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Abstract

The order and lattice structure of the equilibrium set in games with strategic comple-
ments do not survive a minimal introduction of strategic substitutes: in a lattice game
in which all-but-one players exhibit strategic complements (with one player exhibit-
ing strict strategic complements), and the remaining player exhibits strict strategic
substitutes, no two equilibria are comparable. More generally, in a lattice game, if
either (1) just one player has strict strategic complements and another player has
strict strategic substitutes, or (2) just one player has strict strategic substitutes and
has singleton-valued best-responses, then without any restrictions on the strategic
interaction among the other players, no two equilibria are comparable. In such cases,
the equilibrium set is a non-empty, complete lattice, if, and only if, there is a unique
equilibrium. Moreover, in such cases, with linearly ordered strategy spaces, the game
has at most one symmetric equilibrium. Several examples are presented.
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1 Introduction

Games with strategic complements (GSC) and games with strategic substitutes (GSS)

formalize two basic economic interactions and have widespread applications.1 In GSC,

best-response of each player is weakly increasing (or non-decreasing) in actions of the

other players, and in GSS, best-response of each player is weakly decreasing (or non-

increasing) in the actions of the other players.2

As is well-known, in GSC, the equilibrium set has nice order and structure proper-

ties: there always exist a smallest and a largest equilibrium,3 and more generally, the

equilibrium set is a non-empty, complete lattice.4 These properties have proved useful

in several ways; for example, they help to provide simple and intuitive algorithms to

compute equilibria, and they help to show monotone comparative statics of equilibria

in such games.

In contrast, in GSS, the equilibrium set is completely unordered – no two equilibria

1Such games are defined in Bulow, Geanakoplos, and Klemperer (1985), and as they show, models

of strategic investment, entry deterrence, technological innovation, dumping in international trade,

natural resource extraction, business portfolio selection, and others can be viewed in a more unifying

framework according as the variables under consideration are strategic complements or strategic

substitutes. Earlier developments are provided in Topkis (1978) and Topkis (1979).
2Versions of such games arise in diverse economic environments, including competitive strategy,

public goods, industrial organization, natural resource utilization, manufacturing analysis, team

management, tournaments, resource allocation, business portfolio development, principal-agent mod-

eling, multi-lateral contracting, auctions, technological innovation, behavioral economics, and others.
3Various versions of this result can be seen in Topkis (1978), Topkis (1979), Lippman, Mamer, and

McCardle (1987), Sobel (1988), Milgrom and Roberts (1990), Vives (1990), Milgrom and Shannon

(1994), Echenique (2004), among others. For additional developments, confer Echenique (2002),

Quah (2007), and Quah and Strulovici (2009).
4See Zhou (1994).
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are comparable (in the standard product order).5 Consequently, in such games, with

multiple equilibria, techniques based on the complete lattice structure of the equilib-

rium set, or the existence of a smallest or largest equilibrium are invalid. Typically,

different techniques are required to analyze such games.

The existing results show that when we move from a setting where all players

exhibit strategic complements to a setting where all players exhibit strategic substi-

tutes, the order structure of the equilibrium set is destroyed completely. A central

motivation for the present analysis is to inquire when and by how much the order

structure of the equilibrium set is affected as we move player-by-player from a setting

of all players with strategic complements to a setting of all players with strategic

substitutes.

The new results here show that the nice order and structure properties of GSC

do not survive a minimal introduction of strategic substitutes, in the following sense.

Consider a lattice game6 in which all-but-one players exhibit strategic complements

(with one player exhibiting strict strategic complements7), and the remaining player

exhibits strict strategic substitutes.8 In this case, no two equilibria in the game are

comparable (in the product order).

The results shown here are stronger, and apply to lattice games with more general

strategic interaction among the players. In particular, in any lattice game, if there is

reason to believe that either (1) just one player has strict strategic complements and

5See Roy and Sabarwal (2008).
6Intuitively, a lattice game is a strategic game in which every player’s strategy set is a complete

lattice, and every player’s payoff function is continuous in own variable. No restriction is placed on

strategic interaction across other players. The formal definition is given in the next section.
7Intuitively, best response is strictly increasing in other player strategies.
8Intuitively, best response is strictly decreasing in other player strategies.
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another player has strict strategic substitutes, or (2) just one player has strict strategic

substitutes and has singleton-valued best-responses, then without any restrictions

on the strategic interaction among the other players, we may conclude that no two

equilibria are comparable. We present several standard examples (extended matching

pennies, Cournot duopoly with spillovers, and Dove-Hawk-type game) to highlight

these results.9

These results have several implications.

First, in such cases, the equilibrium set is a non-empty, complete lattice, if, and

only if, the game has a unique equilibrium. In other words, with multiple equilibria,

an important component (the order structure of the equilibrium set) underlying the

justifiably celebrated theory of games with strategic complements does not survive a

simple extension of the theory to include other realistic cases.10 Therefore, there is a

need to develop new techniques to study additional cases of interest.

Second, in such cases, with multiple equilibria, techniques based on the existence

of a smallest or largest equilibrium are invalid. In particular, with multiple equilibria,

the standard technique of using extremal equilibria to show monotone comparative

statics in GSC is invalid for the cases considered here. (In ongoing work, we show

9Games that have both strategic complements and strategic substitutes arise naturally in many

applications: from the simple textbook game of matching pennies, to several examples from compet-

itive strategy and industrial organization in Bulow, Geanakoplos, and Klemperer (1985), to games

with contests in Dixit (1987), among others. Therefore, the results here have implications for a wide

variety of applications.
10A quick calculation shows that in 2×2 games, with uniformly distributed payoffs, the probability

of a GSC is 1/4, and the probability of a game having one player with strict strategic substitutes is

3/4. With more players and actions, the probability of drawing a game that falls under the cases

considered here may very well be larger.
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that under conditions similar to those here, in parametrized lattice games, equilibria

do not decrease as the parameter increases. Moreover, using new techniques, we have

some preliminary results that provide conditions under which monotone comparative

statics is guaranteed.)

Third, the non-ordered nature of equilibria show that starting from one equi-

librium, algorithms to compute another equilibrium may be made more efficient by

discarding two areas of the action space.

Fourth, if player strategy spaces are linearly ordered, then the set of symmetric

equilibria is non-empty, if, and only if, there is a unique symmetric equilibrium.

Therefore, in such cases, there is at most one symmetric equilibrium.

The proofs here are simple and are not meant to be a methodological contribu-

tion. Some of the simplicity arises naturally in many analyses of questions related

to strategic complements and strategic substitutes. Some of it arises from the re-

cent resurgence of work in strategic substitutes that has provided valuable insights

regarding similarities and differences between GSC and GSS.11 And some of it arises

from a new insight into fundamental relations underlying the order structure of the

equilibrium set in the presence of strategic substitutes.

The results here are related to Roy and Sabarwal (2008), but cover cases of interest

that cannot be covered in their framework. In particular, a central case in this

paper, where all-but-one players have strategic complements, is ruled out by their

11For some developments in this area, confer Amir (1996), Villas-Boas (1997), Amir and Lambson

(2000), Schipper (2003), Zimper (2007), Roy and Sabarwal (2008), Acemoglu and Jensen (2009),

Acemoglu and Jensen (2010), Jensen (2010), Roy and Sabarwal (2010), Roy and Sabarwal (2011),

among others.
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assumptions.12 Moreover, the proofs here are different: they are simpler and rely

more directly on economic intuition.

We use the standard product order on the product of the player strategy spaces.

This is a natural and intuitive order to consider in lattice games, and is used widely

in GSC and in GSS. Recall that in the special case of a two-player GSS, reversing

the order on the strategy space of one player transforms that game into a GSC, and

results for a GSC apply to this special case. More generally, there may be no such

transformation that leaves the equilibrium set invariant. For example, the textbook

example of a two-player matching pennies game (a game with both complements and

substitutes) has no pure-strategy Nash equilibrium, and therefore, cannot be viewed

as a GSC, because a GSC always has a pure-strategy Nash equilibrium. Similarly,

Roy and Sabarwal (2011) provide an example of a three-player, two-action, Dove-

Hawk-type GSS that has no pure-strategy Nash equilibrium, and therefore, cannot

be viewed as a GSC.

The paper proceeds as follows. The next section, section 2, sets up the model,

section 3 proves the main results and provides several applications, and section 4

concludes.

12This implies that the basic building blocks of the interactions studied in this paper – two-player

games in which one player has strategic complements and another has strategic substitutes – are

ruled out by their assumptions. In fact, none of the applications in section 3 are covered by their

assumptions. Details are presented in the appendix.
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2 Lattice Games

Let I be a non-empty set of players, and for each player i, a strategy space that is

a partially ordered set, denoted (X i,�i), and a real-valued payoff function, denoted

f i(xi, x−i). As usual, the domain of each f i is the product of the strategy spaces,

(X,�), endowed with the product order.13 The strategic game Γ = {I, (X i,�i, f i)i∈I}

is a lattice game if for every player i,

1. X i is a non-empty, complete lattice,14 and

2. For every x−i, f i is order continuous in xi.
15

The definition of a lattice game here is very general. In particular, no restriction

is placed on whether players have strategic complements or strategic substitutes.

Consequently, this definition allows for general games with strategic complements,

general games with strategic substitutes, and mixtures of the two.

This definition of a lattice game yields well-defined best-responses, as follows. For

each player i, the best response of player i to x−i is denoted BRi(x−i), and

is given by arg maxxi∈Xi
f i(xi, x−i). As the payoff function is continuous, and the

strategy space is compact in the order interval topology, for every i, and for every

x−i, BRi(x−i) is non-empty. Let BR : X ։ X, given by BR(x) = (BRi(x−i))i∈I ,

denote the joint best-response correspondence. As usual, a (pure strategy)

Nash equilibrium of the game is a profile of player actions x such that x ∈ BR(x).

13For notational convenience, we shall usually drop the index i from the notation for the partial

order.
14This paper uses standard lattice terminology. See, for example, Topkis (1998).
15In the standard order interval topology.
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The equilibrium set of the game is given by E = {x ∈ X|x ∈ BR(x)}.16

Of particular interest to us are cases where the best-response of a player is either

increasing (the case of strategic complements) or decreasing (the case of strategic

substitutes) with respect to the strategies of the other players. Here, increasing or

decreasing are with respect to an appropriately defined set order.

Recall that in a lattice game, if the payoff function of each player i is quasi-

supermodular in xi,
17 and satisfies the single-crossing property in (xi; x−i),

18 then

the best-response correspondence of each player is nondecreasing19 in the standard

induced set order.20 Such a game is termed a lattice game with strategic com-

16Needless to say, at this level of generality, a lattice game may have no Nash equilibrium. For

example, the textbook two-player matching pennies game is admissible here, and has no pure strategy

Nash equilibrium. Moreover, Roy and Sabarwal (2011) provide an example of a three-player Dove-

Hawk-type game (a GSS) with no Nash equilibrium. One may assume additional conditions to

invoke standard results to guarantee existence of equilibrium via Brouwer-Schauder type theorems,

or Kakutani-Glicksberg-Ky Fan type theorems, or other types of results. We do not make these

assumptions so that our results apply whenever equilibrium exists, regardless of whether a specific

equilibrium existence theorem is invoked, or whether an equilibrium is shown to exist directly in a

game.
17As in Milgrom and Shannon (1994), a function f : X → R (where X is a lattice) is quasi-

supermodular if (1) f(x) ≥ f(x ∧ y) =⇒ f(x ∨ y) ≥ f(y), and (2) f(x) > f(x ∧ y) =⇒ f(x ∨ y) >

f(y).
18A function f : X × T → R (where X is a lattice and T is a partially ordered set) satisfies

single-crossing property in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, (1) f(x′, t′) ≤ f(x′′, t′) =⇒

f(x′, t′′) ≤ f(x′′, t′′), and (2) f(x′, t′) < f(x′′, t′) =⇒ f(x′, t′′) < f(x′′, t′′).
19x′

−i
� x′′

−i
⇒ BRi(x′

−i
) is weakly lower than BRi(x′′

−i
) in the induced set order. When a player’s

best response is a function, this translates into the standard definition of a weakly increasing function;

x′

−i
� x′′

−i
⇒ BRi(x′

−i
) � BRi(x′′

−i
).

20The standard induced set order is defined as follows: for non-empty subsets A, B of a lattice X ,

A is weakly lower than B, if for every a ∈ A, and for every b ∈ B, a ∧ b ∈ A, and a ∨ b ∈ B. It is
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plements, or GSC, for short.

In a GSC, the equilibrium set is a non-empty, complete lattice (see Zhou (1994)),

and there exist a smallest equilibrium and a largest equilibrium (various versions

of this result can be seen in Topkis (1978), Topkis (1979), Lippman, Mamer, and

McCardle (1987), Sobel (1988), Milgrom and Roberts (1990), Vives (1990), Milgrom

and Shannon (1994), among others).

Similarly, in a lattice game, if the payoff function of each player i is quasi-

supermodular in xi, and satisfies the decreasing single-crossing property in (xi; x−i),
21

then the best-response correspondence of each player is nonincreasing22 in the stan-

dard induced set order. Such a game is termed a lattice game with strategic

substitutes, or GSS, for short.

Notice that the case where a player’s best response is a constant function can be

viewed as either strategic complements or strategic substitutes. Therefore, in a lattice

game with strategic complements, strategic substitutes may be introduced trivially

by having some players with constant best response functions. Of course, such games

remain lattice games with strategic complements, and the equilibrium set in such

games remains a non-empty, complete lattice.

sometimes also termed the strong set order.
21A function f : X × T → R (where X is a lattice and T is a partially ordered set) satisfies

decreasing single-crossing property in (x; t) if for every x′ ≺ x′′ and t′ ≺ t′′, (1) f(x′′, t′) ≤

f(x′, t′) =⇒ f(x′′, t′′) ≤ f(x′, t′′), and (2) f(x′′, t′) < f(x′, t′) =⇒ f(x′′, t′′) < f(x′, t′′).
22x′

−i
� x′′

−i
⇒ BRi(x′′

−i
) is weakly lower than BRi(x′

−i
) in the induced set order. When a

player’s best response is a function, this translates into the standard definition of a weakly decreasing

function; x′

−i
� x′′

−i
⇒ BRi(x′′

−i
) � BRi(x′

−i
).
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For non-trivial results involving strategic substitutes, it is useful to consider players

with best responses that are “strictly” decreasing with respect to the strategies of the

other players. To formalize strict strategic substitutes, consider the following set

order. Let X be a lattice. For non-empty subsets A, B of X, A is strictly lower

than B, if for every a ∈ A, and for every b ∈ B, a ≺ b. This definition is a slight

strengthening of the following set order defined in Shannon (1995): A is completely

lower than B, if for every a ∈ A, and for every b ∈ B, a � b. Notice that when A

and B are non-empty, complete sub-lattices of X, A is strictly lower than B, if, and

only if, sup A ≺ inf B; and similarly, A is completely lower than B, if, and only if,

sup A � inf B.

Strictly decreasing correspondences are defined in a natural manner using the

strictly lower than set order. Let X be a lattice and T be a partially ordered set. A

correspondence φ : T ։ X is strictly decreasing, if for every t′ ≺ t′′, φ(t′′) is strictly

lower than φ(t′). In particular, strictly decreasing correspondences that are singleton-

valued are equivalent to the standard definition of a strictly decreasing function.23

Similarly, we shall also find it useful to define strictly increasing correspondences. A

correspondence φ : T ։ X is strictly increasing, if for every t′ ≺ t′′, φ(t′) is strictly

lower than φ(t′′). When the correspondence is a function, this is equivalent to the

standard definition of a strictly increasing function.24

23t′ ≺ t′′ ⇒ φ(t′′) ≺ φ(t′).
24Recall that Shannon (1995) provides conditions on payoff functions that guarantee a comparison

in the completely lower than set order. Moreover, in finite-dimensional Euclidean spaces, Edlin and

Shannon (1998) provide an additional intuitive and easy-to-use differentiable condition regarding

strictly increasing marginal returns to derive a comparison in the strictly lower than set order. Both

these conditions can be adapted easily for strategic substitutes.
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With these ideas in place, player i has strict strategic substitutes, if BRi

is strictly decreasing, and player i has strict strategic complements, if BRi is

strictly increasing.

3 Results and Applications

This section provides the main results in this paper and provides several applications.

Theorem 1 shows that in any lattice game, one player with strict strategic substitutes

and one player with strict strategic complements are sufficient to destroy the order

structure of the equilibrium set, as follows.

Theorem 1. Let Γ be a lattice game in which one player has strict strategic substitutes

and another player has strict strategic complements.

If x∗ and x̂ are distinct equilibria, then x∗ and x̂ are not comparable.

Proof. Suppose, without loss of generality, that player 1 has strict strategic substi-

tutes, player 2 has strict strategic complements, and suppose the distinct equilibria

are comparable, with x̂ ≺ x∗.

As case 1, suppose x̂−1 ≺ x∗
−1. Then x̂1 = BR1(x̂−1) and x∗

1 = BR1(x∗
−1), and by

strict strategic substitutes, x∗
1 ≺ x̂1, contradicting x̂ ≺ x∗.

As case 2, suppose x̂1 ≺ x∗
1. Then x̂−2 ≺ x∗

−2. Then x̂2 ∈ BR2(x̂−2) and x∗
2 ∈

BR2(x∗
−2), and by strict strategic complements, x̂2 ≺ x∗

2, whence x̂−1 ≺ x∗
−1, and we

are in case 1. Thus x∗ and x̂ are not comparable.

Notice the simple economic intuition in this proof. In case 1 in the proof, if

opponents of player 1 play higher strategies in the x∗ equilibrium than in the x̂

10



equilibrium, then player 1 (with strict strategic substitutes) must be playing a strictly

lower strategy in the x∗ equilibrium than in the x̂ equilibrium, and therefore, the

equilibria are non-comparable. Case 2 essentially says that with x̂ ≺ x∗, player

1 cannot be playing a higher strategy in the x∗ equilibrium. For if he did, then

player 2 (with strict strategic complements) is playing a higher strategy in the x∗

equilibrium, and therefore, the opponents of player 1 are playing higher strategies

in the x∗ equilibrium, whence player 1 is playing a strictly lower strategy in the x∗

equilibrium, which is a contradiction.

Notice that Roy and Sabarwal (2008) show similar results for the case where the

best-response correspondence satisfies a never-increasing property. Their property is

satisfied in lattice games in which every player has strict strategic substitutes, but it

rules out a central case in this paper: all-but-one players have strategic complements,

and the remaining player has strategic substitutes.25 In particular, none of the exam-

ples here are covered by their results. Moreover, the proofs here are different; they

are simpler and rely more directly on economic intuition.

Let’s look at some applications of theorem 1.

Example 1 (Matching Pennies: Double-or-Nothing). Consider the following

extension of a standard matching pennies game. Each player has two pennies that

they lay on a table with their hand covering the pennies. Once the pennies are

revealed, the outcomes determine the payoffs as follows. Let’s say that a player goes

for double-or-nothing, if she plays either both heads or both tails, and she does not

25In fact, their property is not satisfied when all-but-one players have strategic complements, the

remaining player has at least two actions, and there are no restrictions on the strategic interaction

with the remaining player. Moreover, it is not satisfied even when these properties only hold locally.

Details are provided in the appendix.
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go for double-or-nothing, if she plays anything else. If the outcome is (H, H) and

(H, H), or (T, T ) and (T, T ), that is, both players go for double-or-nothing and the

pennies match, then player 2 wins $2 from player 1. If the outcome is (H, H); (T, T ),

or (T, T ); (H, H), that is, both player go for double-or-nothing and the pennies do not

match, then player 1 wins $2 from player 2. If both players put up exactly one H and

one T , that is, nobody goes for double-or-nothing, it is a tie and no money changes

hands; and if one player goes for double-or-nothing, that is, plays either (H, H) or

(T, T ), and the other does not, (that is, plays (H, T ) or (T, H),) then the player who

goes for double-or-nothing loses and pays $1 to the other player. The payoffs of this

zero-sum game are summarized in Figure 1.

(H, H) (T, H) (H, T) (T, T)

(H, H) -2, 2 -1, 1 -1, 1 2, -2

(T, H) 1, -1 0, 0 0, 0 1, -1

(H, T) 1, -1 0, 0 0, 0 1, -1

(T, T) 2, -2 -1, 1 -1, 1 -2, 2

Player 2

P
la

y
er

 1

Figure 1: Matching Pennies: Double-or-Nothing

Assuming H ≺ T , and with the standard product order, the strategy space of each

player has the order (H, H) ≺ (H, T ) ≺ (T, T ); (H, H) ≺ (T, H) ≺ (T, T ); and (T, H)

and (H, T ) are not comparable. Notice that player 1 has strict strategic substitutes,

player 2 has strict strategic complements, and the four Nash equilibria (H, T ; T, H),

(H, T ; H, T ), (T, H ; T, H), and (T, H ; H, T ) are all non-comparable.

12



A more general version of this example is presented next.

Example 2 (A general two-player, four-point lattice game). Consider a lattice

game with two players. Player 1’s strategy space is a standard four-point lattice,

X1 = {a1, b1, c1, d1}, with b1 and c1 unordered, and a1 = b1 ∧ c1, and d1 = b1 ∨ c1,

shown graphically in figure 2. Similarly, X2 = {a2, b2, c2, d2}, also shown graphically

in figure 2. Suppose player 1’s best response correspondence is given as follows:

BR1(a2) = {d1}, BR1(b2) = BR1(c2) = {b1, c1}, and BR1(d2) = {a1}, and player

2’s best response correspondence is given as follows: BR2(a1) = {a2}, BR2(b1) =

BR2(c1) = {b2, c2}, and BR2(d1) = {d2}. Both are depicted in figure 2. It is

easy to check that this example satisfies the conditions of theorem 1: player 1 has

strict strategic substitutes, player 2 has strict strategic complements. Consequently,

the four Nash equilibria (b1, b2), (b1, c2), (c1, b2), and (c1, c2) are all non-comparable.

(Notice that double-or-nothing matching pennies is a special case of this example.)

                                                                                              

                                                                

                                                              

 

a1 b1 

c1 d1 

a2 b2 

c2 d2 

X1 X2 

BR
2
(d1) 

BR
2
(b1) = BR

2
(c1) 

BR
2
(a1) 

BR
1
(a2) 

BR
1
(d2) 

BR
1
(b2) = BR

1
(c2) 

Figure 2: A General Two-Player, Four-Point Lattice Game

For completeness, observe that non-comparability of equilibria may hold with

conditions weaker than one player with strict strategic complements and one player

with strict strategic substitutes. The next application provides a two-player game

with weak strategic substitutes (that is, best response of each player is decreasing in

the completely lower than set order) and weak strategic complements (best response

13



of each player is increasing in the completely lower than set order)26 that has non-

comparability of equilibria.

Example 3 (Matching Pennies: Double-or-Nothing, Part 2). Consider the

following modification to the game of double-or-nothing matcing pennies. If both

players go for double-or-nothing and the pennies match (that is, the outcome is (H, H)

and (H, H), or (T, T ) and (T, T )), player 2 wins $2 from player 1, and if both pennies

do not match (the outcome is (H, H); (T, T ), or (T, T ); (H, H)), player 1 wins $2 from

player 2. In all other cases, the game is a tie, and no money changes hands. The

payoffs of this zero-sum game are summarized in Figure 3.

(H, H) (T, H) (H, T) (T, T)

(H, H) -2, 2 0, 0 0, 0 2, -2

(T, H) 0, 0 0, 0 0, 0 0, 0

(H, T) 0, 0 0, 0 0, 0 0, 0

(T, T) 2, -2 0, 0 0, 0 -2, 2

Player 2

P
la

y
er

 1

Figure 3: Matching Pennies: Double-or-Nothing, Part 2

Assume the same order structure as in double-or-nothing matching pennies. No-

tice that player 1 has weak strategic substitutes, player 2 has weak strategic comple-

ments, and the four Nash equilibria are all non-comparable.

The intuition behind theorem 1 can be taken further, in the sense that when the

best-response of the player with strict strategic substitutes is singleton-valued, the

26See the appendix for a formal definition
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requirement of a player with strict strategic complements can be dropped, as follows.

Theorem 2. Let Γ be a lattice game in which one player has strict strategic substi-

tutes, and this player’s best-response is singleton-valued.

If x∗ and x̂ are distinct equilibria, then x∗ and x̂ are not comparable.

Proof. Suppose, without loss of generality, that player 1 has strict strategic substi-

tutes with singleton-valued best responses, and suppose the distinct equilibria x̂ and

x∗ are comparable, with x̂ ≺ x∗.

Case 1 remains the same as above. Suppose x̂−1 ≺ x∗
−1. Then x̂1 ∈ BR1(x̂−1) and

x∗
1 ∈ BR1(x∗

−1), and by strict strategic substitutes, x∗
1 ≺ x̂1, contradicting x̂ ≺ x∗.

For case 2, suppose x̂−1 = x∗
−1 and x̂1 ≺ x∗

1. Then x̂1 = BR1(x̂−1) = BR2(x∗
−2) =

x∗
2, contradicting x̂1 ≺ x∗

1. Thus x∗ and x̂ are not comparable.

Intuitively, in theorem 2, if x̂ ≺ x∗, then we need only consider the case when the

opponents of player 1 play higher strategies; that is, x̂−1 ≺ x∗
−1. For if x̂−1 = x∗

−1,

then by singleton-valued best responses, the best response of player 1 to x̂−1 is the

same as her best response to x∗
−1, and thus both equilibria are the same, which is a

contradiction.

Theorem 2 formalizes the intuition that adding one player with strict strategic

substitutes completely destroys the order structure of the equilibrium set. Here’s an

application of theorem 2.

Example 4 (Cournot Duopoly with Spillovers). Consider two firms competing

as Cournot duopolists. Let the (inverse) market demand be given by p = a−b(x1+x2).

Firm 1 has constant marginal cost, c1; its profit is given by π1(x1, x2) = (a − b(x1 +

x2))x1 − c1x1. Firm 1’s output leads to a (perhaps) non-monotonic cost spillover
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for firm 2, denoted s(x1), affecting profits of firm 2 as follows: π2(x1, x2) = (a −

b(x1 + x2))x2 − c2x2s(x1). Intuitively, we may view firm 1 as an established firm (or

incumbent), and firm 2 as a young firm (or a relatively new entrant). The young firm

receives cost externalities from the established firm, perhaps by making it easier to

get industry-specific talent, or having access to superior supply chain management

at a lower cost, and so on. Suppose a = 15, b = 1
2
, c1 = 11, c2 = 3, and s(x1) =

2
3
x3

1 − x2
1 −

1
2
x1 + 3. This spillover function is non-negative and non-monotonic: as

firm 1’s output increases from 0 to 1+
√

2
2

≈ 1.2, the spillover reduces from 3 to a local

minimum of about 2.1, and then starts to increase.

In this case, the best responses are given by BR1(x2) = max{4 − 1
2
x2, 0}, and

BR2(x1) = max{6 + x1 + 3x2
1 − 2x3

1, 0}. It is easy to check that there are three Nash

equilibria; given by (1
2
, 7), (2, 4), and (4, 0), and these are non-comparable, as shown

in figure 4.

Figure 4: Cournot Duopoly with Spillovers
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Theorem 2 shows that when the best-response of the player with strict strategic

substitutes is singleton-valued, the condition in theorem 1 regarding one player with

strict strategic complements can be dropped. Example 5 below shows that when the

best-response of the player with strict strategic substitutes is not singleton-valued,

this condition in theorem 1 cannot be dropped, in general.

Example 5 (A Dove-Hawk-type game). Consider the lattice game with two

players given in figure 5, where for player 1, L ≺ M ≺ H , and for player 2, L ≺

M . We may interpret L as a low (most Dovish, least Hawkish) action, M as a

medium (less Dovish, more Hawkish) action, and H as a high (or least Dovish, most

Hawkish) action. Player 1 has strict strategic subsitutes, with non-singleton-valued

best-response: BR1(L) = {M, H}, and BR1(M) = {L}. Player 2 is of a type

that prefers less conflict (or avoids agression, or would prefer a more “cooperative”

action). Player 2 exhibits “weak” strategic complements; in fact, player 2’s best-

response function is constant, BR2(L) = BR2(M) = BR2(H) = {L}. This game has

two Nash equilibria, (M, L) and (H, L), and these equilibria are comparable, with

(M, L) ≺ (H, L).

L M

L 0, 5 5, 0

M 5, 5 0, 0

H 5, 5 0, 0

Player 2

P
la

y
er

 1

Figure 5: A Dove-Hawk-type Game

Theorems 1 and 2 above highlight a particular non-robustness in the order struc-
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ture of the equilibrium set in lattice games.

If we consider a lattice game in which all players have strategic complements,

then the equilibrium set is a non-empty, complete lattice. In particular, every pair of

equilibria has a smallest larger equilibrium, and a largest smaller equilibrium.

If we modify this game to require that one player has strict strategic complements,

and another has strict strategic substitutes, then we destroy the order structure of

the equilibrium set completely. That is, no two equilibria are comparable.

Similarly, if we modify this game to require that one player has strict strate-

gic substitutes, and that player’s best-response is singleton-valued (perhaps because

that payoff function is strictly quasi-concave), then again the order structure of the

equilibrium set is destroyed completely.

Of course, the results here are stronger, and apply to general lattice games, not

just to lattice games with strategic complements. In particular, in any lattice game,

if there is reason to believe that either (1) one player has strict strategic complements

and another player has strict strategic substitutes, or (2) just one player has strict

strategic substitutes and has singleton-valued best-responses, then without any re-

strictions on the strategic interaction among the other players, we may conclude that

no two equilibria are comparable.

Indeed, the results above yield the following corollary immediately.

Corollary 1. Let Γ satisfy the conditions of either theorem 1 or theorem 2. The

following are equivalent.

(1) E is a non-empty lattice

(2) E is a singleton

(3) E is a non-empty, complete lattice
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In other words, with multiple equilibria, an important component of the theory

of GSC does not survive a minimal extension of the theory to include other realistic

cases.

This result further implies that for the cases considered here, with multiple equilib-

ria, techniques based on the existence of a smallest or largest equilibrium are invalid.

In particular, the standard technique of using extremal equilibria to show monotone

comparative statics in GSS is invalid here.

Moreover, for such cases, the non-ordered nature of equilibria show that starting

from one equilibrium, algorithms to compute another equilibrium may be made more

efficient by discarding two areas of the action space.

Furthermore, theorems 1 and 2 also imply immediately that when strategy spaces

of players are linearly ordered,27 the game has at most one symmetric equilibrium,28

as formalized next.

Corollary 2. Let Γ satisfy the conditions of either theorem 1 or theorem 2, and sup-

pose the strategy space of each player is linearly ordered.

The set of symmetric equilibria is non-empty, if, and only if, there is a unique sym-

metric equilibrium.

27As usual, linearly ordered means that every pair of strategies is comparable. A linear order is

sometimes termed a complete order.
28An equilibrium is symmetric, if every player plays the same strategy in equilibrium.
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4 Conclusion

The results here show that an important component (the order structure of the equi-

librium set) underlying the justifiably celebrated theory of games with strategic com-

plements does not survive a simple extension of the theory to include other realistic

cases. These results show the necessity of developing new techniques to study im-

portant questions such as monotone comparative statics; they point out a way to

improve the efficiency of algorithms to compute equilibria; and they show that in

fairly general cases, lattice games have at most one symmetric equilibrium.

This paper is part of an ongoing project to extend the theory of GSC to include

additional realistic cases. Recent work in this area has developed new techniques

that may be fruitful. Our continuing work extends these results to show that under

conditions similar to those here, in parametrized lattice games, equilibria do not

decrease as the parameter increases. Moreover, using new techniques, we have some

preliminary results that provide conditions under which monotone comparative statics

is guaranteed.
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Appendix

Roy and Sabarwal (2008) assume that the best-response correspondence satisfies a

never-increasing property, defined as follows. Let X be a lattice and T be a partially

ordered set. A correspondence φ : T ։ X is never increasing, if for every t′ ≺ t′′,

for every x′ ∈ φ(t′), and for every x′′ ∈ φ(t′′), x′ 6� x′′.29 This property is satisfied in

lattice games in which every player has strict strategic substitutes, but it rules out

a central case in this paper: all-but-one players have strategic complements, and the

remaining player has strategic substitutes. To see this, consider the following.

Let X be a lattice and T be a partially ordered set. A correspondence φ : T ։ X

is weakly completely increasing, if for every t′ ≺ t′′, φ(t′) is completely lower than

φ(t′′).30 Player i has weak strategic complements, if BRi is weakly completely

increasing.31 We have the following proposition.

Proposition 1. Let Γ be a lattice game in which all-but-one players exhibit weak

strategic complements, and the remaining player has at least two actions. The best

response correspondence in such a game does not satisfy the never-increasing property.

Proof. Suppose, without loss of generality, that all-but-player-1 have weak strategic

complements. Consider x′
1 ≺ x′′

1 in X1, and x′
−1 ∈ X−1. Then (x′

1, x
′
−1) ≺ (x′′

1, x
′
−1).

Let y′
1 ∈ BR1(x′

−1). For each i 6= 1, let x′
−i = (x′

1, x
′
−(1,i)) and x′′

−i = (x′′
1, x

′
−(1,i)).

Then for each i 6= 1, x′
−i ≺ x′′

−i. For each such i, fix y′
i ∈ BRi(x′

−i) and y′′
i ∈

BRi(x′′
−i) arbitrarily. By weak strategic complements, y′

i � y′′
i . Thus, (x′

1, x
′
−1) ≺

29When best-responses are functions, this coincides with the definition of a not-increasing function,

t′ ≺ t′′ ⇒ φ(t′) 6� φ(t′′), and in linearly ordered X , this is equivalent to a strictly decreasing function.
30When the correspondence is a function, this is equivalent to the standard definition of a weakly

increasing function.
31Notice that strict strategic complements implies weak strategic complements.
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(x′′
1, x

′
−1), (y′

1, y
′
−1) ∈ BR(x′

1, x
′
−1), (y′

1, y
′′
−1) ∈ BR(x′′

1, x
′
−1), and (y′

1, y
′
−1) � (y′

1, y
′′
−1),

contradicting the never-increasing property.

Consequently, the case where all-but-one players exhibit weak strategic comple-

ments, and the remaining player has strategic substitutes is not covered by Roy and

Sabarwal (2008). It is precisely this case that starts the analysis in this paper: con-

sider a movement away from the case of all strategic complements by introducing one

player with strategic substitutes.

It is easy to see that the global nature of the definition of a never-increasing cor-

respondence rules out more cases. In particular, a similar proof shows that cases

with local weak strategic complements for the remaining players do not satisfy the

never-increasing property. The Cournot duopoly with spillovers provides an intu-

itive example. In this case, player 2 does not have weak strategic complements.

Nevertheless, the best-response correspondence does not satisfy the never-increasing

property, because for example, for all ǫ > 0 sufficiently small, (1
2
, 7) ≺ (1

2
+ ǫ, 7), but

BR2(1
2
) ≺ BR2(1

2
+ ǫ), and therefore, BR(1

2
, 7) ≺ BR(1

2
+ ǫ, 7). This occurs, because

player 2 has weak strategic complements in a neighborhood of 1
2
, even though he does

not have weak strategic complements globally.
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