14 R. BUTLER
COMPANOING OFFICER
NaVY SPACE SYSTEMS ACTIVITY
P.O. BOX 92960

WORLDWAY POSTAL CENTER
LOS ANGELES, CA. 90009
OICY ATTN CODE 52

OFFICE OF NAVAL RESEARCH
ARLINGTON, VA 22217
OICY ATTN CODE 465
OICY AYTN COOE 461
01CY ATTN COOE 402
OICY ATTN COOE 420
OICY ATTN COOE 421

COMmANDER

aEROSPACE DEFENSE COMMAND/DC
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
QICY ATTN DC MR. LONG

GEPOSPACE DEFENSE COMMAND/XPD
DEPARTMENT OF THE AIR FORCE
ENT AFB, CO 80912
OICY ATTN XPDOO
OICY ATTN XP
AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AFE, MA 01731
OICY ATTN OPR HAROLO GARDNER
OICY ATTN OPR-1 JNES C. ULWICK
OICY ATTN LKK KENNETH S. W. CHAMPION OICY ATTN OPR ALVA T. STAIR OICY ATTN PHP ULES AARONS OICY ATTN PHD JURGEN BUCHAUS OLCY ATTN PHO JON P. MLLEN

AF WEAPONS LABORATORY
KIRTLAND AFB, NM 87117 OICY ATTN SUL
OICY ATTN CA ARTHUR H. GUENTHER
OICY ATTN DYC CAPT J. BARRY
OLCY ATTN DYC JOHN M. KAMM
O1CY ATTN DYT CAPT MARK A. FRY
O1CY ATYN OES MA, GARY GANONG
olcy attn orc J. JaNn!

AFTAC
PATRICK AFB, FL 32925
DICY ATTN TF/MAS WILEY oley artn TN

AIR FORCE AVIONICS LABORATORY WRIGHT-PATTERSON AFE, OH 45433 OICY ATTN AAD WADE HUNT OICY ATTN AAD MLLEN JOHNSON

DEPUTY CMIEF OF STAFF
RESEARCH, DEVELOPMENT, S ACQ
DEPARTMENT OF THE AIR FORCE
WASMINGTON, O.C. 20330 OICY ATTN AFRDC

heacouarters

ELECTRONIC SYSTEMS OIVISION/X
DEPARTMENT OF THE AIR FORCE
MANSCOM AFB, MA 0173
OLCY ATTN XR U. DEAS

HEADQUARTERS

ELECTRONIC SYSTEMS DIVISION/YSEA
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731
OICY ATTN YSEA
MEADQUARTERS
ELECTRONIC SYSTEMS DIVISION/DC
DEPARTMENT OF THE AIR FORCE
HAWSCOM AFE, MA 01731
OICY ATTN DCKC MAJ J.C. CLARK
COMMANDER
FOREIGN TEOMOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
OICY ATYN NICD LIBRARY
OICY ATTN ETDP B. BALLARD

COMMANDER

ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13442
OICY ATTN DOC LIBRARY/TSLD
OICY ATTN OCSE V. COTNE
SAM50/S2
POST OFFICE BOX 92960
WORLDMAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
DICY ATTN SZJ

STRATEGIC AIR COMAND/XPF
OFFUTT AFB, NB 68113
01CY ATTN XPFS MAN B. STEPHAN
OICY ATTN ADWATE MAN BRUCE BAUER
OICY ATTN NRT
OICY ATTN DOK CHIEF SCIENTIST
SAMSO/YA
P. O. B0X 92960

WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
OICT ÁTTN YAT CAPT L. BLACKWELDER
SAMSO/SK
P. O. B0X 92960
wORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
OICY ATTN SKA (SPACE COMM SYSTEMS) M. CLAVIN

SAMSOIMN
NORTON AFB, CA 92409
(MINUTEMAN) OLCY ATTN MNNL LTC KENNEDY

COMMANOER
RONE AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB, MA 01731
OICY ATTN EEP A. LORENTEEN

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P. O. BOX 5400

ALBUQUERQUE, NM 87115
OICY ATTN DOC CON FOR D. SHER $W O O D$
EEPARTMENT OF ENERGY
IGRARY ROOM G-042
ASHINGTON, D.C. 20545
DICY ATTM DOC CON FOR A. LAAOWITZ

EGEG, INC.
LOS ALAMOS DIVISION
P. O. BOX 809

LOS ALAMOS, NM 85544
01CY ATTN OOC CON. FOR J. BREEDLOVE
UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P. O. BOX 808

LIVERMORE, CA 94550
OICY ATTN DOC CON FOR TECH INFO DEPT
OICY ATTN DOC CON FOR L-389 R. OTI
OLCY ATTN DOC CON FOR L-31 R. HAGER
OICY ATTN DOC CON FDR L-46 F. SEWARD
LOS ALAMOS SCIENTIFIC LABORATORY
P. O. 80×1663

LOS ALAMOS. NM 87545
OICY ATTN DOC CON FOR J. WOLCOTT
OICY ATTN DOC CON FOR R. F. TASCHEX
OICY ATTN DOC CON FOR E. JONES
OICY ATTN DOC CON FOR J. MALIK
OLCY ATTN DOC CON FOR R. JEFFRIES
OICY ATTN OOC CON FOR J. ZINN
O1CY ATTN DOC CON FOR P. KEATON
OICY ATTN DOC CON FOR D. WESTERVELT
SAMOIA LABORATORIES
P. O. BOX 5800
albuquerque, nm 87115
OICY ATTN DOC CON FOR J. MARTIN
OICY ATTN DOC CON FOR W. BROWN
O1CY ATTN DOC CON FOR A. THORNBROUGH
OICY ATTN DOC CON FOR T. WRIGHT
OLCY ATTN DOC CON FOR D. DAHGREN
OlCY ATTN DOC CON FOR 3141
OICY ATTN DOC CON FOR SPACE PROUECT DIV
SAMDIA LABORATORIES
LIVERMORE LABORATORY
P. O. BOX 969

LIVERMORE, CA 94550
OlCY ATTN DOC CON FOR B. MURPMEY
OICY ATTN DOC CON FOR T. COOK
OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
OLCY ATTN OOC CON FOR D. GALE

OTHER GOVERNEENT

CENTRAL INTELLIGENCE AGENCY
ATTN RD/SI, RM 5G48, HO BLOG
WASHINGTON, D.C. 20505
OICY ATTN OSI/PSIO RM SF 19
DEPARTMENT OF COMYERCE
NATICNAL BUREAU OF STANDARDS
WASHINGTON, D.C. 20234
(ALL CORRES: ATTN SEC OFFICER FOR)
OLCY ATTN R. MOORE
INSTITUTE FOR TELECOM SCIENCES
NOTIONAL TELECOMANICATIONS \& INFO ADMIN BOULDER, CO 80303

O1CY ATTN A. UEAN (UNCLASS ONLY)
OICY ATTN W. UTLAUT
OlCY ATHN D. CROMBIE
OICY ATTN L. BERRY

NATIONAL OCEANIC \& ATMOSPHERIC AOMIN ENVIRONENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMERCE
BOULDER, CO 80302
OICY ATTN R. GRUBB
OICY ATTN AERONOMY LAB G. REID
DEPARTMENT OF DEFENSE CONTRACTORS
AEROSPACE CORPORATION
P. O. BOX 92957

LOS ANGELES, CA 90009
OICY ATTN 1. GARFUNKEL
OICY ATTN T. SALMI
OLCY ATTN V, LOSEPHSON
OLCY ATTN S. BOWER
01CY ATTN N. STOCKWELL
OICY ATTN D. OLSEN
01CY ATTN J. CARTER
OICY ATTN F. MORSE
OICY ATTN F. MORSE
OICY ATTN SMFA FOR PW
ANALYTICAL SYSTEMS ENGINEERING CORP 5 OLD CONCORD ROAO
BURLINGTON, MA 01803
OLCY ATTN RADIO SCIENCES
BERKELEY RESEARCH ASSOCIATES, INC
P. O. 80X 983

BERKELEY, CA 94701
OLCY ATTN J. WORKMAN
BOEING COMPANT, THE
P. O. 60x 3707

SEATTLE, WA 98124
OICY ATTN G. KEISTER
OICY ATTN D. MURRAY
OICY ATTN D. MURRAY
01CY ATTN J. KENNEY
CALIFORNIA AT SAN DIEGO, UNIV OF
1 PAPS, B-019
LA JOLLA, CA 92093
OLCY ATTN HENRY G. BOOKER
BROMN ENGINEERING COMPANY, INC.
CUMMINGS RESEAROH PARK
HUNTSVILLE, AL 35807
OICY ATTN RONEO A. DELIBERIS
CHARLES STARK DRAPER LABORATORY, INK.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
OLCY ATTN D. B. COX
OICY ATTN J. P. GILMORE
COMPUTER SCIENCES CORPORATION
6565 ARLIMGTON BLVD
FALLS CHURCH, VA 22046
OLCY ATTN H. BLANK
OLCY ATTN WON SPOOR
OICY ATTN C. NAJL.

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKS8URG, MD 20734
OICY ATTN G. hYde
CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
OICY ATTN D. T. FARLEY JR

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICMARDSON, TX 75080
OICY ATTN M. LOGSTON OICY ATTN SECURITY (PAUL PHILLIIPS)

ESL INC.
495 JAVA DRIVE
SLANYVALE, CA 94086
OICY ATTN J. ROBERTS
OlCY ATTN JAMES MARSHALL
oICY ATTN C. W. PRETTIE
FORD AEROSPACE \& COMMNICATIONS CORP
3939 FABIAN WAY
palo alto, Ca 94303
OlCY ATTN J. T. MATTIMGLEY
GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVO KING OF PRUSSIA
P. O. 80×8555

PHILADELPHIA, PA 19101
OICY ATTN M. H. GORTNER SPACE SCI LAB
GENERAL ELECTRIG COMPANY
P. O. BOX 1122

SYRACUSE, NY 13201
OLCY ATTNF. aEIBERT
GEMERAL ELECTRIC COMPANY
TEMPO-CENTER FOR ADVANCED STUOIES
816 STATE STREET (P.O. DRAWER QQ)
SANTA gARBARA, CA 93102
DICY ATTN DASIAC
OICY ATTN DON CHANDLER
OICY ATTN TOM BARRETT
OICY ATTN TIM STEPHANS
OICY ATTN WARREN S. KNAPP
OICY ATTN WILLIAM MCNAMARA
OICY ATTN B. GAMBILL
OICY ATTN MACK STANTON
GENERAL ELECTRIG TECH SERVICES CO., INC.
HES
COURT STREET
SYRACUSE, NY 1320
OICY ATTN G. MILLMAN

GENERAL RESEARCH CORPORATION
SANTA BARBARA DIVISION
P. O. BOX 6770

SANTA BARBARA, CA 93111
OLCY ATTN JOMN ISE UR
OLCY ATTN JOEL GARBARINO
GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIREANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T. N. DAVIS (UNCL ONEY)
O1CY ATTN NEAL. BROWN (UNCL ONLY)
OICY ATTN TECHNICAL LIBRARY
GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEOHAM, MA 02194
OICY ATTN MARSHAL CROSS

ILLINOIS, UNIVERSITY OF
DEPARTMENT OF ELECTRICAL ENGINEERING
JRBANA, IL 61803
OICY ATTN K. YEH
ILLINOIS, UNIVERSITY Of
107 COBLE HALL
801 S. WRIGHT STREET
URBANA, IL 60680
(ALL CORRES ATTN SECURITY SUPERVISOR FOR)
OICY ATTN K. YEM
INSTITUTE FOR DEFENSE ANALYSES
400 ARMY-NAVY DRIVE
ARLINGTON, VA 22202
O1CY ATTN J. M. AEIN
OICY ATTN ERNEST BAUER
OICY ATTN HANS WOLFHARD OICY ATTN JOEL BENGSTON

HSS, INC.
2 AlFRED CIRCLE
BEDFORD, MA 01730
OLCY ATTN DONALD HANSEN
INTL TEL \& TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
OICY ATTN TECHNICAL LIBRARY
JAYCOR
1401 CAMINO OEL MAR
OEL MAR, CA 92014

JOWS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
OICY ATTN DOCUMENT LIBRARIAN
OICY ATTN THOMAS POTEMRA
OICY ATTN JOHN DASSOULAS
LOCKHEED MISSILES \& SPACE CO INC
P. O. BOX 504

SUNWYVALE, CA 94088
01CY ATTN DEPT 60-12
OICY ATTN D. R. CMUROHILL
LOCKMEED MISSILES AND SPACE CO INC
3251 HANOVER STREET
PALO ALTO, CA 94304
OICY ATTN MARTIN WALT DEPT 52-10
OlCY ATTN RICHARD G. JOHNSON DEPT 52-12
OLCY ATTN W. L. IMOFF DEPT 52-12
KAMAN SCIENCES CORP
P. O. BOX 7463

COLORADO SPRINGS, CO 80933
OICT ATTN T. MEAGHER
LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
OLCY ATTN IRWIN JACOBS
M.I.T. LINCOLN LABORATORY
P. O. 50×73

LEXINGTON, MA 02173
OICY ATTN DAVID M. TOWLE
OLCY ATTN L. LOUSHLIN

MARTIN MARIETTA CORP
ORLANDO DIVISION
P. O. BOX 5837

ORLAMDO, FL 32805
OICY ATTN R. MEFFNER

MCDONNELL DOUGLAS CORPORATION
5301 8OLSA AVENUE
HUNTINGTON BEACH, CA 92647
OICY ATTN N. HARRIS
01CY ATTN J. MOULE
OlCY ATTN GEORGE MROZ
O1CY ATTN W. OLSON
OICY ATTNR. W. HALPRIN
OICY ATTN TECHNICAL LIBRARY SERVICES

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
01GY ATTN P. FISCMER
OICY ATTN W. F. CREVIER
OLCY ATTN STEVEN L. GUTSCHE
OlCY ATTN D. SAPPENFIELD
OLCY ATTN R. BOGUSCH
OICY ATTN R. HENDRICK
OICY ATTN RALPH KILB
OICY ATTN DAVE SOWLE
OLCY ATTN F. FAUEN
OLCY ATTN M. SCHEIBE
OICY ATTN CONRAD L. LONGMIRE
OICY ATTN WARREN A. SCHLUETER
MITRE CORPORATION, THE
P. O. BOX 208

BEDFORD, MA 01730
OICY ATTN JOHN MORGANSTERN
OICY ATTN G. HARDING
OICY ATTN C. E. CALLAHAN
MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVO
MCLEAN, VA 22101
OICY ATTNW. HALL
OICY ATTN W. FOSTER
PACIFIC-SIERRA RESEARCH CORP
1456 CLOVERFIELD BLVO.
SANTA MONICA, CA 90404
OICY ATTN E. C. FIELD NR
PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASSIFIED TO THIS ADDRESS)
OICY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.

442 MARRETT ROAD
LEXINGTON, MA 02173
OICY ATTN IRVING L. KOFSKY
PMYSICAL DYNAMICS INC.
P. O. BOX 3027

BELLEVUE, WA 98009
OLCY ATTN E. J. FREMOUW
PHYSICAL DYNAMICS INC.
P. O. BOX 1069

BERKELEY, CA 94701
OICY ATTN A. THOMPSON
R © ASSOCIATES
P. O. BOX 9695

MARINA DEL REY, CA 90291
OLCY ATTN FORREST GILMORE
OICY ATTN BRYAN GABBARD
OLCY ATTN WILLIAM B. WRIGHT UR
OLCY ATTN ROBERT F. LELEVIER
OICY ATTN WILLIAM J. KARZAS
OICY ATTN H. ORY
OlCY ATTN C. MACDONALD
OLCY ATTN R. TURCO

RAND COPPORATION, THE
1700 MAIN STREET
SANTA MONICA, CA 90406
OICY ATTN CULLEN CRAIN
OICY ATTN ED BEDROZIAN
RIVERSIDE RESEARCH INSTITUTE
80 WEST END AVENUE
NEW YORK, NY 10023
OICY ATTN VINCE TRAPANI
SCIENCE APPLICATIONS, INC.
P. O. BOX 2351

LA JOLLA, CA 92038
OLCY ATTN LEWIS M. LINSON
O1CY ATTN DANIEL A. HAMLIN
OICY ATTN D. SACHS
OICY ATTNE. A. STRAKER
OICY ATTN CURTIS A. SMITH
O1CY ATTN JACK MCDOUGALL
RAYTHEON CO.
528 BOSTON POST ROAD
SUDBURY, MA 01776
01CY ATTN SARBARA ADAHS
SCIENCE APPLICATIONS, INC.
HUNTSVILLE DIVISION
2109 W. CLINTON AVENUE
SUITE 700
HUNTSVILLE, AL 35805
OICY ATTN DALE H. DIVIS
SCIENCE APPLICATIONS, INCORPORATED
8400 WESTPARK DRIVE
MCLEAN, VA 22101
OICY ATTN J. COCKAYNE
SCIENCE APPLICATIONS, INC.
80 MISSION DRIVE
PLEASANTON, CA 94566
OLCY ATTN 52

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLOO PARK, CA 94025
OICY ATTN DONALD NEILSON
O1CY ATTN ALAN BURNS
OICY ATTN G. SMITH
OICY ATTN L. L. COBB
OLCY ATTN DAVID A. JOHNSON
OICY ATTN WALTER G. CHESNNT
O1CY ATTN CHARLES L. RINO
OICY ATTN WALTER JAYE
OLCY ATTN M. BARON
OICY ATTN RAY L. LEADABRAND
OLCY ATTN G. CARPENTER
OICY ATTN G. BRJCE
OICY ATTN J. PETERSON
O1CY ATTN R. HAKE, JR.
OICY ATTN V. GONZALES
OLCY ATTN D. MCDANIEL

TECHNOLOGY INTERNATIONAL CORP 75 WIGGINS AVENUE
BEDFORD, MA 01730
OICY ATTNW. P. BOQUIST
TRW DEFENSE S SPACE SYS GROUP ONE SPACE PARK
REDONDO BEACH, CA 90278
OICY ATTNR. K. PLEBUCH
OICY ATTN S. ALTSCHULER
OICY ATTN D. DEE
VISIDYNE, INC.
19 THIRD AVEMUE
NORTH WEST INDUSTRIAL PARK BURLINGTON, MA 01803 O1CY ATTN CHARLES HUMPHREY OICY ATTN J. W. CARPENTER

