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Abstract. Consider the following boundary value problem in the exterior space
5'd~1 = {x e : |x| > 1} of a sphere in two and three dimensions (d — 2,3):
Given a vector field D : Sd~1 —> we ask for all harmonic vector fields B : Sd~l —* IRd
which decay at least as fast as a dipole field at infinity and are parallel to D on 5d_1;
i.e. there is / : Sd~l —> R such that B = / D. For d = 3, this problem is related to the
problem of reconstructing the geomagnetic field outside the earth from directional data
measured on the earth's surface. The question for uniqueness or non-uniqueness is of
particular interest here.

In this paper we characterize the solution space of the boundary value problem
as orthogonal complement of a certain set of functions determined by the vector field D
in an appropriate Hilbert space. Based on the Hilbert space approach we determine
and its dimension dim for certain classes of vector fields D. In particular, we find in
d = 2 for those fields D^v which are obtained by restricting a 2jV pole field on S1, dim
VpN — 2(N — 1) + 1. This result is robust in the sense that perturbations of Djy which
are small in a certain norm do not change the dimension of the solution space. In d = 3
we consider only the axisymmetric situation. Here, we find in the case that D is given
by polynomials of order not larger than N the upper bound dim < N and in the
2^—pole case dim = N. For N = 1 (dipole field) the result is proved to be robust,
which implies uniqueness of the boundary value problem for all vector fields D close to
Di. For Djv with N > 2 it is shown that uniqueness can be enforced if either the Hilbert
space is truncated or if stronger decay conditions at infinity are imposed.

1. Introduction. It is a problem in the geophysical sciences to determine the mag-
netic field outside the earth if only the direction of the field is known on the earth's
surface. The problem arises less in present day investigations, where complete measure-
ments of the magnetic field vector (direction and intensity) are common, than in the
interpretation of historical data sets: Before 1832, when Gauss invented a method of
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measuring absolute magnetic intensity, only declination (direction of the horizontal com-
ponent) and inclination (the angle the field vector makes with the local horizontal) could
be measured. The same problem arises in the interpretation of palaeomagnetic data
records which provide directional information 011 a much simpler basis than information
about intensity (see, e.g., Merrill & McElhinny 1983).

Neglecting deviations from the spherical shape of the earth's surface and assum-
ing the exterior region Sd~1 to be insulating and to be free of sources of magnetic field, the
above problem can be formalized as follows: Given a direction field D £ C°(5d^1,Kd)
we ask for all nontrivial vector fields B £ C1(S'd~1,IRd) for which a scalar function
/ : Sd~1 —»■ K exists such that the conditions

VxB = 0, V ■ B = 0 in Sd_1,
|B(x)| = 0(|x|"d) for |x[ —► 00, (1.1)

B = / D 011 S'1'1

are satisfied. The type of function / which is appropriate here and the precise sense in
which (1.1)3 holds is specified in the next section. Let us just remark that / need not obey
a sign condition, a situation which is referred to by some authors as "unsigned directional
problem" (cf. Hulot et al. 1997). We will consider in the following the dimension d — 2
and d = 3. The case d = 2 is much simpler to deal with; it will serve as a guide for the
physical problem d — 3.

The standard boundary value problems of potential theory specify either the normal
component or the tangential components (with suitable consistency condition) on the
boundary. If combined with an appropriate decay condition at infinity, existence and
uniqueness of solutions is then guaranteed (cf., e.g., Kellogg 1967). No comparable results
are known for problem (1.1). Considering the aforementioned applications, the focus of
interest is less on specifying the most general direction field allowing for a solution of
problem (1.1) than 011 specifying the amount of non-uniqueness in situations where a
solution is already known to exist. Of course, due to the homogeneity of problem (1.1),
uniqueness is always understood up to a multiplicative constant which remains free. The
focus of the present paper is on this uniqueness problem, too.

Problem (1.1) is only one in a whole series of similar inverse problems in geophysics,
all concerned with recovering the magnetic field (or other fields) from incomplete or ill
posed data. A problem, complementary to (1.1), for example, tries to determine the
field B in Sd~1 from total intensity data on Sd~l (cf. Backus 1968, 1970). This problem
has been prompted by the fact that total intensity can typically more easily and more
cheaply be measured than directions. Early satellite measurements, for example, provide
only intensity data. Another problem consists in inferring motions of the conducting
fluid core of the earth from secular variations of the magnetic field (cf. Hide 1986, Blox-
ham & Jackson 1991). In highly-conducting fluids, the magnetic field is "frozen" into
the fluid and core motions should clearly have an influence on the geomagnetic secular
variation. Obviously, in all of these problems, the key question concerns uniqueness or
non-uniqueness of solutions.

Several authors have already dealt with problem (1.1) from a geophysical perspective
and have, in particular, tried to answer the uniqueness problem. Kono (1976) claimed
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to have proved uniqueness of the solution of problem (1.1) for d = 3 under an even
weaker condition than (1.1)2- The proof, however, turned out to be erroneous (Hulot et
al. (1997) indicate some loopholes in Kono's proof) and the claim has been disproved by
Proctor & Gubbins (1990) who constructed a counterexample. These authors considered
the 2-dimensional as well as the 3- dimensional problem. In two dimensions, they discuss
the problem in the framework of the theory of complex variables and establish, e.g., a
relation between the rotation number of Don S1, the rotation number of B at infinity,
and the number of zeros of B in S\. This relation suggests an upper bound on the
number of free parameters in the solution equal to 2(r — 2) where r is the rotation
number of D on S1. This would imply uniqueness for dipole-type direction fields (r =
2). However, no rigorous statement concerning the dimension of the solution space of
problem (1.1) is made and the discussion remains vague. In three dimensions Proctor
& Gubbins proceed by example. By numerical means, they produce three different
solutions for an octupole-type direction field (r = 4). This clearly establishes non-
uniqueness in the general case. Moreover, the authors conjecture that uniqueness can
be enforced if solutions are represented by truncated spherical harmonic expansions with
fixed truncation level.

A recent paper dealing with the uniqueness problem in three dimensions is that of
Hulot et al. (1997)1: In the framework of potential theory, the authors derive an upper
bound on the dimension of the solution space equal to I — 1 with I being the number of loci
on S2 (in fact the surface need not be spherical) where the tangential component of the
direction field vanishes. The result is based on a beautiful application of Hopf's maximum
principle applied to the potential of B. Note that the regularity condition used by Hulot
et al. has to be understood in the sense of Courant, & Hilbert (1962), which implies
some condition at infinity. In fact, in order to ensure uniqueness in unbounded domains,
one needs either uniform decay to zero at infinity or at least a Phragmen-Lindelof-
type argument which requires some growth restriction at infinity (see, e.g., Protter &
Weinberger 1984). In any case, this upper bound implies uniqueness for direction fields
with no more than two poles.

In contrast to these results, our approach allows us to determine the precise dimen-
sion of the solution space and to construct the corresponding solutions at least for certain
classes of direction fields. For this purpose the space of functions / in (1.1)3 is character-
ized in Sec. two as orthogonal complement in L2(Sd~1) of a set of functions determined
by the direction field D. Special fields Djv obtained by restricting 2N -pole fields on
S 1 turn out to be of particular importance. The 2-dimensional case, which is much
simpler than d = 3, is treated in Sec. 3: The solution space can explicitly be determined
and we obtain for its dimension dim Vj^N = 2(JV — 1) + 1. The fields are special
in that they have a constant rotation rate N which relates to the rotation number r by
r = N + 1. Using a Paley-Wiener-type expansion theorem, we prove that for fields D
with nonconstant rotation rate, dim = 2(7V — 1) +1 with N being the mean rotation
rate, provided that the deviations of the rotation rate from N are small in a norm which
involves the derivative of the rotation rate.

"'"This paper came to our attention only when our work was already completed.
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In three dimensions we treat only the axisymmetric situation (Sec. 4): If D is given
by polynomials of order not larger than N we derive the upper bound dim Vp < N and
in the mult.ipole case we find dim Vjj = N. The solutions are given in the form of
recursively defined series whose convergence is the crucial point to prove. Here, we make
use of the so-called Clebsch-Gordan coefficients, which appear in the decomposition of
tensor representations of the rotation group in its irreducible components, and apply
a theorem due to Enestrom and Kakeya bounding the zeros of certain polynomials.
Furthermore, uniqueness is proved to hold for all direction fields which are close to Di in
a higher-derivative norm. Some useful formulas about Legendre polynomials, spherical
harmonics, and Clebsch-Gordan coefficients that are needed in the preceeding proofs are
collected in two appendices.

Finally, the question is treated whether in case of non-uniqueness additional conditions
can enforce uniqueness. Proctor & Gubbins (1990) conjecture the finite-dimensional
representation of the solutions by spherical harmonics as such a condition. We answer
this question for the direction fields D^, N > 2 and find in d = 3 uniqueness but not
in d = 2. Another possibility is to require stronger decay conditions at infinity. In fact,
replacing condition (1.1)2 by |B| = 0(|x|~(rf+JV~1)) for |x| —+ 00 implies uniqueness for
the direction fields D^r in two as well as three dimensions.

A conjecture about the relation between the dimension of the solution space and a suit-
ably defined rotation number for axisymmetric 3-dimensional direction fields concludes
the paper.

2. Hilbert space approach. This section reformulates problem (1.1) as a Hilbert
space problem with Hilbert space H = L2(Sd~l). For this purpose, we introduce a
potential for the harmonic field B and explain the boundary values of B in the sense of
traces. The unique solvability of the Neumann problem with such generalized boundary
values is proved in Lemma 2.1. The proper Hilbert space criteria are then formulated
separately for d — 2 and d = 3 (Theorems 2.2 and 2.3); the 3d-axisymmetric case is
formulated in Corollary 2.4.

Let us begin with some notation:

Sd~l := {x G Rd : |x| = 1}, S^1 := {x G Rd : |x| > 1}.

In the following we will make use of polar coordinates (r, p>) in R2 defining a coordinate
system {er, ev} as well as of spherical coordinates (r,@,<p) in R3 with 6 G [0,7r], ip G
[0,27r], and the coordinate system {er, eg, ev}. Gradients then take the form

VM' (%vl'e, tf-tpe-. dm 2,
r

= dr^er + -de^i! eg 4 ]—ev, d = 3.
r r smt/

The volume element dQ on Sd~1 is dip for d = 2 and sin 6 dO dp for d = 3. In order to
simplify the notation, a function / : S'd~1 —> C (M) and its representation in polar or
spherical coordinates will be denoted by the same symbol.
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As Hilbert space we use

H := L2{Sd~1) = {ft : Sd~l -> C | J \h\2dSl < 00}

with scalar product

,dSl{h\,h2)n ■■= f h^i
J sd~1

and norm \\h\\ := \J(h, h)-n . " * " means complex conjugation.
With the definitions

*o°2 := ~4=, Yn,2 ■= -7= sin nip, Y~j, := ~ cos nip, Y*3 := Y*(6, <p),
V27T v71"

where Y^(9,ip) denote the usual spherical harmonics (cf. Appendix A), the set of eigen-
functions of the Laplace-Beltrami operator can be described uniformly for d = 2 and
d = 3 by

{Yld- neNc keK(n,d)}, (2.1)
where K(0, d) = {0}, K(n, 2) = { — 1, +1}, K(n, 3) = {—n,..., +n}, n e N. The set (2.1)
forms a complete orthonormal system in L2{Sd~l) and allows the representation

OO

* = E E a«* ̂ (n+d-2) Ynkd (2.2)
n=0 keK(n,d)

of every harmonic function in Sd~l vanishing at infinity.
In the following, we will prescribe boundary values which are only supposed to be

elements of L2(Sd~~1). Let us define for this purpose for any smooth function in Sd~l
and for r > l:2

dr*(r.) : Sd~l -» C, x ar$(rx) := V\E»(rx) • x. (2.3)
sd~1

A suitable Neumann boundary value problem for Laplace's equation now reads:

Let 7 € L2(Sd~1) with f 7 dfl = 0. Determine all functions ^ G C2(S,d_1,C)
Sd~ i

satisfying
Av£ = 0 in S^1,

|¥(x)| = 0(|x|~(d_1)), for |x| —> 00, (2.4)
-7|| ->■ 0, r \ 1.

Here, r \ 1 means r-+l where r > 1.

Lemma 2.1. Problem (2.4) is uniquely solvable.

Proof, (i) Let 7 = EkeK(n,d) bnkY^d with (bnk)nk C C. Set
00 7

" := "E E r-{n+d-2)Yk^ (2.5)
n—1 k£K(n,d)

In the following, x denote unit vectors.
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with the series converging uniformly for r > r0 > 1 and thus ^ being a harmonic function
in Sd~1, satisfying (2.4)2. Now assume e > 0 and choose Ne € N such that

OO 2 00

E E b"*YldIf = E E i&«*i2 < \-
n=Ne + l keK(n,d) n=N, + l k&K(n,d)

Thus, for r > 1,

E E bnk(l-r-(n+d-V)Ynkd < -. (2.6)
n=Ne + l keK(n,d)

Now assume S€ > 0 such that

Vr G [1,1 + Se) : ll-r-W-"-1)!2 £ E Kk\2<\bnk I < r, ■
n= 1 k£K(n,d)

Then for r e [1,1 + <5e), we also have

|| E E bnk(l-r~^d-V)Ynkdf < €- (2.7)
n=1 keK(n,d)

and (2.6) and (2.7) imply ||<9r ̂(r.)|S<J_L — 7]] —> 0, r \ 1.

(ii) Let <J> = Yln=i YlkeK(n,d) ank r~(n+d~2) Ykd be any harmonic function in Sd~l
satisfying ||3r^,(r.)|s<1_11| —» 0, r \ 1. Then, for x £ Sd~1 and r > 1,

OO

dr9(rx) = -E E a^n + d - 2) r~(n+d~V Y*d(±)
n= 1 keK(n,d)

and

a"fc = n + d-2 rxl = 0;
thus = 0. □

The analogue of (2.3) for the other components is:

d^^r.) : S1 —> C, xh 9^,$(rx) := r V*]/(rx) • e¥>(rx),

dg^{r.) : S2 —* C, x 1—> 5e^(rx) := r V$(rx) • eg(rx), (2.8)
s2

dv^(r.) : S2 —> C, xh d^^rx) := rsin0(rx) V\£(rx) ■ ev(rx).

We are now in the position to give problem (1.1) a more precise formulation. Using the
potential (2.2) for B and the generalized boundary values (2.3), (2.8) 1, we define in two
dimensions:

Problem P2. Let D = Dr(tp)er + D^(ip)e^ e C0^1,®2). Determine all functions
f e H = L2(5':L) such that the following boundary value problem is solvable, i.e., there
is ^ € C^S^jR) satisfying the conditions

= 0 in S1,
|*(x)| = 0(|x|_1) for |x| —> 00, (2.9)

Vf = / D 011 S1.
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The boundary condition (2.9)3 holds in the sense of

11 dr ̂ (r.) | S* - /Arj 0 for r \ 1,
(2.10)

ll^^(r.)|si - fDv\\ -> 0 for r \ 1.
In three dimensions it is convenient to allow for complex potentials and, consequently,

complex functions /. For real direction fields D. real and imaginary parts of ^ (and /)
are then separately solutions and can be identified with physical quantities. We define:

Problem P3. Let D = Dr(6, ip)er + Dg(6, ip)eg + Dv(d, ip)e^ E C°(S2, R3). Determine
all functions / € Tt = L2(S2) such that the following boundary value problem is solvable,
i.e., there is >]/ £ C2(S2, C) satisfying the conditions:

Af = 0 in S2,
|f(x)| = 0(|x|~2) for |x| —> 00, (2-11)

W = / D on S2.

The boundary condition (2.11)3 holds in the sense of

\\drV(r.)\s2 -fDr\\^0 for r \ 1,

11 ^^(^O152 sin^ _ fDg sin d\\ —> 0 for r \ 1, (2-12)
||9¥,^'(r.)|s2 - / Dy sin 011 0 for r \ 1.

Remark 2.2. Due to Lemma 2.1, problem is equivalent to problem (1.1) if the
direction field D is assumed to be ^ 0 almost everywhere on Sd~l: For a solution / G H
of Pd, the corresponding potential ^ is uniquely determined by

OO

* = E E "^r-{n+d-2) Yld
n=1 keK(n,d)

with

= ~^br2•
Conversely, given a potential "I* and a direction field D on Sd 1 with D ^ 0 almost
everywhere, there is at most one / € Ti such that the boundary conditions (2.10) or
(2.12) are fulfilled.

Problem P2 allows now the following equivalent characterization:

Theorem 2.3. Let D = Dr(ip)er + E C°(S'1,M2) and / E L2(Sl). Moreover,
let

Tn := Dr((p) s'mmp + Dv(ip) cosrup
Sn := Dr(ip) cosrup — sinrup

and
Vb := Span {Tn,Sn : n E N0}.

Then, / solves Problem P2 if and only if / G Vq, i.e., Vn E Nq :

f fTncM = [ fSnd,Cl = 0. (2.13)
Js1 Js1
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Proof, (i) Let / be a solution of P2 and let
00 1

— (an cos nip + bn sinni/?) (2-14)
71= 1

be the corresponding solution of (2.9). We have
OO

dr ^ n+1 (an cos nip + bn sin nip),
n= 1

00

^ — (an sin rup — bn cos rup)
(2.15)

1 <

n=1

with the right-hand sides uniformly converging in S1. With Dr,Dv E ) and
/ € L2(51), we also have fDr,fDv e L2(S'1) and obtain from (2.10) and (2.15) for
n £ Nq (and with ao := 0, 60 := 0)

TV

/f{ip) Dr(<p) cosnipdip = lim / ^^(r.) cosnipdVL'•N,1 J
S1

= lim / 9r\l>(rer) cos nip dip = —nnar''N.1 J

(2.16)

and analogously

r/ /(<£>) Dr(ip) sinnipdip = —mrbn,
J —IT

f(ip) Dv(ip) cos nipdip = mrbn, / f(ip) Dv(ip) sinnipdip =—niran
/■./ — 7T

(2.17)

Eliminating an and then yields the conditions (2.13).
(ii) Let / 6 V-£. Define 7 := fDr and let be the unique solution of problem (2.4)

according to Lemma 2.1. It remains to prove (2.10)2-
Let

OO

7 = fDr = £ (an cos nip + bn sin nip). (2-18)
n= 1

Then we have
OO

£(K|2 + l^nP) = "Hill2- (2-19)
n=1

From (2.13) and (2.18) we obtain

J cos nip dSl — —7rbn, J fDv sin nip dfl = iran
s1 s1

and thus
OO

fDv i £ [an sin nip — bn cos nip). (2.20)
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Equations (2.18) and (2.5) in the proof of Lemma 2.1 yield

OO

^(rer) = — —— (an cos nip + bn sin nip),
TIT

n= 1

and therefore
o° 1

d^(rer) = — ̂  — (an sin nip — bn cos nip), (2-21)
n= 1

where, because of (2.19), the series on the right-hand side converges uniformly in S1.
Comparing (2.21) in the limit r \ 1 with (2.20) furnishes (2.10)2- □

The corresponding result for P3 reads:

Theorem 2.4. Let D G C°(52,K3) as in Problem P3 and / — L2(S2). Moreover,
let for n £ N, k e {—n,+n}

T\ :=Dr,
Tq := Do sin 0Yo°-± Dr y°,  

Tn := De sin 9 Y* + Dr(?^ Knk_i ~ *?+i),

Sg := Dv sin0yo°,

Skn := (-ik Dr + (n+ 1) Dy sin 9) Ynfc,

where Y£ := Yjf(9,ip), and

Vd := Span |t®1; T^, S1^ : n € No, k = — n,

Then / is a solution of Problem P3 if and only if f £ , i.e., Vn € No, k = —n, ...,n :

J fT^dil = J }Thn* dn = I fSkn*dtl = 0. (2.22)
s2 s2 s2

Proof, (i) Let / be a solution of P3 and let

* := E E c«fc r_("+1)
n€N k=—n

be the corresponding solution of the boundary value problem (2.11). With (A.9), the
series

+ 71 +71

E E^ + 1) r~(n+2)Yn, E E d°Yn
tiGN k=—n ti€N k=—n
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are uniformly converging in every compact subset of {:r G R3 : r > 1, 0 < 9 < 7r}. Thus,
using the abbreviation N* in (A.9), we obtain

oo n

dr* = - E E (n + X) r~(n+2)Yn,
n=1k= — n

oo n

sin0^= £ Y, cnkr-(n+1){uNkn+1Y^+1-(n+ 1)^-0
n—1k=—n

oo n
- V V (r , inzMZ -r , , ("+2)JY'+Myt

/ v v \Ln — l,k rn Cn+l,/c rn+2 )1 n i

n=0k=—n
oo n

ifcc„fcr^+1>ynfc.

(2.23)

n=l fc=

(2.24)

Since Dr,Dg,Dv G C°(52,M) and / G L2(S2), wc also have fDr,fDgsin9, fDtps'm9 G
L2(S2) and from (2.12) and (2.23) we conclude for n G No, k = —n, ...,n (with c_i fc := 0)

[ fDrYfdn = lim / 0r$(r.) K** dfi = |-(n + l)c„fc,
./s2 rX»1 -/ S2

I f D0 sin 6 Yf* d9. = lim / sin 6 deV{r.) y£* dQ
Js2 r\.! Js2

= cn_i,fc(n - 1) iV* - cn+i,fc(n + 2) 7V^+1,

I fDpSmOY^ dil — lim I d^{r.)Y% d,i1 = ikcnk-
Js2 rX»1 Js2

From (2.11)2 follows c00 = 0 and thus, using (2.24)i and (2.24)2,

[ fDr dtt = 0, [ (De sin 9 Y0°* - -j=DrYj*)fdn = 0.
Js2 Js2

(2.24)i, (2.24)2 and (2.24)i, (2.24)3, respectively, yield the rest of (2.22).
(ii) Now let / G L2(S2) satisfy the conditions (2.22). Set 7 := fDr and let \I/ be the

unique solution (2.5) of problem (2.4) according to Lemma 2.1. Set cnk := —bnk/{n+ 1).
Thcn En,fc l(™ + l)Cnfc|2 = En.fc Kk P < 00. This guarantees the convergence of the
Fourier series in (2.25) below. Because of (T°_1, f) = 0, condition (2.11)2 is satisfied.
Equations (2.23) hold and therefore we have, using (2.4)3,

dMr.) Q2 "T? ~ E E (n+])^kY.n = fDr.
S2 r\l *•—' '

n=1k=—n
00 n

Hsin9 de^>{r.) A ^ ^ (c„-i,fe(n - l)7Vnfe - cn+hk(n + 2)N*+1)Y* (2.25)
S2 r\,l

n=0k=—n
00 n

TLd^(r-) _2 —? E E ikcnkYn shl0-
52 r\l z—' *—'

n=lk=—n
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Condition = 0 in (2.22) yields

dQJ fD9sm6Y^dn = -J fDr{^ Nkn Y*_\ - NZ+1Y*+\)
s2 s2

£ (n' + 1 )cn,k,Y% (a=i Nkn Ynk_\ - <+iKf+i) dSlI
s2 n' ,k'

— Cn—l,k(n 1)N~n Cn+l,fc ~t~ 2)Nn_^_i,

where we made use of (2.25)i in the second equation. From (2.25)2 we now obtain

n f Dg sin 9,
S2 r\ 1

sin 9 de^(r.)

and by an analogous calculation, using condition (5^, f)n = 0 in (2.22),

dvV(r.) f sin0.
S2 r\ 1 ^

□

Axisymmetry simplifies the situation considerably. The axisymmetric Problem Pg
follows from Problem P3 by the assumption Dr = Dr(6), Dg = Dg(9) and Dv = 0. This
implies d^"3/ = 0. In Theorem 2.3 the conditions (T^, /)^ = 0 reduce to those for k = 0
and the conditions {Sk,f)-u = 0 can be omitted altogether. After a change of variables
the appropriate Hilbert space is now H := L2((—1, 1)). It is, furthermore, convenient to
replace the system {T° : n G No U {—1}} by an equivalent one {Tn : n G No}. We then
have:

Corollary 2.5. Let Vr,T>g g C°([-l, +1],R), g G L2((-1, 1)), and set

Dr := Vr(cos9), Dg := Vg(cos9) sin#, Dv := 0, f := g(cos6).

Moreover, define for n G N

To := T>r,
(2.26)

Tn := (n 4- 1) (P„+1 — Pn-i) T^e + (2n + 1) Pn T>r,

where (Pn)n are the Legendre polynomials. Let

Wd ■■= Span {Tn : n G N0}.

Then / is a solution of the axisymmetric Problem Pg if and only if g G , i.e., Vn G No :

+i

JgTndx = 0. (2.27)
-1
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Proof. Since Jg2 uY^* dQ. = 0 for k ^ 0 and each u E L2(S2) independent of ip, all
conditions in Eq. (2.22) of Theorem 2.4 with k 0 can be omitted. We define for n E N

Tq(x) := Vr(x),

Ti(x) := (1 - x2) T>e{x) -xVr(x),

%+ i(x) := (2n+ 1)(1 - x2) Vg{x) Pn{x)

+ Vr(x){(n - l)Pn_i(x) - (n + l)Pn+1(x))

and obtain for n 6 No U {-1}

Tn(°) = c(n) Tn+i(cos9),

where c(n) ^ 0 is independent of x and 6. With Eq. (A.4) it is easy to verify that for
n E N:

To = Tq, J\ = Ti, Tn+1 = (n — l)7^_i — (n + \)Tn+\. (2.28)
Thus, in this case, (2.22) is equivalent to (2.27). □

3. Some results in the 2—dimensional case. This section deals with nowhere van-
ishing direction fields D, which can conveniently be parametrized by a rotation function
4>(ip) representing the polar angle of D in the coordinate system {er(</?), e¥>(y?)}. Theo-
rem 3.1 determines the solution space of Problem P2 in the case of constant rotation rate

which refers just to the 2N -pole fields Djv. In the case of nonconstant rotation
rate, a perturbation result is formulated in Theorem 3.3. Theorem 3.4, finally, provides
uniqueness for the fields D/v if stronger decay conditions at infinity are required.

Nowhere vanishing direction fields D € C1(51,E2) can be normalized to one, |D|2 =
D2 + = 1, which allows the parametrization

Dr(ip) = cos cp(ip), Dv(ip) = sin </>(<£) (3.1)

by a rotation function </> E C1(IR, M) with (p(ip + 2Tr) = 4>(ip) + 2nN, N Eh. The condition
(2.13) in Theorem 2.3 then takes the form

/7T />TTcos(nip + cp(ip))f(ip) dip = sin(nip + <j>(ip))f(<p)dip = 0, nE N0,
-7T J —7T

or, in complex notation,

/7r pirei*lv)einvf^dtp= / e-i<t>Me-in,pf{<p)d<p = 0, TIE N0. (3.2)
-7T J —TV

The following theorem specifies the solution space of Problem P2 in the case of constant-
rotation rate <f>'(<p) = N = const, N E Z. N measures the number of turns of D in the
coordinate system {er(<p), e^(ip)} while ip is running through the interval (—7r, 7t). It
relates to the rotation number r, which is measured with respect to the fixed coordinate
system {ex, ey} by r = N + 1. Note that the rotation function 4>(ip) = 4>0 + Nip
corresponds for <^>0 = 0 and <fio = 7r/2 to the multipole fields = cos(Nip)er +
sin (Nip) and Dyy = — sin (Nip) er + cos(Nip) ev, respectively.
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Theorem 3.1. Let D(ip) = cos(</>o + Ntp)er + sin(0o + N<p) ev with N G Z and / G
L2(S'1). Then, / solves Problem P2 if and only if / £ := Span{em¥> : —(N — 1) <
n < N — 1}. In particular, V^ = {0} if N < 0 and dim Vq = 2(N — 1) + 1 if N > 0.

Proof. Let / be expanded in the complete orthonormal system |^= : ^ G zj in

L2(51):
eivf

/ = £/» -jr- 0-3)
„£Z v27T

Inserting (3.3) in (3.2), Theorem 2.3 furnishes for n G No

XI /„ f ei{N+n+")ipdip = J2 Sv [ e-i{N+n-u^d<p = 0,
i^ez J-* vez •'~ir

and thus

fn+N — f—n — N ~ 0? H G No-

D
For the next theorem we need a result on the completeness of a perturbed complete

orthonormal system that is due to Paley & Wiener (1973):

Lemma 3.2. Let {ipn : n G Z} be a complete orthonormal system in L2((a,b)) and let
{Xn '■ « G Z} C L2((a,b)). Let, furthermore, the inequality

N 2 N

| ^2 an(i>n~Xri) <6 ^ K|2 (3.4)
n=—N n=—N

hold for arbitrary N € No, an G C, |n| < N, and with 0 < 0 < 1 independent of N and
an. Then the system {xn ■ n G Z} is linearly independent and complete; i.e., for any
/ G L2 exist coefficients 6ra, n G Z such that

(X)

/ = ^ Xn ■
n= — oo

"2 /There exists, moreover, another complete system {xn : n G Z} c L2((a, &)), which is
dual to {Xn • ^ G Z}, i.e., (Xrn Xm)"H = finm-

Proof, cf. Theorem XXXVII in (Paley & Wiener 1973).
If the rotation rate is not constant the rotation function is decomposed according to

= 0o + Nip + where <f>(tp + 2n) = 4>(ip), f (j>(tp) dtp = 0, iV G Z. (3.5)
J — 7T

is then the deviation of the rotation rate from its mean value. For small deviations
we have the following result:

THEOREM 3.3. Let cfi G C2(K, R) be the rotation function of a direction field D according
to (3.1) with decomposition (3.5). Let N G Z be the mean rotation rate and <j> satisfying
the conditions

ll^'ll < 11*1 < 1 (3-6)
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with e > 0 such that (§7r + ^:)e2 + < 1 and ||.|| denoting the norm in Tt :=
L2((—7r, 7r)). Then, there holds for the solution space of Problem P2:

,, T,, f 0 if N<0,d'ml° ={ 2(JV-1) + 1 if«>0; (3J)

i.e., the result of Theorem 3.1 is stable under small perturbations of the rotation rate.

Proof. We start with some auxiliary estimates.
(i) With el(m~n)xdx = 2n5mn, m,n&Z and the Fourier series

Ecos vx elux x2 7T2
 o — / -J- = — nx "I—o~v ^ v2 2 3

^ez\{0} i^ez\{o}

on (0,27r), one obtains for an 6 C, |n| < N:

N , 1, 1 N
\ |fflm||an| _ \ I | \ 1 If*
^ (m-n)2~ ^ \am\\an\ 2v2'2i:

m,n — — N v ' m,n= — N y= — oo 71
rriy^n m^n

1 pit N 00 —ivx

= ml E Wm\\an\el(m-n)x J2 ~^dx
n m,n= — N u=—00

ei(m-n-v)x dx

<
2n

1 ,7T . n

"V^(T (3.8)

f I |on|em:c • max (-x2 — ttx + — )dx
J — 7T 1 __ [M V2 3 /

n=—N

n2 " 1 r tt2 A71 ^ > , ,, ,1 I , 71 x > , ,2= y E KIKI^/ ei(rn-n^xdx= — K.
m,n= — N 77 n= — N

(ii) Since (j) E C1(IR, C) satisfies the conditions (3.5), the following Poincare-type
inequality holds:

I \cp(x)\2dx < f \(p'(x)\2dx . (3.9)
J —IT J—TT

Let us define X(x) := 4sin2(^(i)/2) and g±(x) := e±1(^x'A(x). We then have with (3.6)
and (3.9):

I \(x)dx <\\4>\\2 <\\ft\\- <e2,
J — TT

f |AC®)"| dx < 2(W"\\ U\\ + U'\\2) < 2(M"\\ U'W + H'W2) < 26(1 + e),
/7T rTT />7T|p±(x)|dx < / |A(x)"|dx + 4 / |(<^')2 sin0| dx

-TT J —IT J—TT

+ 4/ (|0"| + (<^')2) sin2(0/2) dx
J —TT

< 2e(l + e) + 4e2 + 4 ||0"|| || sin2(0/2)|| + 4e2
< 2e(l + e) + 4e2 + 2 ||^>sin(^>/2)|| + 4e2 < 10e2 + 4e .

(3.10)
(iii) The next step is to prove the system {etcn^n<fiei<r(n) e 2} with Cn :=

a(n)(f>o and <j(n) = 1 if n > 0 and otherwise u(n) = —1 to be complete in L2((—it, tt)).
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For this purpose we set a := — ir, b := n, ipn{x) := -~=elCne%nx and Xn(x) '■=

tpn(x)ela<-n^^ in Lemma 3.2. We then have to prove that

i r i ^ 2 ^
2-/ | Y, an{eia(n)i(x) -l)emx dx < 0 ]T |an|2, (3.11)

n=—N n=—N

where iV € No and an = anelCn € C, |n| < N are arbitrary, and 0 < 0 < 1 is independent
of N and an. Let us define

Fmn{x) := - i)(e<"(«)*(*) _ l).

For a(m) = a(n) follows Fmn(x) = A(x); otherwise Fmn(x) = —Q±(x). Thus (3.10)
implies the estimate

[ \Fmn(x)\dx < 10e2 + 4e. (3.12)
J — 7T

Expanding the left-hand side in (3.11) and using (3.8), (3.10)i, and (3.12) furnishes:
N N

— I E k|2A(z) oh
J ^ m,n=-N n= — N *

m^n

2 fn f ^ gi{n—m)x ^ ^ ^
= ^Z \- Y1 m-n)2 + £ K\2X{x)\dx

J~7T ^ m ,n= — N ^ ' n= — N '
rriy£n

\F™n(X)\dx E +J_^Kx)dx Eja«|2}
rriy^n

s^(T(10{2 + 4e) + e!) t \an\2.
n=—N

This proves (3.11).
(iv) We now prove (3.7). According to Theorem 2.2 and Eqs. (3.2), is given by

Vj} = Span {Tn, Sn : n € No} with

J<n := eict>o ei(n+N)ip

g . — e-i<l>0e-i(n+N)cpe-i4>(ip) _

In the case N < 0 there is obviously

Span {etcr(") 4>oetn<peicr(n) <A(v?) . n G Z} C Span{T„, Sn : n € No}

and from (iii) immediately follows = {0} and hence (3.7)i. If N > 0, let Xn(x) be
defined as in (iii) and let x„(x) be the complete dual system according to Lemma 3.2.
Obviously, there is Tn = Xn+N and Sn = x—n-N and the system {xn '■ n €E No} = {xn '■
|n| < TV — 1} U {T„, Sn : n £ No} is then complete according to (iii). We have, therefore,

V& = Span {T„, Sn : n e N0} = Span {x„ ■ M < N - 1}

with dimVf^ = 2(N — 1) + 1. This proves (3.7)2 ■ □
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In the case of constant rotation rate, it follows from Theorem 3.1 that all solutions /
(and hence ,P) have finite expansions in the system {ewv : v € Z}. So, allowing only
functions with finite expansions as admissible solutions of Problem P2 does not imply
uniqueness. Other restrictions, however, can enforce uniqueness:

Theorem 3.4. Let D(</?) = cos(0o + Nip) er + sin(</>o + Nip) ev with N B N. Then the
modified Problem P2 where $ has to additionally satisfy

\V\ = 0(|xj_iv) for |x| 00 (3.13)

is uniquely solvable.

Proof. According to Theorem 3.1, a solution / of P2 allows the representation
N-i

v=-(N-1)

with fv £ C. The corresponding potential is given in (2.14) with coefficients an, bn
determined by Eqs. (2.16) and (2.17). Condition (3.13) implies an = bn = 0 for n =
1,..., N — 1. Thus, Eqs. (2.16), (2.17) imply for n = 1,..., N — 1:

n7r N — l

/ fv elvif cos(<f>o + Nip) cos nip dip = 0,

r>TT N—l

/ /„ el,yv sin(0o + Nip) sin nip dip = 0,
J—TV , kt 1 \

/

/

JV-l
y /„ elinp cos(0o + Nip) sin nip dip = 0,

n u=-(N-1)
n JV-l

fv ^V<P sin(0o + Nip) cos nip dp = 0.
n i/=-(JV-l)

By linear combination we arrive at

N—l /»71

J2 f" ei("±N±n)vdip = 0, n = 1,..., N - 1,
V=-(N-1)

(one equation for every sign combination), and by this

f N—n f—N+n 0? ^ 1, . . . ? N 1.
The only solution is thus / = const. □

4. Some results in the 3-dimensional axisymmetric case. This section deals
with axisymmetric 3-dimensional direction fields D, in particular, with those arising
from axisymmetric 2N pole fields Djv- Upper bounds on the dimension of the solution
space Wd for arbitrary polynomial direction fields can easily be derived. It is, however,
much harder to determine the precise dimension. This is done for the direction fields
Djv- The cases N = 1 and 2 are treated explicitly and the general case is dealt with
in Theorem 4.3. The Lemmata 4.1, 4.2, and 4.4 present auxiliary results. Theorem 4.5
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extends the result of Theorem 4.3 for N = 1 to all fields which are close in a certain
norm to Di. Theorem 4.7 and Remark 4.8 present possibilities to enforce uniqueness for
direction fields Djv with N > I. Finally, we investigate exemplarily and on a numerical
basis the dependence of dim Wfj on the rotation number of D and formulate a conjecture
in this connection.

Let us consider the situation of Corollary 2.5. If Vr, Vg are polynomials, then the
Tn are also polynomials. Each Tn is then a finite linear combination of the (-Pn)neN0-
Moreover, if each Tn has degree n + N, N £ N, one can derive a recurrence relation for
the Fourier coefficients ern € C, n e No of g, where

9 = Y2^nPn, (4.1)
n=0

and where Pn are the normalized Legendre-Polynomials (see Appendix A). Writing the
Tn in terms of P„ in the form

\j2(2n + 1) (^(anPn+i — pnPn-\^T>g + Pnl?rj,%, = Y ,

n  n + lv R  n+1 ' (4.2)

^(2n + l)(2n + 3)' " y/(2n - l)(2n + 1) '

and repeatedly using (A.7), one can easily compute coefficients n € No, k =
—N,..., N such that

N

Tn = ^2 VnkPn+k with vnk = 0 if fc < -n and vnN ^ 0, neN0.
k=-N

Note that because of limn_00an = lim^oo (3n = there exist vk e M such that
limn—»oo Vnk ^ki k A,..., N.

Now, condition (2.27) yields Vn e No:

I
@n+N = / Unk®n+k] (^-3)

U-n AT z 'nN k=-N

i.e., only the initial values <7o>..., crjv-i are not determined. Therefore, we can imme-
diately conclude dim Wp < N. In general, it is not clear that for each selection of
do, the sequence (avOneNo defined by (4.3) yields a convergent Fourier series for
g. To investigate this, the following lemma is a first criterion.

Lemma 4.1. Consider the recurrence relation (as in (4.3))

+ N

T vnk Vn+k =0, n G No (4.4)
k=-N

with vnk = 0 if k < —n, / 0, vnk —> ̂ k f°r n —* oo, Vn ^ 0, and the related
polynomial

+ N
Q{X) := "kXk+N € R[A] (4.5)

k=-N
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of degree 2N. If \z\ < 1 for all complex zeroes z of Q(X), then the series I0"!2
and therefore the Fourier series g = anPn converges for arbitrary initial values
(To, Cjv-1 G C.

Proof, (i) Relation (4.4) can be written in matrix form

(an.N+ A / 0 1 0 ... 0 0 \
Vn-N+2 0 0 1 ... 0 0

(Tn+N-1 0 0 0 ... U I (Tn+N-1
^ Vn,-N Vri,-N + 1 l/n,-N + 2 ^n,N- 2 ^n,N-l /

\ ^n+iV / \-i/nN -^r,N — ̂ nN -VnN ) n+N -1/

(4.6)
where the 2iV x 2Ar-matrix in (4.6) shall be denoted by Sn € M.2Nx2N. By iteration of
(4.6) we obtain

( (Tn-N \

(Tn-N+1

( Tn+N ^

CTn+JV+l

0"n+3JV-2

— &n+2N— 1 * ••• * •S'n+l ' Sn

( (Tn — N ^

On-JV+1

(Tn+N-2

\Cn+3AT-l/ Wn+JV-l/

and, therefore, convergence of la«l2 guaranteed if there are some q £ (0,1) and
some m £ N satisfying

VngN,n>n0 : lub2(5„+2mN-i • ■ Sn+2N-i • • Sn+i • S„) < q (4.7)

for sufficiently large no G N, where lub2 is the matrix norm corresponding to the euclidean
vector norm. Since the matrix norm depends continuously on the coefficients of the
matrix, condition (4.7) is fulfilled if

lub2(S2mN) < q, where S := lim Sn. (4-8)
n—>oo

(ii) Now assume \z\ < 1 for all zeroes 2 of Q(X). Since Q(X) is the characteristic
polynomial of S, we can choose /i e (0,1) and e > 0 such that

q(S) := max {|A| A is eigenvalue of S1} < fi — e. (4-9)

From spectral approximation theory (see, e.g., (Stoer & Bulirsch 1978, Theorem (6.9.2)))
it is well known that for each matrix M & ^Nx2N an(j e > o there is some vector
norm |. |e in R2N satisfying

lub|.|e(M) := sup \Mx\e < g(M) + e. (4-10)
|x|e = l

Since all matrix norms on K2Nx2N are equivalent, there is some Ct > 0 with the property

MM e R2Nx2N : lub2(M) < Ce lub,. \e(M). (4.11)

Using (4.9) and applying (4.10) and (4.11) on M = S2mN, we finally arrive at

lub2{S2mN) < C£ lub,. [e (S2mN) < Ce fi2mN < q
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for sufficiently large m G N. Thus, condition (4.8) is satisfied and part (i) of the proof
yields the statement of the lemma. □

The following lemma of Enestrom and Kakeya is a useful tool in order to apply Lemma
4.1.

N

Lemma 4.2. Let N &N, kq, i^n € K+ and R(Z) ^ HkZk G R[Z],
k=o

(a) If Kyv > kjv.-i > > Ko > 0, then \z\ < 1 for all complex zeroes z of R(Z).
(b) If kjv > kjv-i > ••• > Ki > Ko > 0, then \z\ < 1 for all complex zeroes § of R(Z).

Proof. For part (a) we refer to Kakeya (1912). (b) is a trivial consequence of (a). □

4.1. Axisymmetric multipole fields. In this subsection we will show that for direction
fields corresponding to 2A'-pole fields, i.e.,

V?(x) = (N+ l)PN(x), V${x) = P'N (x),

the dimension of the solution space of Problem Pf, dim W7^, , equals N.
Examples, (a) The dipole field: Here we have

T>l(x) = 2x, Vf){x) = 1,
and therefore, using (A.7), (4.2),

% = 2Pi, Tn = \Jl(2ri + 1)(2>anPn+i + (2an_i — 0n)Pn-i), n G N.

From condition (2.27) we obtain

2 Oin—i — 3„
(Ji = 0, an+1 =    (Jn-u n C N.

oOL-n

Since 2a„_i — f3n = 0 iff n = 1, we conclude <J2k = 0 for every k G N and since <Ti = 0
we also have (T2k+i = 0 for every k G No- Thus, we have the unique solution g = <ToPq.

(b) The quadrupole field: Let

2('b''2" !)• V2e(x)=Zx.

In the same way as above we obtain

T0 — 2> P2,

Tn - 3^/n + |

X ^5cynQn-|_i PnJr2~\~ (SOin +3(Xn_i 2CXn—i (3n 1) Pn (3dn_ \ (Xn — 2 2(Xn — 2pn^)Rn — 2^ ,

and, therefore,
02 = 0,

5ozn -i- 3an_1 2an-if3n 1 3(xn—!(^n—2 2f3rLOLn—2
^"n+2 Z @n Z &n — 2i

oOinOLn-\.\ oQtnQLn-ir\

where the coefficient in front of <r„ vanishes iff n = 1 and the coefficient in front of an-2
vanishes iff n = 1 or n = 2. Thus, we have a^k = 0 for k G N and

OO

9 — ~l=. + / l^fc+iAfc+i)
* k—0



442 RALF KAISER and MICHAEL NEUDERT

where the <X2fc+i are uniquely determined by the choice of <Jx. With lim,,-^ an
limn->oof3n = 1/2 follows for the coefficients in (4.12):

^2 = 1,
5a* + 3a%_1 - 2an-iPn - 1 2

vo = lim
n—kx

V-2 = lim
n—>oo

3an-ian-2 2/3nan_2
5'

1
5'5 OinOCn-y\

i.e., the Lemmata 4.1 and 4.2 imply the convergence of the Fourier series for g. Thus, we
have dim W^2 = 2. Note that in the case o\ ^ 0, the corresponding solution of the
boundary value problem (2.11) has a nonvanishing dipole moment: Assume as in (2.5)

ijr = — 1 A bn d* 15"^ —TT r (n+1)Pn{cos6), — = —7=y^Kr (n+2) Pn{cos6). (4.13)
^ n + 1 dr v 27r fn=l n=l^2^ 7̂2 =

From condition (2.12) i follows:

+i +i
bn = V2n / g(x)T>r(x)Pn(x) dx = V2n / crkPk{x)Pn{x)Vr(x) dx. (4.14)

, k=o-l

For the dipole moment b\ we then obtain

+1 ™

bi = VZk I yx(3x2-l)<£r
_i fc=o

+ 1 OO I—

= v/27T / y^(TfcPfc(a:)f^ J~P3(x) + ~P1(x)Sjdx
_i fc=o

9/3 6 \ /—- 6/—/y /a b \ /—-b= V2n(-]J-a3 + -v1)=V2n-a1.

In the last equation we made use of (4.12) with the result <73 = 0.
The general case ./V e N is treated in the following theorem:

Theorem 4.3. Let TV e N and

Z^(®) = (W + l)fV(z), T>o(x) = P'N(x). (4.15)

Then dim Wft = iV.

Proof, (i) Let g = X^fc=o akPk- There are coefficients unk € R with n € No, k =
—N,..., N, such that

N

T~n{x) = ^2 vnkpn+k(x), (4.16)
k=-N

where vnk = 0 if k < —n and vnN ^ 0. Let i->k lim vnk, and note that ^ 0. The
n—* 00

condition (Tn,g)n = 0 (cf. (2.27)) then furnishes (4.4) with the corresponding polynomial
Q(X) as in (4.5). Obviously, we can conclude dim Wfj < N.
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(ii) It turns out to be more convenient to use instead of (4.4) an alternative recurrence
relation for the an. From Eq. (4.4) follows immediately

N n N
^ ^ ^n+2,/c &n+2-ffc ^ i 2 ^ - ^nk ®n+k = 0, (4.17)

k=-N k=-N

which is equivalent to the condition

('Tn+2,g)n = 0, where ^Tn+2 = ^Tn - Tn+2, n G N0 (4.18)

(cf. (2.28)). Since lim^oo vn+2,k = lim^-too vnk = vk and lim^^ ^ the polyno-

mial Q{X) G R[X] related to (4.17) according to Lemma 4.1 is given by

Q(X) = (X2 - 1) Q(X). (4.19)
(iii) Next, we want to determine explicitly the coefficients of the recurrence relation

and its asymptotic values. The basic tools are relations of the type

PN{x)Pn(x) = ]P(2fc + 1)(Nnk)Pk(x), N:n,k G N0, (4.20)
k

expressing products of Legendre polynomials by finite sums of Legendre polynomials. The
coefficients (N n k) are related to the Clebsch-Gordan coefficients resp. Wigner symbols
appearing in the representation theory of the rotation group (cf. Appendix B). We note
here only that (Nnk) > 0, the total symmetry of (Nnk), and the property

N + n + k g2Z A \N — n\ < k < N + n^J <=> (N nk) ^ 0, (4-21)

which ensures the finiteness of the sum (4.20).
From (4.18), (2.26), (4.15), (A.5), (4.20), and (A.3) follows

2A" 4- 1 rjn (T\jV" + 1 ln+2\x)

= 2n + 1 ((2n + 3)(l - x2)T>e(x)Pn+1{x) + Vr(x)(n Pn(x) - (n + 2)Pn+2(x))^j

= N(2n + 3) (Pjv-i (x) — Pn+i (%))Pn+i (®) + (2iV + 1) PN (n Pn(x) — (n + 2)Pn+2(x))

= ^](2fc + 1) (^N(2n + 3) ((N - 1 n + 1 k) - {N + 1 n + 1 k))
k

+{2N + l)(n(Nnk) - {n + 2){N n + 2 fc))) Pk{x)

= £<&ft(*)
k

with
c»k := 2 y/k + 1/2 ^7V(2n + 3) ((N - 1 n + 1 k) - (N + 1 n + 1 k))

+{2N +l)(n(Nnk) - (n + 2)(N n + 2 fc))).

Thus, (Tn+2,g)-H — 0, n G No implies the recurrence relation

2AT+1 N
\ ^ n,n+iV—/c+1 n (A 00\

&n+N+2 + 2^  N  &n-\-N-k-\-l = U. (4.ZZ)
k=0 ^n,n+N+2
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From (4.21) follows that n+i\r-2fc+i = 0 f°r ^ = 0, so it suffices to determine

d2k ■= lim C"Jvn+Af-2fc , k = 0,...,N. (4.23)
n^°° Cn,n+N+2

With (4.21) and (B.7), the coefficient c^n+N+2 can be rewritten as

= 2 + n + 5/2 (~N(2n + 3) (AT + 1 n + 1 N + n + 2)

-(27V + l)(n + 2)(N n + 2 N + n + 2)^j

rNcn,n+iV+2

= -2 \/N + n + 5/2 (j\f(2n + 3)^ - ^ - + (2 AT + l)(n + 2)j2n + 3 27V + 2
x(7V n + 2 TV + n + 2),

which becomes for large n:

c^n+N+2 ~ —2 ̂  N + 1 U^ + n + 2)- (4.24)

Here, an ~ bn, n G N means lim„—qq an/bn = 1. With (B.7) - (B.9) one obtains similarly
for c»n+N _2k in the limit of large n:

<n+^-2fc~-2^^n3/2(7VniV + n-2fc), k = 0,...,N. (4.25)

Using the explicit representation (B.6) of (.Nnk) the ratio
(N n N + n — 2k)/(N n + 2 N + n + 2) can be asymptotically evaluated with the result:

(Nn N + n — 2k) OrNZf)
iiS. (N n+2 N + n + 2) = ffl ' (4'26)

Prom (4.24) - (4.26) follows then

M(JV + 1)! 1 [2k\f2N-2k\ , „
<*2fc = - ,n\T , J 1—T , , , fc = 0,..., TV.(2N + 1)! k + 1 V k J V N - k

(iv) According to Lemma 4.1, the polynomial Q(X) corresponding to (4.22) now reads:
N

Q(X) = X2N+2 + d2k X2N~2k. (4.27)
k=0

From Eqs. (4.19) and (4.27) we immediately obtain l + X^o^fc = ^ (c^- (Riordan 1979,
nt v\ —  

.Y2-lCh. 3, Ex. 11(a))) and by polynomial division, we arrive at Q(X) = ~ R(X2)
where

N k-1

R(Z) := ZN+ Y/(1 + Y,d2i)ZN~k ^ K[Z].
k—1 j—0

Since d2k < 0 for k = 0, the coefficients Kk of R(Z) = ~Y^=0^kZk satisfy 0 <
Ko < K\ < ... < kn and Lemma 4.2 (b) yields \z\ < 1 for all zeroes of R(Z) or Q(X),
respectively. Consequently, Lemma 4.1 guarantees the convergence of J2kLo l°"fc|2 for an
arbitrary choice of ctq, <t.y Thus, we can conclude dim W^N = N. □
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4.2. Uniqueness of dipole-type direction fields. The following lemma generalizes
Lemma 3.2 to the case of complete but not necessarily orthogonal function sets.

Lemma 4.4. Let {tpn '■ n € No} be a complete system in a Hilbert space TL and let
{Xn ■ n € No} C Tt. Let, furthermore, the inequality

N N

y^n - Xn) <®\\^2anipn (4.28)
71 = 0 n=0

hold for arbitrary N E N0, an E C, 0 < n < N and with 0 < 0 < 1 independent of N
and an. Then the system {\n '■ n G No} is complete in Tt.

Proof, cf. Boas (1940) or de Sz. Nagy (1947).

Theorem 4.5. Let D be a perturbed axisymmetric direction field which has either the
form Vr(x) = 2xp(x), T>g(x) = 1 or Vr(x) = 2x, T>g{x) = p(x) withp, p E C3([— 1, 1], M).
Let the perturbations be small in the sense that

max Q(x) + 4 | ||Q|| I < tt:, max Q(x) + 4 |||<2||| < ^ (4.29)
[—1,1J ID [—1,1] o

with

|||Q|||:=max{-i||Q'||, ||Q"||, 3^|\\Q'"\\},■V7" 3 V 7 V 5,rB ) (4.30)

Q{x) := x2(l - p{x)f, Q{x) := (1 - z2)(l - p{x))2

and ||. || denoting the norm in 7i — L2((—1, 1)). Then there holds for the solution space
H p of Problem Pg:

dimH^o = 1.

Proof. (I) We treat the case of the perturbation p(x) first and note in the case p(x)
only the necessary changes.

(i) Setting ipn(x) := Tn(x) with Vr(x) = 2x, Vg(x) = 1, and
Xn{x) := %i{x) with Vr(x) = 2xp(x), T>g(x) = 1, we obtain with (2.26) and

(A.4):

2Mx) = 3 Pi(x),

fPn{x) = ^(P„+l(x) - Pn-i{x)) + 2^~xPn(x)^

= Pn+i(x) + | Pn-l{x), 71 e N,

i>n{x) - Xn(x) = \ 2""f 1 x(l - p(x))Pn(x) =: \ 2n^ q{x)Pn{x), n E N0 .
3n+l 3 n + 1

(4.31)



446 RALF KAISER AND MICHAEL NEUDERT

(ii) With (A.2) the expression || J2n=o ^V'nlli where N G N and an G C, n = 0,N,
can be evaluated as follows:

N 0 N

n=0 n,m=0

^ i i2 i lan|2 , 8 ^ , 2 ^ yi+1 3t(a„a*+2)
= 27 +L^^ + ^K(°^)+3L^T3 n + 3/2n=l ' n=l '

N "n — 1 \ 2 |an|2ly/n-iy
9 ^ Vn+ \)+ 9 ^\n + lJ n- 1/2 'n=2

Here, 5R(.) denotes the real part of (.). With the estimate

N—2 - <y\/ * \ N — 2 . -i i i9 N | |o
2 n Jc(QnQri+2) ^ y- re + 1 |an| n — 1 |an|

n + 3 n + 3/2 ~~ n + 3 re + 3/2 " n + 1 n — 1/2n=l ' n=1 ' n=3

< V ^ lQnj2 , lQn|2 <2 y lQ"|2
- ^ + 3/2 ^n + 3/2-^n + 3/2'

the expression || J2n=o flnV'nll2 can thus be estimated from below:

II , 2 8, l2 A laj2 4 l2 . i2n 2^ |an|2||X>nV>»|| - 27 'a°' +E^^"^(lao|- + l«2| )-3E^7^
n=0 n= 1 ' n=l '

N ' 12 lanl2> 12 \n |2 , I V lQral > 1 V
- 27 I 01 q , o /o - Q

(4.32)

27 1 1 3 ^ n + 3/2 ~ 3 ^ n + 3/2 'n=l ' n=0

(iii) The perturbed expression || Yln=o an{4>n — Xn)\\2 is decomposed as follows:

II \ " / i \ 2 4 \ ^ 2to + 1 2n +1 * / D r> \
|j Z^ an(i/jn — Xn) — g Z_^ m ^ n+1 ama™ ^ 771' 9

n=0 m,n=0

4 W
9 „

71 = 0
^(?Tr) '°n'2 / 92(2:)(^n(2:)) cfa
n=0

4 ^ 2m+1 2?t + 1 a r q2(x}pm(xjpn(x}dx
9 z—' m + 1 n+1 J_1

m,n=0
771^71

with q(x) = x(l —p(x)). In (iv) we prove the estimate

J q2 (x) Pm(x) Pn(x) dx < ^ j=== '=== 77 7   r^/? , m,ne No, m^n
4 HIQIH L
3 sj(2m + l)(2n + 1) |m - n|3/2

(4.33)
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with IIIQUI explained in (4.30). Furthermore, we have with 1 ̂ 72 < 3 analogously
to the estimate (3.8) in Sec. 3:

N 1 ,1 1 N

ei(m-n-v)xdx|«m|l«n| _ | || I ^ 1 _ J_
\m — n|3/2 ^ m n |^|3/2 2n J_7r

i,n=0 1 1 m,n=0 i/= — 00 11 n
n^n m^n

1 fit N 00 ivx-YJ £ £ 0372^
^ m,n=0 u—-oo ' '

,.n N 2 00 v

s/jEwo'i% LW< S 62>^_7r n=0 i/=l n=0

Thus we can estimate || ]Cn=o an(^n - Xn)l|2;

^ 2 4 _ , ^ /2n+ 1\2 Ia, |2

£«„«„-x„)| s5,m.%e(l)E(^) „+l/2
n=0 n—0 '

4-— IIIQUI 2m + 1 2ra + 1 |am||a„| 1
27 m^o m + 1 n + 1 v/(2m + l)(2n+ 1) Im - n|3/2

m^n

^16 n, , \ ' K|2 32 nin|n v ^ \am\ bnl 1
- 9 ["" Sn + 3/2 27 111 m5o + 3/2 \/n + 3/2 |m - n|3/2

m^n

<H(ffiQW + 4|||<}|||)^J^.71=0

(4.34)
(iv) We prove here inequality (4.33). Let us first consider the expression

fhQ(x)P* (x) dx with v > 3. Repeated partial integration and use of Eq. (A.6) yields:

jlQ{x)Pv{x)dx= fQ"\x){ Df+3 3PV.1-1

(^ + 5/2)(v + 3/2) (i/ + 5/2)(i/~ 1/2)

3 Pv-l Pu-3
{v + 3/2) (^ - 3/2) (f - 1/2) (f - 3/2)

Thus, with Cauchy-Schwarz and (A.2):

da;.

el
(x) dxJ Q(x)Pv(a

1 1 1<
4 2f + 1 i^5/2

v5 9 j/5
+

(1/ + 7/2)(2^ + 5/2)2(i/ + 3/2)2 (1/ + 5/2)2(u + 2,/2){v - 1/2)2
9 v

(i/ + 3/2)2(j/- l/2)(i/-3/2)2 (i/| l/2)2(i^ — 3/2)2(^ — 5/2)

s 3 "*s-

1/2

HQ'" I!

(4.35)
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In the last estimate we made use of the fact that the bracket takes its maximum for
v = 3. Similarly, we obtain for v — 1 and 2:

^ <^l\\Q'\\, (4-36)

(137)/

Q(x)P\(x) dx

l
Q(x)P2(x) dx

l

Summarizing (4.35) - (4.37), we have

Q(x)Pu(x) dxL "eR <"8)

Next, we decompose Prn{x)Pn{x) according to (B.3), make use of the properties of the
coefficients (mnv), in particular of (4.21), and of

(mnv) < , , (4.39)
y/ (2 to + 1)(2 n + 1)

and obtain with (4.38):
el

q (x)Pm(x)Pn(x) dx
'-1

<^(2^+1) (mnv) I f Q(x)Pv(x)dx
7/ J —1

111QIII _J_ <r £ IIIQIII i
' ^ 7/5/2 Q^/(2ro + l)(2n + 1) ^5/2 3 \/(2to + l)(2n+ 1) |m - n|3/2 '

v—\m—n\E2'L

which proves (4.33).
In the last estimate we made use of

V* 1 " 1 1 f°° 1 1 ( 1 1 ^ - 1 (\ 1
+ 2 Jno ^ X~ + 2(a-l)J - 2(a — 1) / '

n—no€2Z

which is valid for n G N and any real a > 1. Inequality (4.39) follows from (B.3) with
x = 1, which implies (mnv) < and the total symmetry of (mnv}, which implies,
moreover,

• f 1 1 1 1(mnv) < mm ■{ ,  ,  >.N ~ 12m + 1' 2n + 1' 2v + 1 J
(v) We now prove the statement of the theorem. From (4.32), (4.34), and the first

condition in (4.29) follows that the systems {ipn : n G No} and {xn '■ n £ No} satisfy
condition (4.28) in Lemma 4.4. Since Po J- V'td n G N0, condition (4.28) holds with the
same 0 also for the enlarged systems {Po, tpn ■ n G No} and {Po, \n ■ n G No}. As the
first system is complete, so is the second. On the other hand, there is Po ^ Span {\n ■
n G No} since the assumption Po = YlnLo^nXn with bn G C leads, with (4.28), to the
contradiction

oc 2 00 2 00

|| ^ ^ bnlpn H~ ||Po|| ~ || ^ ^ ^0 == || ^ ^ ^ni^Pn Xn)
n=0 n=0 n=0

oo

< ©

i=0
0 < e < 1
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So, we have dim {\n '■ n G No}1" = 1, which is according to Corollary 2.5 the statement.
(II) In the case that the dipole field is perturbed by p(x), we define the ^n(x) as before

and Xn(%) := 3(n+i)^n(x) with Vr(x) = 2x and T>g(x) = p(x). ipn — Xn with (A.5) and
(A.l) now takes the form

V>o(z) - Xo{x) = 0,

tpn{x) - Xn{x) = - (1 -p(x))(Pn + i(x) ~ Pn-l(x))

1 2n + 1
3 n{n + 1)
1 2n + 1

\Jl-x2 (p(x) - l)Pn(x)

- 3n(n + l)S(x)P"{x)' "£N-

The estimate (ii) remains as before and (iii) now becomes:

||][>n(&.-Xn)|| = (n(n\ 1)) y2W{P^) dx
n=0 n=1 ^ ' J 1

N
1 2m + 1 2n + 1 Z*1 „2/ >ni < , ,

+-g £
m,n=1
m^n

Instead of (4.33) we now use the estimate

r 1
J ^2{x)Ptn{x)Pn{x) dx 4 / m(m + l)n(n + 1) |||0lll M ,

— q \/7o—Tr^TTTTi 13/2 ' m>neN o, m ^ n.3y (2m+l)(2n + l) |m — n\6lz

(4.40)
Thus, we can estimate analogously to (iii):

N „ iV

£ ■>„«„ - x„)|| < I max Q(x) V (^^)
n=0 1 ' n=1 v '

2n + 1 \ 2 n(n + 1)
—j\n(n + l)/ n+1/2

-I-— IIIOIII V" / (2m + l)(2ra + 1) |om| |qn|
27 y m(m + l)n(n + 1) |m — n|3/2

m^n

<T - ni \ \ " lQ"|2 I 1® ninlll \ " lam| [OnJ 1
- 9 hM] ^ ^ n + 3/2 27 ^/m + 3/2 ,/n + 3/2 |m - n|3/2

m=fin
N i 12

<
" 9 V r-(maxQIxl + llllQlll)^-^.

n=l

In the derivation of inequality (4.40), the only difference to (iv) is that the expansion
(B.3) is replaced by (B.4). Moreover, the estimate

i + 1) — m(m + 1) — n(n + 1)) < yjm(m + 1 )n(n + 1) if |m — n\ < v < m + n

has been used.
The rest of the proof in (I) applies without changes to the present situation. □
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Remark 4.6. Let us compare Theorems 4.3 and 4.5 to the results of Hulot et al. (1997)
in the case of axisymmetry. These authors derived an upper bound on the dimension of
the solution space equal to I — 1 with / being the number of loci with Vg = 0 (poles).
This implies uniqueness in the case that there are not more than two poles on S2. No
smallness condition is required. Theorem 4.3 demonstrates that in terms of poles, this
bound cannot be improved. Theorem 4.5, on the other hand, guarantees uniqueness for
all direction fields which are close to Dx in the sense of condition (4.29). Note that the
p-perturbation seems to allow for direction fields with multiple poles close to 9 = 0 or
7T. However, we were neither able to find an explicit example of such a field nor to prove
the contrary. In the first case the statement in Theorem 4.5 would not be implied by the
result of Hulot et al. (1997), and the number of poles would in general overestimate the
dimension of the solution space (cf. Sec. 4.4).

4.3. Additional constraints and uniqueness. The following theorem and remark present
possibilities to enforce uniqueness in the problem P3 by imposing additional constraints.
The last remark deals with the so-called signed direction problem.

Theorem 4.7. Let N € N and D,v be the axisymmetric 2 v-pole field Vf (a;) =
(N + l)PN{x), T>g(x) = P'N(x). Then the modified problem P3 where vl* has addi-
tionally to satisfy

l^l = 0(|x|~<A+1') for |x| —> 00 (4-41)

is uniquely solvable.

Proof. Let g = ^^°=0 TkPk and let us write the (7^,)ngNH with D = Da? and with help
of (A.l) and (A.5) in the form

Tq = (N+1)Pn,

Tn = (2n + 1) ((iV + 1 )PNPn - ± PhPn), 'H e N.

Using (B.3) and (B.4), the condition (Tn,g)u = 0 then implies tjv = 0 and

N+n -

Y, (2(N + 1) + — rjvnfc) (Nnk)rk = 0, n€ N (4.42)
k=N-n

with the abbreviation FNnk '■= k(k + 1) — N(N + 1) — n(n + 1). The condition (4.41)
yields bn = 0, n = in the expansion (4.13) of "f, and this implies with (4.14)
and (4.42):

N+n N+n

y. {Nnk) Tk = 0, Y rNnk (Nnk) Tk — 0, n = 1,..., N-l. (4.43)
k=N—n k=N—n

Starting with n = 1, which yields tat_i = tn+i = 0, Eqs. (4.43) can now successively be
evaluated with the result

Ti = r2 = ... = t2n-i = 0.

Observe here that (N n N±n) 7^ 0 and that FNnN+n 7^ FNnN-n ■ Equation (4.42) with
n = N yields then T2n = 0, and for all k > 2N there is 77- = 0 as is obvious from
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the recurrence relation (4.3). Therefore, the only coefficient 0 is tq, which proves our
claim. □

Remark 4.8. Another possibility to enforce uniqueness is to allow only solutions
which are represented by finite sums of Legendre polynomials: Let N G N, T>r[x) =
(N + 1 )Pj\[(x), T>g(x) = P'N(x) as in Theorem 4.3, and g G W^~ with g(x) ^ 0 almost
everywhere. Then the solution ® in Problem P§ is of the form

OO

$ = cr~(N+1)PN (cos 9) or ^ ^ Cfc r~(fc+1)Pfc(cos$)
fc=l

with infinitely many Ck 0.
Proof. Let no 6 N and ^ = J2k*Li ck r~'fc+1'Pfc (cos#) be any axisymmetric solution

of Problem (2.11). Then the traces of dg^ on S2 are given by (cf. Corollary 2.5)

n0

(N + l)<7(cos0)P/v(cos6') = — y~^(fc + l)cfcPfc(cos$),
k= 1
no

g (cos 0)P'N (cos 9) sin# = — ̂  Cfcffc(cos9) sin0,
k= 1

respectively. Therefore, we have

"° / - \
y;Ck [(N + 1 )PN(x)P'k(x) - (k + 1 )P'N(x)Pk(x)) =0, X = cos9.
k=1

Obviously, the term in parentheses on the left -hand side vanishes if k = N and is a
polynomial of degree k + N — 1 if k ^ N. Consequently, there is Cfc = 0 for k =/=■ N. □

Remark 4.9. The signed direction problem prescribes the direction including the
sign on S12; i.e., the function / in P3, resp. g in Pg is not allowed to change the sign.
The quadrupole example above demonstrates that, in general, the non-uniqueness of the
unsigned direction problem holds likewise for the signed problem. Note that the solution
g depends on the parameters a0 and crx; i.e., g = g[a0, ffi]. g[cr0, 0] is obviously a solution
of the signed problem, whereas p[0,cri] is not since all -P2/C+1, k G No, and hence gfO.erjJ
are odd functions. Whether g[ao,<7i] is a solution of the signed problem depends on the
ratio of 00 and a 1. This demonstrates that the restriction of the direction problem to
the signed variant does not guarantee uniqueness. Moreover, the set of solutions of the
signed problem is no longer a linear space.

4.4. Solution space and rotation number. For 3-dimensional axisymmetric direction
fields a rotation number can be introduced quite analogously to the 2-dimensional case.
This subsection provides some evidence that this rotation number determines the dimen-
sion of the solution space.

Let D G C1(S'2,K) be a nowhere vanishing axisymmetric direction field with repre-
sentation D(0) = Dr(9) er(9) + Dg(9) eg (9). The quantity

) d ( De(9)\ - } Dr(0)j--Dg{6) - De(9)^Dr(9) _
0(0) := / — (arctan —)dd= /  — ^ =7-^  d9 (4.44)

J d9\ Dr(6)' J D2r(0) + D2e(9)
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measures the rotation angle of D(0) with respect to the normal er(6). A suitable rotation
number p, measuring the number of turns of D in the interval 0 < 9 < n, is given by

+ ("5)
I Air

Note that the rotation number refers to a fixed frame which explains the 1/2 in Eq.
(4.45). Note, furthermore, that 2p g Z since Dg — 0 at 6 = 0 and 7r.

In the following we investigate three simple direction fields, viz:

D^(0) :=Dm(0) + AD^), (M,N) — (1,2), (1,3), (2,3), Ae[0,oc)

with
Djv($) = (N + l)Pyv(cos0) er + P'n(cos9) sin 6 eg,

and := D/v. Rotation angle and rotation number are determined from (4.44) and
(4.45), respectively. Plots of <p(9) for various values of A > 0 are shown for Dj2 and D^3
in Figs. 2 and 3, respectively. The case A = 0, where D°2 = D°3 = Di, is shown in Fig.
1.

Fig. 1. Rotation angle (p versus 9 of the direction field Di

Figure 1 and the right plots of Figs. 2 and 3 refer to rotation functions (j>{6) of pure
multipole fields, whereas the other plots demonstrate a jump of the rotation number at
the critical value A = 2/3. Similar features are observed for D23 (not shown). For the
rotation number Pmn of D^/iv as a function of A, we find:

f 1 for A < I f 1 for A < \ f § for A < |
Pl2 = \ | for A > § ' Pl3 ~ \ 2 for A > | ' p2S " { 2 for A > |.

(4.46)
On the other side, the dimension of the solution space dim W^ is determined for D =

. In all three cases and for all A € [0,00], there is dim W^ > 1 since g = 1 is
obviously a solution of the problem P3. In order to find further solutions we proceed
as in Sec. 4.1; i.e., formal solutions are given by series expansions whose coefficients
obey recurrence relations of the type (4.3). These coefficients still depend on A and
the convergence of the series has to be investigated in dependence on A. This has been
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Fig. 2. Rotation angle 4> versus 9 of the direction field Dj2 for three
different values of the parameter A. Observe the jump in the rotation
number at A = |.

Fig. 3. The same as Fig. 2 for the direction field Dj3

done numerically for all three direction fields and for a variety of A values. In the case
of D^2 there is just one series, and we find convergence for all tested values above the
critical value A = 2/3 and divergence below. The same critical A value appears for Dj3.
However, there are now two linear independent series; we find both converging above the
critical value and none converging below.

In the case of D23 the recurrence relations define a series depending on two parameters,
a 1 and a2. For A > | the series converges for all values of o\ and cr2- For A < | the
situation is more complicated: A first rough test did not reveal any converging series.
In a second step, we investigated finite sums S(X,v,m) := 1 \ak\2 with v being the
ratio 0"i/<t2. Varying v for fixed m and A < | we found a sharp minimum of S(\,v,m)
at some value v = vq(X, m). Enlarging m we found, furthermore, Vq(A, to) converging to
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some vq(X). We interpret these numerical findings as an indication of a converging series
for vo(A) with A < |.

Summarizing these results, we have:

dim W1' —I ^ for A < 3 ± I f 1 for A < 3
dim W^x -< 2 for A > | , dimWD,3 | j 3 for A > |

dimWi, =i 2 f°rA<!
(4.47)

°23 |3 for A > |

A comparison of (4.46) and (4.47) suggests the following conjecture:

Conjecture 4.10. Let D: S2 —> R3 be a nowhere vanishing axisymmetric direction
field with rotation number p. Then, the dimension of the solution space dim Wp of
problem P3 is given by

dim Wf3 2/9—1 if p > 1,
0 otherwise

A. Appendix. This appendix collects some definitions, conventions and relations
about Legendre polynomials and spherical harmonics which are used in the main part of
the paper (cf. Abrainowitz & Stegun 1972).

The Legendre polynomials Pn are defined on the interval (—1, 1) by

1 dn
P„(x) := (V-l)n), »€N0,

2"n! dxn

and the associated Legendre functions P"' by

dm
P™(x) := (1 - z2r/2 — Pn(x), n e No, m = 0,..., n. (A.l)

They satisfy the orthogonality condition

/
1 P™{X)P% dx = —+ 5nn>. (A.2)

2n + 1 (n - m)\

Obviously, there is PT(' = Pn. It is sometimes convenient to use normalized Legendre
polynomials Pn:

Pn(x) ■= ,, ,fn(X)  = J2-^ Pn(x) . (A.3)
il' n J L2{( 1,1)) V 2

The following recurrence relations for Pn, Pn, P™ have been used in Sees. 2 or 4:

(2 n + 1 )xPn(x) = (n + l)Pn+i(x) + nP„_ i(x), (A. 4)

(2n + 1)(1 - x2)P'n(x) = n (n + l)(P„_i(x) - Pn+i(x)), (A.5)

(2n + l)P„(x) = i*+1(x) - P^_i(x), (A.6)
~ ~ 71+1

xP„(x) = a„Pn+i(x) + a„_iP„_i(x), a„ := —======, (A.7)
■y (2?i 1)(2ti + 3)

(1 - x2)(2n + l)P'n(x) = (n + l)(n + m)P™_1(x) - n(n + 1 - m)P™+1(x). (A.8)
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The spherical harmonics Yk with k > 0 are explained with help of P™:

Pk(cos6) eik,p, neN0, k = 0,...,n,

and those with k < 0 are obtained by complex conjugation:

y-fc(0, p):=(-l)kY**{9,tp), ne No, k — 0,n.

From (A.2) follows the orthonormality relation

Yk(6, ip) Yk, (0, if) d£l = 6nn' Skkf n, n' e N0, \k\ < n, \k'\ < ri.f
Js2Is2

We note yet the recurrence relation

8Yk in2 - k2
sin6^- = nNkn+lYk+l - (n + 1) < := ^ (A.9)

following from (A.8).

B. Appendix. This appendix collects some useful relations concerning the expansion
of products of spherical harmonics, resp. of Legendre polynomials (cf. Varshalovich et al.
1988).

Products of spherical harmonics can be expanded in finite sums of spherical harmonics
according to

£ ['2jV+1"2"4;1"2"+1']'/'(^;)(^i) n«,i

(B.l)
with being the Wigner symbols. These are nonzero only if

K + k + k = 0, \N — n\ < v < N + n; (B.2)

moreover, they are real and invariant with respect to cyclic permutations of the rows and
obtain a factor if two rows are interchanged. They are related to the more
commonly used Clebsch-Gordan coefficients C™Knk by

Nnv^ ( 1 ̂ „_|_K_|_2jv 1 k
Kkn) ~ ^T\ N-Kn-k'

Note that the conditions (B.2) ensure the finiteness of the sum in (B.l).
In the axisymmetric situation, (B.l) reduces to

Pn{x) Pn(x) = ^(2^ + 1) (Nnv) Pv{x), (B.3)

and for K = — k = 1 to

PN(x)Pn(x) = \ (K" + i) - N(N + 1) - n(n + 1)) (Nnv) Pv{x), (B.4)
V

where we have introduced the abbreviation

N n 2
(Nnv) := ( 0 0 o ) • (B.5)
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From the properties of the Wigner symbols, it follows that (N n v) > 0, the total sym-
metry and the necessary condition \N — n\ < v < N + n for (Nnv) being nontrivial.
Moreover, (Nnv) 0 implies N + n + v 2p with p <E No. In that case we have the
explicit representation

(Nnv) = (~l)p
(p — 2N)\ (p — 2n) \ (p — 2v)\ 1/2 p j

(B.6)(p+1)! J (p — N)\ (p — n)\(p — v)\
The following recurrence relations follow from the corresponding relations for the Wigner
symbols, resp. the Clebsch-Gordan coefficients:

(N+lnv) = [N~n+U)i~Z+n+I/+]l (Nn+1 v), (B.7)
{-N+n+v)(N-n+v+l) ' v '

/at v (—N+n+v)(N — n+v+1) . v(N—l n v) = — ——— — (Nn-lv), (B.8)
(N—n+v)(—N+n+v+l) N v '

((N + v+lf -n2)(n2 - (N-v)2)
{N"+IV} ~ ((N+"+l)»-(, + l)-)((n + l)'-(ivL)') lNn'1")' (B'9)
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