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Abstract— Edge detection has been used extensively as a pre-
processing step for many computer vision tasks.  Due to its 
importance in image processing and the highly subjective nature 
of human evaluation and visual comparison of edge detectors, it 
is desirable to formulate objective edge map evaluation measures.   
One would like to use such a measure to make comparisons of 
results using the same edge detector with different parameters as 
well as to make comparisons of results using different edge 
detectors.  Reconstruction-based measures have the clear 
advantage that they effectively incorporate original image data.  
In this paper, a general model for reconstruction-based measures 
is established in order to alleviate the shortcomings of the 
reconstruction-based measures, followed by the formulation of a 
new non-reference measure for objective edge map evaluation.  
Experimental results illustrate the effectiveness of the new 
measure both as a means of selecting optimal edge detector 
parameters and as a means of determining the relative 
performance of edge detectors for a given image.      

Keywords—Edge detection, objective evaluation, performance 
measures

I. INTRODUCTION

Edge detection plays a great role in image processing and 
computer vision tasks as it determines the structure of objects 
in images.  Therefore, it can aid processes by substantially 
reducing the amount of information to be processed [1].  As a 
result, edge detection has served as a basis for many feature 
extraction, object detection, object recognition, image 
enhancement, and image segmentation algorithms, and has 
been used extensively for remote sensing, security systems, 
handwriting analysis, and biomedical applications [2, 3, 4].  As 
edge detection has been used as a pre-processing step for so 
many algorithms in image processing, effective and objective 
edge map evaluation measures must be developed in order to 
assess edge detector performance.  Objective edge map 
evaluation measures have many important uses.  Obviously, 
after the development of so many different edge detection 
algorithms over the years, there should be an objective way of 
determining which edge detection algorithm generally 
performs the best.  Secondly, an objective edge map evaluation 
measure can select the tunable parameters that exist in many 
edge detection algorithms.  One can ultimately determine these 
parameter values automatically by exhaustively testing 
parameter sets with an objective edge map evaluation measure 
over a range of images and then generating algorithms based 
on the analysis of these results.   

In general, edge map evaluation measures can be classified 
as either reference-based or non-reference-based measures.  
Reference-based edge map evaluation measures require an 
ideal edge map of an image known as the ground truth in 
addition to the resultant edge map to make their assessment.  
Their main advantage is that they can be used to determine 
edge detector performance within a controlled environment 
where edge pixel locations are known.  Their main 
disadvantage is that since the ground truth must be known, 
there are of little use for evaluating edge detector performance 
on natural images.  This is because for natural images, 
determining the ground truth is non-trivial as ideal edge 
locations are unknown.  Therefore, reference-based edge map 
evaluation measures are used predominantly for evaluating 
edge maps of synthetic images with derived ground truths.  
Moreover, the performance of edge detectors on synthetic 
images do not necessarily correlate to their performance on 
natural images, as edge detection kernels are constructed to 
detect “real-world” edges taking into consideration noise and 
deviation from edge models.  Reference-based objective edge 
map evaluation measures include probabilistic measures and 
Pratt’s Figure of Merit [5].   

Alternatively, non-reference-based edge map evaluation 
measures only use information from the resultant edge map and 
the original image itself to make their evaluation.  The obvious 
advantage of non-reference-based edge map evaluation 
measures is that no ground truth is necessary.  Therefore, they 
can be used to assess the performance of edge detectors on 
non-synthetic images.  However, in their current stage, non-
reference-based edge map evaluation measures suffer from 
many biases or are restricted in their use.  Most are highly 
unreliable due to the fact that edge detection quality can be 
very subjective and difficult to quantify.  Many of the methods 
cannot effectively incorporate the original image data.  Visual 
comparisons are highly subjective and cannot be automated [6].  
Task-based evaluations [7] quantify edge detector performance 
based on how well an edge detector output aids a certain task.  
While this is a useful evaluation, it does not fit under a 
universal model and depending on the application, they also 
cannot be automated.  Probabilistic measures attempt to 
estimate a ground truth from multiple edge detector outputs and 
determine the output which best balances specificity and 
sensitivity [6].  This method suffers from its bias regarding the 
generation of the estimated ground truth, as the candidate edge 
maps used directly affect the estimated ground truth which is 
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determined.  Therefore, if the majority of the edge maps used 
are not of adequate quality or fail to extract certain edge 
structures which are detected by only a select few of the edge 
maps, this will be reflected in the derived estimated ground 
truth.  Also, since the original image data is not used, there is 
no telling how well the best edge detector output determined by 
this approach corresponds to the original image. Edge 
connectivity and width uniformity measures assess the quality 
of edge detector outputs in terms of the formation of proper 
edge lines [8].  While generating continuous and single pixel 
width edges are certainly essential criteria for edge detection, 
edge connectivity and width uniformity measures do not take 
into account the original image data.  Thus, once again, it 
would be possible to construct a high-scoring edge map 
independent of actual input data.

Recently, reconstruction-based measures have been 
developed by the authors [9, 10].  Such measures determine the 
quality of an edge map based on how well the image can be 
reconstructed using the original data only at the location of 
edge pixels in the edge map.  This provide an effective means 
of incorporating the original image data, but it also tends to 
favor more edge pixels as it allows for more of the original 
image data to be used in the reconstruction.  In order to counter 
this, a progressive approach was proposed for determining 
parameter values.  However, the progressive approach only 
provides a means of tuning parameters and not a means of 
comparing the edge map outputs of various different edge 
detectors without the edge pixel bias.   

In this paper, a new non-reference measure for objective 
edge map evaluation is introduced.  A general formulation for 
an objective, non-reference edge map evaluation measure is 
first established.  Namely, a measure is defined as the product 
of a monotonically decreasing function of the number of edge 
pixels and a function which measures the similarity between 
the original and reconstructed images (which tends to be a 
monotonically increasing function of the number edge pixels).  
A specific instance of the formulation is suggested and used to 
evaluate the performance of the measure.  Two different 
experiments were performed to illustrate the efficacy of the 
new measure.  In one experiment, the measure is used to 
determine the best parameters within a single edge detector.  In 
a second experiment, the measure is used to compare the 
outputs of different edge detectors and determine the best 
performer.  Experimental results over a range of different 
images illustrate the effectiveness of the presented measure.   

The remainder of this paper is organized as follows:  
Section II provides background information regarding 
reconstruction-based edge map evaluation methods.  Section III 
describes the new measure, including the general formulation 
for an objective, non-reference edge map evaluation measure.  
Section IV illustrates the performance of the new measure.  
Section V draws conclusions based on these experimental 
results.   

II. BACKGROUND INFORMATION

The main weakness of most non-reference based edge map 
evaluation measures is their inability to be automated and 
effectively incorporate the original image data in making their 
assessment.  Reconstruction based measures solve this problem 

by determining the quality of an edge map based on how well 
the image can be reconstructed using the original data only at 
the location of edge pixels in the edge map.  This 
reconstruction approach was actually first suggested by 
Carlsson [11] as a method of coding images and has since been 
adapted for the edge map evaluation problem.  The quality of 
the reconstructed image turns out to be is a function of the edge 
pixel locations and the number of edge pixels in the edge map.  
Conveniently enough, the quality of the reconstructed image 
increases as the edge pixel locations in the edge map are closer 
to their ideal location.  This is to say that if one is 
reconstructing the image using only a portion of the image 
data, the data at locations of large variations in the image 
would contain more useful information and yield a better 
reconstructed image.  This forms the main rationale for the use 
of image reconstruction as a means for edge map evaluation.  
However, the quality of the reconstructed image also generally 
increases as the number of edge pixels increase.  This is 
because more information from the original image data can be 
used to reconstruct the image.  Specifically, in the case of 
thresholding gradient images using incrementally larger 
thresholds, the quality of the reconstructed image will always 
degrade as the threshold is increased.  This is obviously an 
unfortunate consequence in terms of the use of image 
reconstruction for non-reference based edge map evaluation. 

A generalized block diagram of the established 
reconstruction-based measures is shown in Figure 1.  For an 
image I, the reconstruction process starts by first dilating the 
output edge map e, yielding the dilated edge map eD.  The 
original image data at the pixel locations (i,j) eD is referred 
to as the edge tube t, and is used as interpolating values to 
reconstruct the image.  Practically, the edge tube t can be 
determined by simply multiplying the dilated edge map eD by 
the original image I.  The interpolation is carried out until all 
pixels contain an interpolated value.  The reconstructed image 
is then compared to the original image using a similarity 
measure, which in turn is an assessment of the edge map e.
Thus, under this paradigm, the quality of the measure is 
improved by improving the quality of the reconstruction 
estimation algorithm and the quality of the similarity measure 
used to compare the original image and the reconstructed 
image.          

Figure 1 – Block diagram of reconstruction-based 
measures
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A. Reconstruction algorithms 

In the reconstruction algorithm suggested by Carlsson, the 
reconstructed image r minimizes the discretized version of the 
functional  

      
22r r didj

i j
                           (1) 

under the constraints 

( , ) ( , ) ( , ) 1Dr i j t i j e i j

A rudimentary implementation of this is carried out using 
linear interpolation and maintains the ability to numerically 
compare relative output.  For each pixel location (i,j) eD, the 
algorithm searches in the four cardinal directions and four 
intermediate directions for the nearest pixel in the given 
direction that eD.  The inverses of the distances of the first 
pixel encountered in each direction from the given pixel dk are 
then used as weights for the weighted average of their 
respective image intensity values tk, yielding the reconstructed 
intensity value for the given pixel.  Thus, reconstruction is 
carried out for each pixel location (i,j) eD by 
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The described linear interpolation algorithm can be 
implemented by its median-based analogue.  Namely, the 
weighted average calculation can be replaced by a weighted 
median calculation.  In doing so, the reconstructed pixels only 
take on intensity values from found in the edge tube.  The 
weighted median of a sequence x with weights w is given by 

1 1 2 2 1 1{ , , , , }W k k k kmedian median x w x w x w x w  (3) 

where  is the replication operator defined as  
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         (4) 

In order to yield integer weights for reconstruction, the weights 
wk are given by 

        100
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k
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                         (5) 

and reconstruction is carried out for each pixel location (i,j)
eD by 

           1 1 2 2 7 7 8 8( , ) { , , , , }Wr i j median t w t w t w t w       (6) 

Lastly, many inpainting algorithms have been proposed by 
Bertalmio et al. [12] based on partial differential equation 
(PDE) discretizations.  In such methods, high order PDEs are 
designed to restore smooth regions as well as thin structures 
[12, 13].  Figure 2 shows reconstruction results using the 
interpolation which have been described.  Note the improved 
performance yielded by the REMI algorithm.  It circumvents 
the creation of false edges during reconstruction, retains the 
sharpness of the edge tube, is robust to noise, and produces 
visually more pleasing results [10]. 

B.  Similarity measures  

A simple metric to measure the difference between two 
signals is the mean squared error.  The lower the mean squared 
error between two images, the more similar the two images 
are.  The mean squared error between two images x and y is 
calculated by 

         
2

1 1
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i j
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mn

          (7) 

                      (a)        (b)     (c) 

                      (d)                    (e)     (f) 
Figure 2 – (a) Original “house” image, (b) edge detection result using the Canny edge detector, (c) edge tube, 

reconstruction results using (d) linear interpolation, (e) REMI, (f) and PDE-based inpainting 
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Though the MSE has a clear and simple to understand 
mathematical interpretation, it cannot be used to reliably 
measure the similarity between two images as it does not 
model the human visual system (HVS) [14].  In general, the 
MSE lacks the ability to assess image similarity across 
distortion types.   

Bovik’s SSIM index [14] defines the similarity of two 
images as a function of luminance, contrast, and structure.  
Given two images x and y, it is defined as 

       2 2 2 2

2 2
( , ) x y xy

x y x y

SSIM x y            (8) 

where x and y are the sample means of x and y, respectively, 
x and y are the sample standard deviations of x and y,

respectively, and xy is the sample covariance of x and y.
Generally, the SSIM is calculated on non-overlapping local 
windows of the two images to be compared.  The mean of these 
SSIM values (MSSIM) over the entire image is then used to 
measure the similarity between two images.  For two images X
and Y, it is defined as 

          
1

1( , ) ( , )
N

j j
j

MSSIM X Y SSIM x y
N

              (9) 

where M is the number of windows used, and xj and yj are the 
jth window of X and Y respectively.  Lastly, in order to improve 
the dynamic range of the measure for the edge map evaluation 
problem, an improved SSIM has been suggested [10], given by 

         10( , ) 20 ( , )IMSSIM X Y MSSIM X Y           (10) 

C.  Progressive approach 

The reconstruction-based approach provides an effective 
means of incorporating the original image data, but it also tends 
to favor more edge pixels as it allows for more of the original 
image data to be used in the reconstruction.  In order to counter 
this, a progressive approach was proposed based on the 
difference in the measure values as edge detection parameter 
values were incrementally increased [12].  The rationale for 
this is that near optimal parameters, the quality of the 
reconstruction should not change substantially. Therefore, the 
difference in the measure values can be used to find such 
parameters.  However, the progressive approach only provides 
a means of tuning parameters and not a means of comparing 
the edge map outputs of various different edge detectors 
without the edge pixel bias. 

III. A GENERALIZATION FOR NON-REFERENCE OBJECTIVE 
EDGE MAP EVALUATION AND NEW MEASURE

The non-reference reconstruction-based measures have the 
clear advantage that they effectively incorporate original image 
data and can be used to assess the performance of edge 
detection outputs of non-synthetic images.   One would like to 
use such a measure to make comparisons of results using the 
same edge detector with different parameters as well as to 
make comparisons of results using different edge detectors, 
while also avoiding the unwanted effect of edge maps with 

more edge pixels yielding higher measure values in all cases.  
In order to do so, a general model for reconstruction based 
measures is established.  In general, for an input image I with 
edge map e reconstructed with reconstruction method , a 
reconstruction-based edge measure can be defined as the 
exponentially weighted product of a similarity comparison 
function fS, (I,e) and an edge pixel density function fN(e). This 
is given as 

         ,( , ) ( , ) ( )S Nmeasure I e f I e f e          (11) 

where  and  are exponential weights.  The similarity 
comparison fS, (I,e) is a function which describes the similarity 
between the original image and the image which has been  
reconstructed using method .  It is generally a monotonic 
function with respect to the number of edge pixels in the edge 
map.  The edge pixel density function fN(e) is a monotonic 
function of the number of edge pixels in the edge map.  If 
fS, (I,e) is a monotonically increasing function with respect to 
the number of edge pixels in the map, then fN(e) should be 
chosen to be a monotonically decreasing function of the 
number of edge pixels in the edge map.  Furthermore, it is 
imposed that both of the functions range from 0 and 1 in order 
for them to be able to be properly weighted exponentially and 
for the measure itself to range between 0 and 1.  This also 
eliminates the need for one of the weights, as the ratio of /
becomes the only weight of practical importance.  As a result, 
is always set to 1.  Effectively, the measure assesses edge maps 
by how many edge pixels are needed in order to produce a 
certain degree of structural similarity between the original 
image and the reconstructed result, with  serving as a penalty 
parameter for detecting too many edge pixels.  This is to say 
that ideally, the best edge map result consists of the least 
number of edge pixels at their correct locations needed to 
characterize all of the relevant structures in the image.   

The pair of functions fS, (e) and fN(e) used to demonstrate 
this generalized model are given respectively as 

               , ( ) ( , ( , ))Sf e MSSIM I I e                    (12) 

         
2
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where N is the number of edge pixels in the edge map e, m and 
n are the dimensions of I (and consequently, the dimensions of 
e), and where the REMI algorithm is used to reconstruct the 
image from its edge map.  The measure then becomes 

     
2

0( , ) ( , )
mn N

measure I e MSSIM I e
mn

      (14) 

where once again, the REMI algorithm is used to reconstruct 
the image I from its edge map e.  In this case, the higher the 
measure value, the better the edge map.  For many edge map 
outputs, the best performer is selected by determining which 
output has the highest corresponding measure value.  Unlike 
previously established methods, the same procedure can be 
used to determine optimal parameter values within a single 
edge detector as well as to determine the best edge detector for 
a given image.  This is because the assessment is truly only a 
function of the input image I and the edge map e to be assessed.   
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IV. EXPERIMENTAL RESULTS

The quality of the new measure is assessed by determining 
how closely it corresponds to human evaluation.  This is 
demonstrated in the form of two experiments.  In the first 
experiment, edge detection is performed using the Sobel edge 
detector with the thresholding parameter T being incrementally 
increased, and the best value of T for a given image is 
determined by the new measure.  Specifically, the threshold T
ranges from .01 to .11 with T = .01.  In a second experiment, 
edge detection is performed using the Roberts, Prewitt, Sobel, 
Frei-Chen, Canny, and LoG edge detection algorithms, and the 
best edge detector output for a given image is determined using 
the new measure.  These results are then compared to human 
evaluation.  Both tests were performed on a variety of different 

images of different image classes with varying size and 
amounts of complexity in the scene. 

An example of the use of the measure as a means of 
determining optimal parameter values is shown in Figure 3.  
Figure 3(n) illustrates the need for the edge pixel density 
function as the use of the MSSIM alone results in the discussed 
edge pixel bias.  Similarly, an example using the measure as a 
means of determining the best edge detector output is shown in 
Figure 4.  Table 1 summarizes a portion of these experimental 
results comparing the presented measure to human evaluation.  
Often times, the best parameter value determined by human 
evaluation is not clear.  One could argue that two different 
values appear to balance extracting details and eliminating 
spurious edge responses in the output edge map.  In such cases, 
the measure value between the two debated parameter values 

                                                   (a)                               (b)                               (c)                                (d) 

                                                   (e)                               (f)                                (g)                               (h) 

                                                    (i)                                (j)                              (k)                               (l) 

(m)            (n) 
Figure 3 – (a) Original “Lena” image, (b)-(l) edge detection results using the Sobel edge detector with the threshold T ranging 
from .01 to .11, T = .01 and the top performer according to the presented measure highlighted, (m) presented measure plot 

indicating T = .04 as optimal parameter value, (n) previously established reconstruction-based measure plot using only MSSIM 
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are usually very close to one another.  In all cases, the 
presented measure selected a parameter value which agreed 
with human evaluation.  Similarly, the best edge detector 
chosen by the measure also coincides with human evaluation.  
In most cases, the Canny edge detector clearly outperforms the 
other methods.  However, there are a few instances when the 
Sobel edge detector extracts more necessary fine detail and 
outperforms the Canny edge detector.   

V. CONCLUSIONS

A new non-reference-based edge map evaluation measure 
has been presented based on a generalization of reconstruction-
based edge map evaluation.  The presented measure retains the 
advantages of reconstruction-based edge map evaluations while 
eliminating some of the biases of previously established 
methods.  The effectiveness of the new measure has been 
shown both as a means of comparing the performance of many 
edge detectors as well as a means of selecting parameters 
within a single edge detector.  Experimental results show that 
the measure coincides with subjective evaluation, validating the 
usefulness of the measure.  
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Best Sobel thresholding parameter 
value T chosen by 

Best edge detector  
chosen by 

Image class Image 

Human 
Evaluation 

Presented
Measure

Human 
Evaluation 

Presented
Measure

Lena .03, .04 .04 Canny Canny 
Cameraman .04, .05 .05 Canny Canny 

Miscellaneous 

Clock .04 .04 Canny Canny 
Brain MRI .04, .05 .05 Canny Canny Medical

Abdomen MRI .04 .04 Sobel Sobel 
Aerial .09 .09 Canny Canny Aerial

Pentagon .04, .05 .05 Sobel Sobel 
Table 1 – Summary of experimental results using the presented measure 
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