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ABSTRACT

Oversampled transforms are useful tools for data analysis,
since redundancy increases freedom in the choice of the
processing. We propose here a framework for oversampled
lapped transform of images. More specifically, we establish
conditions for perfect reconstruction of 2D data using non-
separable windows. We also provide an example of a trans-
form which relies on this approach. We also show the benefit
of this technique in directional filtering applications encoun-
tered in the field of seismic data processing.

1. INTRODUCTION

Filter banks have proven very efficient tools for signal and
image processing. Lapped transforms (LT) are a particu-
lar kind of filter banks (FB), which were primarily aimed
at reducing blocking artifacts in audio or image processing
[1]. They have been developed under various flavours and
names, with an emphasis on their local properties and cus-
tom design. Since seismic information on the subsurface is
generally gathered in huge two- or tri-dimensional datasets,
the locality of the LT motivated their use in geophysical ap-
plications.

Block processing is an efficient way for dealing with long
signals. It is sometimes considered as unsuitable since it in-
duces annoying artificial high frequencies. While natural im-
ages may stand block-by-block independent processing for
compression (JPEG), the block boundaries generally hamper
the quality of local image processing. One option consists in
considering an analysis on overlapping blocks (similar to the
short-term Fourier transform), while allowing invertibility of
the transform (in the absence of intermediate processing of
the transformed coefficients). LT may qualify several exam-
ples of such tools, for instance local trigonometric functions,
windowed basis functions, cosine modulated or generalized
DFT filter banks. They have been widely used in 1D signal
processing, especially for audio coding and related applica-
tions. Redundancy offers increased noise immunity as well
as increased design degrees of freedom. Several theoretical
studies [2, 3] and design improvements have been proposed,
including the introduction of complex transforms [4] to re-
duce aliasing effects. Recent works have proposed a direct
FB design in a two-fold oversampled case where inverses
are not unique [5]. For images, the tensor product exten-
sion of LT is straightforward. But the product of two 1D en-
velopes yields 2D separable windows which take relatively
restricted forms. For this reason, non-separable transforms

have been proposed, for instance with separable windows on
non-separable continuous-space bases [6], or relying on non-
separable sampling.

Seismic data features differ noticeably from those of
natural images. Sensors, regularly located along lines on
the ground surface, record one-dimensional signals resulting
from propagating waves, reflected or refracted by the differ-
ent interfaces between geological strata. Signals are then
assembled in images, each sensor contributing to one im-
age column. Numerous non-linear processing steps are then
necessary to produce a representation of underground struc-
tures, generally stratified as apparent from two zooms in Fig-
ures 3(a-b). Steps include filtering, warping, deconvolution,
corrections from different raypaths related delays; we refer
to [7] for a detailed account on seismic signal processing.
In most cases, the resulting images are tainted by different
kinds of noise, including processing noise, requiring filtering
to help geophysical interpretation. The very structure of the
layers naturally induces local frequency processing in order
to enhance the underlying structure. Since seismic data are
highly anisotropic by nature, we propose a new design for
2D modulated non-separable windows; motivated by locally
oriented analysis, we use a support basis reminiscent of [8]
where a complex LT is proposed for motion estimation ap-
plications.

We first provide some notations for LT and recall expres-
sions for a separable transform in Section 2. We then study
more closely the general case of modulated LTs and give per-
fect reconstruction conditions for non-separable 2D window-
ing setting. Those results are illustrated in Section 3 with an
example of a 2D complex transform derived from this frame-
work. We demonstrate its usefulness in seismics with an ap-
plication to directional filtering.

2. DESIGN OF A 2D NON-SEPARABLE
MODULATED LT

2.1 From 1D LT to separable 2D LT

As a separable 2D FB is obtained by applying two 1D FBs
(resp. on rows and columns), we first need to introduce some
notations in the one-dimensional case. Figure 1 shows a 1D
M-band FB with decimation factor N. In this paper, we are
interested in the case where (N,M) ∈ N2 and 1 ≤ N < M,
which corresponds to an oversampled FB.

Let (yi(n))n∈Z with i ∈ {1, . . . ,M} be the i-th output
of the analysis FB in Figure 1 when the input signal is
(x(n))n∈Z. If (Hi(n))n∈Z denotes the impulse response of the
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Figure 1: Diagram of an oversampled 1D LT.

filter in the i-th channel, we have for all n ∈ Z,

yi+1(n) = å
p

Hi(p)x(Nn− p)

= å
`

N−1

å
j=0

Hi(N`+ j)x(N(n− `)− j). (1)

Assuming that the considered impulse responses are causal
with maximum length kN (with k∈N∗), it is well-known that
the computation of these subband coefficients can be viewed
as the linear transform of a data block of length kN

xn =
(
x(nN), . . . ,x(nN− kN +1)

)T

where k− 1 is the number of overlapping blocks of size N.
This can be expressed as

yn = Pxn (2)

where yn = (y1(n), . . . ,yM(n))T, P is the block-matrix

P = (P0 P1 . . . Pk−1) (3)

and, for ` ∈ {0, . . . ,k−1}, P` = (P̀ (i, j))1≤i≤M,1≤ j≤N with

P̀ (i, j) = Hi−1(N`+ j−1).

Formally, the subband decomposition is a linear op-
erator T transforming the infinite-dimensional vector x̄ =
(. . . xT

n xT
n−1 . . .)T into ȳ = (. . . yT

n yT
n−1 . . .)T. This trans-

form corresponds to the infinite-dimensional block-Toeplitz
matrix

T =


. . . 0

P0 P1 · · · Pk−1 0M×N
0M×N P0 · · · Pk−2 Pk−1

0
. . .

 .

An interesting case which is investigated in this work is
when, for all i ∈ {0, . . . ,M − 1} and n ∈ {0, . . . ,kN − 1},
Hi(n) = E(i + 1,n + 1)ha(n) where (ha(n))0≤n≤kN−1 is a
given analysis window and E = (Ea(i,n))1≤i≤M,1≤n≤kN is a
complex semi-unitary matrix, i.e. E∗E = IkN×kN where E∗

denotes the Hermitian adjoint of E. Then, P can be writ-
ten as: P = EHa where Ha is the kN× kN diagonal matrix:
Ha = Diag(ha(0), . . . ,ha(kN−1)). Such a family of FBs in-
cludes oversampled modulated FBs as well as redundant ex-
tensions of the Extended LT [1]. Notice that the semi-unitary

condition implies that kN = rank(E) ≤ M. Therefor the re-
dundancy factor M/N is here greater than or equal to k. Al-
though this condition may appear restrictive, it provides de-
grees of freedom to build a selective directional analysis in
image applications such as those considered in Section 3.1.

A 2D separable extension of the LT of interest reads, for
all (n1,n2) ∈ Z2,

Yi1,i2(n1,n2) = å
p1,p2

E(i1 +1, p1 +1)E(i2 +1, p2 +1)

Wa(p1, p2)X(Nn1− p1,Nn2− p2) (4)

where Wa(p1, p2) = ha(p1)ha(p2), (X(n1,n2))n1,n2 is the in-
put image and (Yi1,i2(n1,n2))n1,n2 is the resulting coefficient
field in subband (i1, i2) ∈ {0, . . . ,M − 1}2. The design of
such a decomposition straightforwardly follows from the 1D
framework. However, the use of a separable window may not
be the most appropriate for image analysis tasks.

2.2 Proposed 2D non-separable transform

In the above equation, Wa(p1, p2) is the product
ha(p1)ha(p2) resulting in a separable window of rank
1. To increase design flexibility, we replace it by a “true”
2D generally non-separable window Wa(p1, p2). The Perfect
Reconstruction (PR) property is derived by rewriting the 2D
decomposition in a matrix form.

Let Yn1,n2 = (Yn1,n2(i))1≤i≤M2 be the vector obtained by
using the column stacking operation:

Yn1,n2(i1 +Mi2 +1)=Yi1,i2(n1,n2), (i1, i2)∈{0, . . . ,M−1}2.

At the same time, define the column vector Xn1,n2 =
(Xn1,n2(p))1≤p≤(kN)2 as

Xn1,n2((q1k +q2)N2 + r2N + r1 +1) =
X(n1N− (q1N + r1),n2N− (q2N + r2)),

(q1,q2) ∈ {0, . . . ,k−1}2, (r1,r2) ∈ {0, . . . ,N−1}2.

Similarly, we introduce the diagonal matrix Wa =
Diag

(
Wa(0), . . . ,Wa((kN)2 − 1)

)
such that for (q1,q2) ∈

{0, . . . ,k−1}2 and (r1,r2) ∈ {0, . . . ,N−1}2

Wa((q1k +q2)N2 + r2N + r1) = Wa(q1N + r1,q2N + r2)

Then, Equation (4) can be obviously rewritten as

Yn1,n2(i) =
(kN)2−1

å
p=0

F(i, p+1)Wa(p)Xn1,n2(p+1)

where F = (F(i, p))1≤i≤M2,1≤p≤(kN)2 = E⊗E, the Kronecker
product being denoted by ⊗. So, our 2D transform takes a
form similar to the one in Eq. (2):

Yn1,n2 = QXn1,n2 , Q = FWa.

Due to the basic properties of the Kronecker product of ma-
trices, the semi-unitarity of E entails that F is a semi-unitary
matrix. We are in a framework very similar to the one de-
scribed in Section 2.1. Thus, an infinite-dimensional matrix
S exists which is associated with this transform. We will now
see how to perform the reconstruction of X by studying S.



2.3 PR Conditions

The PR property holds if and only if a left inverse S̃ of S
exists. The invertibility of S is also equivalent to the invert-
ibility of S∗S. Let us now determine the form of this operator.

As was done for the matrix P in Eq. (3), we use a block
decomposition of the matrix Q, the only differences being
that the index ` now varies in

{
0, ...,k2−1

}
and the size of

each block Q` is M2×N2. Then, we have:{
å k2−1

`=0 Q∗
`Q` = å k2

`=1 Wa(`)∗Wa(`)
å k2−1

`=d Q∗
`Q`−d = 0, ∀d ∈ {1, . . . ,k2−1}

where Wa has been decomposed into a block-diagonal
form as Diag(Wa(1), . . . ,Wa(k2)). To find these expres-
sions we have used the fact that F is a semi-unitary ma-
trix. From these relations, it is readily checked that S∗S
is an infinite-dimensional diagonal matrix with blocks D =
å k2

`=1 Wa(`)∗Wa(`) on the diagonal. Consequently, S∗S is
invertible if and only if the diagonal matrix D is invertible.
As, for all j ∈ {0, . . . ,N2 − 1}, the j-th diagonal element of
D is equal to

D( j) =
k2−1

å̀
=0

|Wa(N2`+ j)|2

we infer that a necessary and sufficient condition for S to be
left-invertible is

∀ j ∈ {0, . . . ,N2−1},
k2−1

å̀
=0

|Wa(N2`+ j)|2 6= 0.

Coming back to the 2D indexation, the PR condition reads:
for all ( j1, j2) ∈ {0, . . . ,N−1}2,

k−1

å
`1=0

k−1

å
`2=0

|Wa(N`1 + j1,N`2 + j2)|2 6= 0.

2.4 Optimal reconstruction

When the previous PR condition is satisfied, due to the re-
dundancy in the considered transform, there does not exist a
unique inverse S̃ such that S̃S = I. A choice for S̃ possessing
good reconstruction properties is the pseudo-inverse operator
S] = (S∗S)−1 S∗. Uppon reconstruction, S] allows to cancel
the effects of the perturbations of the decomposition coeffi-
cients which do not belong to Im(S).

With the same approach as in Section 2.3, it is easy to see
that S] corresponds to an infinite-dimensional matrix built
from the blocks

Diag(D−1, . . . ,D−1︸ ︷︷ ︸
k times

)Q∗ = WsF
∗

where Ws = Diag(D−1, . . . ,D−1)W∗
a.

This inverse transform takes a very simple form: it is
built from a synthesis window associated with the diagonal
matrix Ws and the Hermitian adjoint of the orthogonal ma-
trix F used in the direct transform. More precisely, simi-
larly to the study for the analysis FB, it can be shown that
the impulse responses of the synthesis FB are “anti-causal”

sequences given by: for all (i1, i2) ∈ {0, . . . ,M − 1}2 and
(p1, p2) ∈ {0, . . . ,kN−1}2,

H̃i1,i2(−p1,−p2) =
E(i1 +1, p1 +1)∗E(i2 +1, p2 +1)∗Ws(p1, p2)

where, for all (`1, `2) ∈ {0, . . . ,k − 1}2 and ( j1, j2) ∈
{0, . . . ,N−1}2,

Ws(N`1 + j1,N`2 + j2) =
Wa(N`1 + j1,N`2 + j2)∗

å k−1
q1=0 å k−1

q2=0 |Wa(Nq1 + j1,Nq2 + j2)|2
. (5)

2.5 Tight frame condition

When S∗S = αI with α ∈ R∗
+, the overcomplete LT cor-

responds to a so-called discrete-time tight frame operator.
Hence the energy of any image X is preserved after decom-
position (up to a factor α):

å
m1,m2

|X(m1,m2)|2 = α å
i1,i2

å
n1,n2

|Yi1,i2(n1,n2)|2.

From the results in Section 2.2, we deduce the following nec-
essary and sufficient condition to obtain a tight frame decom-
position: for all ( j1, j2) ∈ {0, . . . ,N−1}2,

k−1

å
`1=0

k−1

å
`2=0

|Wa(N`1 + j1,N`2 + j2)|2 = α.

When this condition is fulfilled, Eq. (5) shows that the syn-
thesis window takes the simpler form:

Ws(p1, p2) = α
−1Wa(p1, p2)∗, (p1, p2)∈ {0, . . . ,kN−1}2.

3. APPLICATION TO SEISMIC DATA FILTERING

3.1 Non-separable 2D Complex Lapped Transform

In the previous section, we have derived a general framework
allowing the use of any arbitrary semi-unitary matrix E. In
the considered application, the main processing step is to de-
tect local directions. In addition, since features of interest
often present an oscillatory behaviour, a frequency transform
seems appropriate. 2D real transforms (such as DCT) ex-
hibit symmetries in the frequency plane, which prevent them
from separating oriented features (with angle θ ) from fea-
tures in the opposite direction (with angle −θ ). Thence, a
complex-valued harmonic transform such as a DFT should
be preferred in order to perform a directional analysis. More
precisely with M = kN we chose a matrix derived from the
extended Complex Lapped Transform proposed in [8]: for
all ( j, p) ∈ {1, . . . ,kN}2,

E( j, p) =
1√
kN

e−ı( j−Nk
2 − 1

2 )(p−Nk
2 − 1

2 ) 2π

kN .

For this application we have used the following analysis win-
dow: for all (i, j) ∈ {1, ...,kN}2,

Wa(i, j) =

cos

(
π

2

(√
a(2i− kN−1)2 +b(2 j− kN−1)2−R

)
1A(i, j)

)



(a) (d)

(b) (e)

(c) (f)

Figure 2: (a) Sample of original synthetic data (b) Noisy
image (Gaussian noise) (c) Reconstructed image (Gaussian
noise) (d) Directional noise used (e) Noisy image (directional
noise) (f) Reconstructed image (directional noise)

where 1A is the characteristic function of the set A ={
(u,v) |a(2u− kN−1)2 +b(2v− kN−1)2 ≥ R2

}
.

We chose this window to offer a trade-off between good de-
cay properties, in order to avoid boundary problems, and
having a large area with no or little attenuation, to get fine
enough analyses with small size data samples. The synthesis
window is computed using Eq. (5).

3.2 Filtering and results

We propose the following empirical procedure to enhance the
dominant structures in an image of the underground. First we
detect the locally dominant orientation by finding the sub-
band coefficient with highest magnitude at a given location.
We then remove all the coefficients which do not correspond
to this direction. Finally, a threshold cancels the small re-
maining coefficients.
Since locally seismic images are made of many par-
allel layers, we will approximate them by the sum
f (m,n) = L−1 å L

i=1 sin(aim + bin + φi) where the reals vec-
tors (ai,bi)1 ≤ i ≤ L are collinear and the phases (φi)1≤i≤L
are randomly chosen in [0,2π). In the following simulation
k = 5 and N = 16. We first added a Gaussian white noise
with σ = 1. Figures 2(b) and 2(c) show the noisy and re-
constructed images. We see that the orientation was well de-
tected and preserved. Note however that seismic data often
exhibit directional noise that we wish to remove. We have
generated a structured noise (Fig. 2(d)) and added it to the

(a) (c)

(b) (d)

Figure 3: (a), (b) Samples of real seismic data (c), (d)
Processed images

original image. The denoised image clearly shows that we
are able to extract dominant structure from directional noise.
On Figure 3(a) or 3(b), we observe on actual seismic data
that the dominant horizontal structure is perturbed by many
other directional interferences. Images 3(c) and 3(d) show
how those perturbations are removed while keeping relevant
information.

4. CONCLUSION

We proposed a simple framework for a 2D oversampled non-
separable LT and obtained very promising results for direc-
tional filtering of seismic data. We still have to study thor-
oughly the design of the 2D windows which would be the
most appropriate for different applications. We should also
perform adaptive forms of processing in order to better re-
trieve areas around seismic faults.
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