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Abstract—This paper proposes a novel theoretical non-stationary
three dimensional (3-D) wideband twin-cluster channel model for
massive multiple-input multiple-output (MIMO) communication
systems with carrier frequencies on the order of gigahertz (GHz).
As the dimension of antenna arrays cannot be ignored for massive
MIMO, near field effects instead of far field effects are considered
in the proposed model. These include the spherical wavefront
assumption and a birth–death process to model non-stationary
properties of clusters such as cluster appearance and disappear-
ance on both the array and time axes. Their impacts on massive
MIMO channels are investigated via statistical properties includ-
ing correlation functions, condition numbers, and angular power
spectra. Additionally, the impact of elevation angles on correlation
functions is discussed. A corresponding simulation model for the
theoretical model is also proposed. Finally, numerical analysis
shows that the proposed channel models are able to serve as a
design framework for massive MIMO channel modeling.

Index Terms—Massive MIMO, 3-D twin-cluster channel model,
spherical wavefront, non-stationarity, birth-death process.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) technolo-

gies are of great importance in modern wireless com-

munication systems as they are able to substantially increase

spectral efficiency [1]–[3]. Recently, massive MIMO systems

[4]–[6], which are equipped with tens or even hundreds of
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antennas, emerge as an enhanced MIMO technique to meet the

increasing traffic demand of the fifth generation (5G) wireless

communication networks [7], [8]. It was stated in [4]–[6] that

massive MIMO systems have a number of additional benefits as

compared with conventional MIMO systems which only have

a small number of antenna elements. First, energy efficiency

can be significantly increased by massive MIMO systems as

they concentrate power on a sharp direction. Second, sys-

tem throughput can be boosted by utilizing multi-user MIMO

(MU-MIMO). Interference between users is averaged out by in-

troducing a massive number of antennas according to the large

number theorem. Third, implementation cost can be reduced

by including simplification of medium-access control layer and

deploying low-cost antenna elements due to great MU-MIMO

and beamforming gain. Lastly, massive MIMO systems are

more robust than conventional MIMO systems as they offer

excessive degrees of freedom. As a result, massive MIMO is

expected as an essential candidate technology for 5G wireless

communication networks.

For the sake of MIMO system design and performance

evaluation, it is indispensable to develop accurate and efficient

small-scale fading MIMO channel models. For conventional

MIMO systems, there are many small-scale fading channel

models reported in the literature. Regular shape geometry-

based stochastic models (GBSMs) such as one-ring, two-ring,

and ellipse models can be found in [9]–[16], where the au-

thors assumed that scatterers are distributed on regular shapes.

Thus, channel impulse responses of these channel models were

purely determined by the geometrical relationships between

the scatterer and receiver (transmitter). Standardized GBSMs

such as the spatial channel model (SCM) [17], the WINNER II

model [18], and the international mobile telecommunications-

advanced (IMT-Advanced) model [19] focus on the geometry

of the first and the last bounces of scatterers. In addition,

correlation-based stochastic models (CBSMs) [20]–[23], such

as the Kronecker model and Weichselberger model, are usually

utilized to study the performance of MIMO systems due to their

low complexity.

However, the aforementioned conventional MIMO channel

models are not suitable to be directly applied to modeling

massive MIMO channels. Measurements on massive MIMO

channels in [24] and [25] indicated that there are two charac-

teristics making massive MIMO channels different from con-

ventional MIMO channels. First, since the number of antennas

is huge in massive MIMO systems, the far field assumption in

conventional MIMO channels may no longer be appropriate.

The distance between the receiver and transmitter (or a cluster)

may not be beyond the Rayleigh distance defined by 2L2/λ
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[26], where L and λ are the dimension of the antenna array

and carrier wavelength, respectively. For uniform linear arrays

(ULAs) with a fixed antenna separation ∆ (e.g., ∆ = λ/2), the

dimension L = (M− 1)∆ is linearly increasing with the num-

ber of antenna elements M. Therefore, the wavefront should be

assumed as spherical instead of plane when the number of an-

tennas is large. Although the impact of spherical wavefront on

short-range or constant distance communications was studied

in [27] and [28], its impact on massive MIMO channels has

not yet been reported in the literature. Second, non-stationary

properties can be observed on large antenna arrays [24], i.e.,

appearance and disappearance of clusters can occur on the

array axis. This leads to the fact that each antenna element

on the array may observe different sets of clusters, which is

not characterized in conventional MIMO channels. As a result,

the wide-sense stationary (WSS) assumption on antenna arrays

does not necessarily hold for massive MIMO channels. The

authors in [29]–[32] modeled cluster evolution on the time axis

with birth-death processes or Markov processes. However, to

the best of our knowledge, non-stationary properties of clusters

on the array axis have not been studied for massive MIMO

channels in the literature.

Additionally, it was reported in [33] that scatterers would

disperse in elevation (or the vertical plane) and the impact of

elevation angles needs to be addressed in realistic channel mod-

els. Therefore, three dimensional (3-D) channel models should

be developed for massive MIMO systems. Extensive conven-

tional 3-D MIMO models can be found in the literature such

as the twin-cluster MIMO model [34], the COST 2100 model

[35], [36], 3-D extension of the WINNER model [37], 3-D

double-directional radio model [38], and 3-D MIMO vehicle-

to-vehicle channel model [39]. In this paper, we will extend the

twin-cluster MIMO model in [34], where a cluster is divided

into two representations of itself (one at the transmitter and

the other at the receiver), by incorporating the spherical wave-

front assumption, cluster evolution on the time and array axes,

and 3-D cluster properties to capture massive MIMO channel

characteristics.

The contributions of this paper are summarized as follows:

1) This paper first proposes a theoretical non-stationary

3-D wideband twin-cluster channel model for massive

MIMO systems with carrier frequencies in the order of

gigahertz (GHz), i.e., they are not applicable to millimeter

wave communication systems. To the best of the au-

thors’ knowledge, this is the first 3-D model for massive

MIMO channels. An infinite number of scatterers are

assumed in the proposed theoretical model (or reference

model), which cannot be implemented in hardware or

for simulation purposes. Therefore, we also propose a

corresponding 3-D simulation model with finite num-

bers of scatterers. Various statistical properties, such as

the spatial-temporal correlation function, Doppler power

spectral density (PSD), and condition number, are studied

for both the theoretical and simulation models. Numerical

results have demonstrated that the statistical properties of

the simulation model can fit those of the theoretical model

very well with reasonable complexity. Also, the impact

Fig. 1. A 3-D wideband twin-cluster massive MIMO channel model.

of cluster elevation angles on correlation properties of the

proposed massive MIMO channel models is investigated.

2) In the proposed theoretical and simulation massive

MIMO channel models, near field effects caused by the

increasing antenna elements are considered, including

the spherical wavefront assumption and the variation of

Doppler frequencies over the antenna array.

3) Also, appearance and disappearance of clusters (i.e.,

cluster evolution) on both the array and time axes are

jointly modeled by birth-death processes, which make

the proposed massive MIMO channel models essentially

non-stationary.

The rest of this paper is organized as follows. Section II gives

a general description of the proposed theoretical non-stationary

3-D wideband twin-cluster channel model for massive MIMO

systems. Statistical properties of the proposed theoretical model

are studied in Section III. Section IV presents the corresponding

simulation model for the theoretical model. Numerical results

are presented in Section v and conclusions are finally drawn in

Section VI.

II. A THEORETICAL NON-STATIONARY 3-D WIDEBAND

TWIN-CLUSTER MASSIVE MIMO CHANNEL MODEL

Let us consider a wideband massive MIMO system with

multiple twin clusters in a 3-D space to describe different taps

of the channel, as illustrated in Fig. 1. For a twin-cluster channel

model with Ntotal clusters, each cluster, say Clustern (n =
1, . . . , Ntotal), is made of a representation ClusterTn at the

transmitter side denoting the first bounce and a representation

ClusterRn at the receiver side denoting the last bounce. The

propagation environment between these two representations is

abstracted as a virtual link [34].

Let us assume that the transmitter and receiver are equipped

with ULAs with MT and MR antenna elements, respectively.

The distances between antenna elements are δT at the trans-

mitter and δR at the receiver. Let the transmitter be the origin

of the 3-D space, the distance vector between the transmitter

and receiver is D = (D, 0, 0). Furthermore, both azimuth and

elevation angles in the 3-D space are considered for clusters,

antenna arrays, movement direction of clusters, and movement

direction of antenna arrays as listed in Table I. It should be

noticed that the far field conditions (D > (2M2
T δ

2
T /λ), D >
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TABLE I
DEFINITIONS OF KEY GEOMETRY PARAMETERS

(2M2
Rδ

2
R/λ)) for conventional MIMO channels are not as-

sumed in the proposed model. Thus, the wavefront of each

wireless link is assumed to be spherical resulting in the fact

that the AoAs and AoDs on the antenna arrays are no longer

equal for each antenna element and the phase of each antenna

element is determined by geometrical relationships.

Another important characteristic of massive MIMO channel

models is the appearance and disappearance of clusters on the

antenna array as reported in [24]. Contrary to conventional

MIMO channel models assuming that a cluster is always ob-

servable to all the antennas on an antenna array, a cluster may

only be observable to a subset of antennas on an antenna array

for massive MIMO. To put it another way, each antenna has its

own set of observable clusters. Examples are shown in Fig. 1.

Clustern+1 is observable to the kth but not observable to the

qth (1 � k, q � MR) receive antenna. Similarly, Clustern+2 is

observable to the lth but not observable to the pth (1 � l, p �

MT ) transmit antenna. On the other hand, Clustern is ob-

servable to both the lth transmit antenna and the kth receive

antenna. Denote CT
l (t)(C

R
k (t)) as the cluster set in which clus-

ters are observable to the lth transmit antenna (the kth receive

antenna) at time instant t. Let Ntotal be the total number of

clusters that are observable to at least one transmit antenna and

one receive antenna. The value of Ntotal can be calculated as

Ntotal = card

(
MT⋃

l=1

MR⋃

k=1

(

CT
l (t)

⋂

CR
k (t)

)
)

(1)

where the operator card(·) denotes the cardinality of a set.

Then, a cluster is observable to the lth transmit antenna and

the kth receive antenna if and only if this cluster is in the set

{CT
l (t)

⋂
CR

k (t)}. Sets CT
l (t) and CR

k (t) are generated based

on the cluster evolution (birth-death process) on both the time

and array axes as described in Section II-B.

A. Channel Impulse Response

Next, let us denote the maximum Doppler frequency as fmax,

the line-of-sight (LOS) Rician factor as K, and the initial

phase of the signal at the transmitter as ϕ0. Additionally, let

us assume that the power of the nth cluster is Pn and there

are, respectively S1 and S2 rays within the representation at

the receiver side and the representation at the transmitter side.

Based on geometrical parameters in Table I, as S1, S2 → ∞,

the theoretical model of the wideband massive MIMO channel

matrix can be represented as an MR ×MT complex matrix

H(t, τ) = [hkl(t, τ)]MR×MT
where k = 1, 2, . . . ,MR and l =

1, 2, . . . ,MT . The multipath complex gains between the lth
transmit antenna and the kth receive antenna at time t and delay

τ , hkl(t, τ), can be presented as

hkl(t, τ) =

Ntotal∑

n=1

hkl,n(t)δ (τ − τn(t)) (2)

— if Clustern ∈ {CT
l (t) ∩ CR

k (t)},

hkl,n(t) = δ(n− 1)

√

K

K + 1
ej(2πf

LOS
kl

t+ϕLOS
kl )

︸ ︷︷ ︸

LOS

+

√

Pn

K + 1
lim

S1,S2→∞

S1∑

i1=1

S2∑

i2=1

ej(2πfkn,i1
t+ϕkl,n,i1i2)

√
S1S2

︸ ︷︷ ︸

NLOS

(3)

— if Clustern �∈ {CT
l (t) ∩ CR

k (t)},

hkl,n(t) = 0. (4)

The calculation of complex gains can be divided into non-line-

of-sight (NLOS) components and LOS component.

1) For NLOS Components: The kth receive antenna vector

A
R
k (t) and the vector between the nth cluster and the receive

antenna array via the i1-th ray D
R
n,i1

(t) can be presented as

A
R
k (t)=

MR−2k+1

2
δR

⎡

⎣

cos υR
E(t) cos υ

R
A(t)

cos υR
E(t) sin υ

R
A(t)

sin υR
E(t)

⎤

⎦

T

+D (5)

D
R
n,i1

(t)=DR
n (t)

⎡

⎣

cos ξRn,i1(t) cos θ
R
n,i1

(t)

cos ξRn,i1(t) sin θ
R
n,i1

(t)

sin ξRn,i1(t)

⎤

⎦

T

+D. (6)

Similarly, the lth transmit antenna vector A
T
l and the vector

between the nth cluster and the transmit antenna array via the

i2-th ray D
T
n,i2

(t) can be given as

A
T
l =

MT − 2l + 1

2
δT

⎡

⎣

cos υT
E cos υT

A

cos υT
E sin υT

A

sin υT
E

⎤

⎦

T

(7)

D
T
n,i2

(t) =DT
n (t)

⎡

⎣

cos ξTn,i2(t) cos θ
T
n,i2

(t)

cos ξTn,i2(t) sin θ
T
n,i2

(t)

sin ξTn,i2(t)

⎤

⎦

T

. (8)
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Fig. 2. Algorithm flowchart of the generation of the channel impulse response.

Then, vectors DR
kn,i1

(t) and D
T
ln,i2

(t) can be computed as

D
R
kn,i1

(t) =D
R
n,i1

(t)−A
R
k (t) (9)

D
T
ln,i2

(t) =D
T
n,i2

(t)−A
T
l . (10)

Next, the delay of the nth cluster of the twin-cluster model is

assumed to be the sum of two components. The first component

is calculated according to the geometrical relationships between

the antenna arrays and cluster locations. The second component

abstracts the delay of the virtual link between the twin clusters.

Then, the delay of the nth cluster τn(t) can be computed as

τn(t) =

∥
∥D

T
n (t)

∥
∥+

∥
∥D

R
n (t)

∥
∥

c
+ τ̃n(t) (11)

where the abstracted delay of the virtual link τ̃n(t) is randomly

drawn according to the uniform distribution U(D/c, τmax), and

τmax is the maximum delay (τmax = 1845 ns for NLOS [18]).

The operator ‖ · ‖ denotes the Euclidean norm, and c is the

speed of light. Then, the phase between the kth receive antenna

and the lth transmit antenna via the i1-th ray at the receiver, the

i2-th ray at the transmitter, and the nth cluster, ϕkl,n,i1i2(t), is

derived as

ϕkl,n,i1i2(t)= ϕ0 +
2π

λ

[∥
∥D

R
kn,i1

(t)
∥
∥+

∥
∥D

T
ln,i2

(t)
∥
∥+cτ̃n(t)

]
.

(12)

Accordingly, the Doppler frequency of the kth receive antenna

via the i1-th ray of the nth cluster fkn,i1(t) is presented as

fkn,i1(t) =
fmax

〈

D
R
kn,i1

(t),v
〉

‖DR
kn,i1

(t)‖ ‖v‖ (13)

where 〈·, ·〉 represents the inner product.

2) For LOS Component: In the same way, the Doppler

frequency fLOS
kl (t) and phase ϕLOS

kl (t) of the LOS components

can also be calculated as

D
LOS
kl (t) =A

R
k (t)−A

T
l (14)

fLOS
kl (t) =

fmax

〈
D

LOS
kl (t),v

〉

‖DLOS
kl (t)‖ ‖v‖ (15)

ϕLOS
kl (t) =ϕ0 +

2π

λ

∥
∥D

LOS
kl (t)

∥
∥ . (16)

The generation procedure of the channel impulse response

consists of the generation of the initial cluster set, generation

of parameters (delays, cluster powers, AoAs, and AoDs) for

the initial cluster set, array-time evolution of clusters, and the

generation of channel impulse response, as presented in Fig. 2.

This algorithm is a generalized version of the WINNER channel

model [18] by adding an extra block of array-time evolution of

clusters to capture massive MIMO channel characteristics. The

block of array-time evolution of clusters will be discussed in

the next section.

Fig. 3. Algorithm flowchart of array-time evolution of the proposed 3-D twin-
cluster model.

B. Non-Stationary Properties

The non-stationary process of the proposed massive MIMO

channel model is based on the array-time evolution of clusters

which can be characterized by two parts. The first part is the

generation of cluster sets CT
l (t) and CR

k (t) for each antenna

based on birth-death process on both the time and array axes.

This aims at modeling not only the phenomena of cluster

appearance and disappearance on antenna arrays of massive

MIMO, but also non-stationary behaviors of clusters on the

time axis. The generation procedure is achieved by extending

the concept of birth-death process on the time axis in previous

literature [29], [30] to the array axis as well. The outcome of the

first part determines the cluster set of each antenna. The second

part is the updates of geometrical relationships with respect to

the movements of the receiver and clusters. The outcome of

the second part determines all parameters for each cluster. The

algorithm flowchart describing the array-time cluster evolution

is depicted in Fig. 3.

Part 1: To describe the algorithm of the array-time cluster

evolution, let us first denote λG (per meter) and λR (per

meter) as the cluster generation rate and recombination rate.

Assume the initial number of clusters N and the initial cluster

sets of the first transmit and receive antennas CT
1 = {cTx : x =

1, 2, . . . , N} and CR
1 = {cRx : x = 1, 2, . . . , N} at the initial

time instant t are given, where cTx and cRx are two represen-

tations of Clusterx. Then, these clusters in cluster sets CT
1 and

CR
1 evolve according to birth-death process on the array axis to

recursively generate the cluster sets of the rest of antennas at
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TABLE II
DISTRIBUTIONS OF KEY GEOMETRY PARAMETERS

the transmitter and receiver at the initial time instant t, which is

expressed as

CT
l−1(t)

E→CT
l (t) (l = 2, 3, . . . ,MT ) (17)

CR
k−1(t)

E→CR
k (t) (k = 2, 3, . . . ,MR) (18)

where the operator
E→ denotes cluster evolution on either the

array or time axis. The survival probabilities of the clusters

inside the cluster set the on array axis at the transmitter PT
survival

and the receiver PR
survival can be modeled as exponential

functions [40]

PT
survival = e

−λR
δT
Da

c (19)

PR
survival = e

−λR
δR
Da

c (20)

where Da
c is the scenario-dependent correlation factor on the

array axis. According to the birth-death process, the average

number of newly generated clusters NT
new and NR

new on the

array axis based on the birth-death process can be computed

as [40]

E
[
NT

new

]
=

λG

λR

(

1− e
− δT

Da
c

)

(21)

E
[
NR

new

]
=

λG

λR

(

1− e
− δR

Da
c

)

(22)

where E[·] designates the expectation. After this process on

the array axis, a number of initial clusters may not survive for

certain antennas. Meanwhile, new clusters may appear on the

array. Each cluster evolves gradually on the antenna array. It

can be observed from (19)–(22) that, if two antenna elements

are more separated, the probability that they share the same

set of clusters is smaller. To imitate the complex propagation

environment, cluster indices in set
⋃MT

l=1 C
T
l and set

⋃MR

k=1 C
R
k

are randomly shuffled and paired to determine to which transmit

and receive antennas each cluster is observable.

Then, the cluster indices are reassigned from 1 to Ntotal.

Moreover, parameters of the initial clusters such as mean AoAs,

mean AoDs, delays, and distances are randomly drawn accord-

ing to distributions listed in Table II. The means and standard

deviations for ξ̄Tn , θ̄Tn , ξ̄Rn , θ̄Rn , and τn in Table II are generated

according to [18]. Also, the power of each cluster is calculated

and normalized as in [18].

At the next time instant t+∆t, the time-axis evolution of

clusters is operated as

CT
l (t)

E→CT
l (t+∆t) (23)

CR
k (t)

E→CR
k (t+∆t). (24)

To perform the evolution process of cluster on the time axis

as (23) and (24) show, define the time-dependent channel

fluctuation in the time axis at t+∆t as q(t+∆t). The channel

fluctuation measures how much the scattering environment

varies within a short period of time. The variation of scattering

environment is due to the movements of the receiver and the

clusters. Thus, the channel fluctuation is defined by [29]

q(t+∆t) = qr(t+∆t) + qc(t+∆t) (25)

where qr(t+∆t) is the channel fluctuation caused by the

movement of receiver defined by qr(t+∆t) = ‖v‖∆t and

qc(t+∆t) is the channel fluctuation caused by the movement

of clusters defined by qc(t+∆t) = PF (‖vT
n ‖+ ‖vR

n ‖)∆t (PF

is the percentage of moving clusters). Given the scenario-

dependent space correlation factor Ds
c , each cluster survives

with probability Psurvival on the time axis which can be cal-

culated as [29]

Psurvival (q(t+∆t)) = e
−λRq(t+∆t)

Ds
c . (26)

The mean number of newly generated clusters at time instant

t+∆t on the time axis E[Nnew(t+∆t)] is computed accord-

ing to the birth-death process [40]

E [Nnew(t+∆t)] =
λG

λR

(

1− e
−λRq(t+∆t)

Ds
c

)

. (27)

After the time evolution process as (23)–(27) show, all clusters

can be categorized as survived clusters or newly generated

clusters. The next issue is to decide the set of transmit and

receive antennas that are observable to each newly generated

cluster. This is determined by the birth-death process on the

array axis, which can be summarized into 4 steps:

Step 1: Randomly generate initial indices l̃ (1 � l̃ � MT )
and k̃ (1 � k̃ � MR) for the transmit and receive

antenna arrays. Then, let the newly generated cluster

be observable to the l̃-th transmit antenna and the

k̃-th receive antenna.

Step 2: Evolve the cluster on the transmit antenna array

based on birth-death process from the (l̃ − 1)-th to

the 1-st and from (l̃ + 1)-th to the MT -th antennas.

Step 3: Evolve the cluster on the receive antenna array based

on birth-death process from the (k̃ − 1)-th to the 1-st

and from (k̃ + 1)-th to the MR-th antennas.

Step 4: Add the cluster to cluster sets whose corresponding

antennas can observe the cluster.

Part 2: The remaining issue is the updates of geometry

relationships of clusters from t to t+∆t. The updates of

geometry relationships are different for survived clusters and

newly generated clusters. Thus, they are described separately.
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1) Survived Clusters: Regarding survived clusters, their

properties such as delays, Doppler frequencies, AoAs and

AoDs should be recalculated based on the updates of geometri-

cal relationships from t to t+∆t. First, the distance vectors

are updated due to movements of the receiver and clusters

according to

D
R
n (t+∆t) =D

R
n (t) + v

R
n∆t (28)

D
T
n (t+∆t) =D

T
n (t) + v

T
n∆t (29)

D
R
kn,i1

(t+∆t) =D
R
n,i1

(t)−A
R
k (t) +

(
v
R
n − v

)
∆t (30)

D
T
ln,i2

(t+∆t) =D
T
n,i2

(t) + v
T
n∆t−A

T
l . (31)

Second, the delay of the n-th cluster at t+∆t is expressed as

the sum of the updated geometrical delay and the delay of the

evolved virtual link,

τn(t+∆t)=

∥
∥D

T
n (t+∆t)

∥
∥+

∥
∥D

R
n (t+∆t)

∥
∥

c
+ τ̃n(t+∆t).

(32)

To describe the evolution of the virtual link, its delay τ̃n(t+
∆t) is based on a first-order filtering algorithm as τ̃n(t+∆t) =
e−(∆t/ς)τ̃n(t) + (1− e−(∆t/ς))X where X is randomly drawn

according to the uniform distribution U(D/c, τmax), ς is a

parameter that depends on the coherence of a virtual link and

scenarios. Third, the time-variant phase and Doppler frequency

are accordingly computed as

ϕkl,n,i1i2(t+∆t) = ϕ0 +
2π

λ
cτ̃n(t+∆t)

+
2π

λ

[∥
∥D

R
kn,i1

(t+∆t)
∥
∥+

∥
∥D

T
ln,i2

(t+∆t)
∥
∥
]

(33)

fkn,i1(t+∆t) =
fmax

〈

D
R
kn,i1

(t+∆t),v
〉

‖DR
kn,i1

(t+∆t)‖‖v‖ . (34)

Last, geometrical relationships of LOS components need to be

refreshed as well

D
LOS
kl (t+∆t) =A

R
k (t) + v∆t−A

T
l (35)

fLOS
kl (t+∆t) =

fmax

〈
D

LOS
kl (t+∆t),v

〉

‖DLOS
kl (t+∆t)‖‖v‖ (36)

ϕLOS
kl (t+∆t) =ϕ0 +

2π

λ

∥
∥D

LOS
kl (t+∆t)

∥
∥ . (37)

2) Newly Generated Clusters: On the other hand, for newly

generated clusters, their AoAs, AoDs, delays, and distances are

initialized according to distributions in Table II. The power of

each cluster is calculated and normalized as in [18]. Denote the

set of all survived clusters as CSurvived and the set of all newly

generated clusters as CNew after the time-axis evolution. The

average total power of survived and newly generated clusters

should be normalized as

∑

Clusteri∈CSurvived

Pi +
∑

Clusterj∈CNew

Pj = 1. (38)

Thus far, the array-time evolution of clusters from t to t+∆t
is finished. This evolution process can be operated recursively

with respect to time.

III. STATISTICAL PROPERTIES OF THE THEORETICAL

MASSIVE MIMO CHANNEL MODEL

A. Spatial-Temporal Correlation Function

The spatial-temporal correlation function between the chan-

nel gains hkl,n(t) and hk′l′,n(t) is defined as [10]

ρkl,k′l′,n(δT , δR,∆t; t)=E

[

h∗
kl,n(t)hk′l′,n(t+∆t)

|h∗
kl,n(t)| |hk′l′,n(t+∆t)|

]

. (39)

As the LOS component and NLOS components are indepen-

dent, (39) can be rewritten as the sum of the spatial-temporal

correlation functions of the LOS component and the NLOS

components

ρkl,k′l′,n(δT , δR,∆t; t)

= ρLOS
kl,k′l′,n(δT , δR,∆t; t) + ρNLOS

kl,k′l′,n(δT , δR,∆t; t) (40)

where

ρLOS
kl,k′l′,n(δT , δR,∆t; t) =

Kδ(n− 1)

K + 1

× ej[2πf
LOS
k′l′

(t+∆t)(t+∆t)−2πfLOS
kl

(t)t+ϕLOS
k′l′

(t+∆t)−ϕLOS
kl

(t)]

(41)

ρNLOS
kl,k′l′,n(δT , δR,∆t; t) =

1

Kδ(n− 1) + 1

× E

[

lim
S1,S2→∞

1√
S1S2

S1∑

i1=1

S2∑

i2=1

ejΦ0

]

(42)

with

Φ0 = 2πfk′n,i1(t+∆t)(t+∆t)− 2πfkn,i1(t)t

+ ϕk′l′,n,i1i2(t+∆t)− ϕkl,n,i1i2(t). (43)

B. Spatial Cross-Correlation Function

By setting ∆t = 0, the spatial-temporal correlation func-

tion reduces to the spatial cross-correlation (CCF) function

ρkl,k′l′,n(δT , δR; t).

ρkl,k′l′,n(δT , δR; t)=E

[

h∗
kl,n(t)hk′l′,n(t)

|h∗
kl,n(t)| |hk′l′,n(t)|

]

= ρLOS
kl,k′l′,n(δT , δR; t)+ρNLOS

kl,k′l′,n(δT , δR; t)

(44)

where

ρLOS
kl,k′l′,n(δT , δR; t) =

Kδ(n− 1)

K + 1

× ej[2πf
LOS
k′l′

(t)t−2πfLOS
kl

(t)t+ϕLOS
k′l′

(t)−ϕLOS
kl

(t)]. (45)

Regarding the correlation of the NLOS components, as a cluster

has a probability of e−λR(|l−l′|δT+|k−k′|δR/Da
c ) to survive when
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evolving from hkl,n(t) to hk′l′,n(t), the spatial CCF of the

NLOS components is scaled by e−λR(|l−l′|δT+|k−k′|δR/Da
c ,

ρNLOS
kl,k′l′,n(δT , δR; t) =

1

Kδ(n− 1) + 1
e
−λR

|l−l′|δT +|k−k′|δR
Da

c

×
π∫

−π

π∫

−π

π
2∫

−π
2

π
2∫

−π
2

ejΦ1pR
(
ξRn , θ

R
n

)
pT

(
ξTn , θ

T
n

)
dξRn dξ

T
n dθ

R
n dθ

T
n

(46)

with

Φ1 = 2πfk′n(t)t− 2πfkn(t)t+ ϕk′l′,n(t)− ϕkl,n(t). (47)

As the spatial CCF ρkl,k′l′,n(δT , δR; t) depends on the values

of k, k′, l, l′, and cannot be reduced to solely be with respect to

|k − k′| and |l − l′|, the WSS assumption on the array axis for

massive MIMO is not valid.

C. Temporal Autocorrelation Function

On the other hand, by setting l = l′, k = k′, the temporal

autocorrelation function (ACF) ρkl,n(∆t; t) is obtained.

ρkl,n(∆t; t) =E

[

h∗
kl,n(t)hkl,n(t+∆t)

|h∗
kl,n(t)| |hkl,n(t+∆t)|

]

= ρLOS
kl,n (∆t; t) + ρNLOS

kl,n (∆t; t). (48)

Since the LOS component is uncorrelated to NLOS compo-

nents, their temporal ACFs, ρLOS
kl,n (∆t; t) and ρNLOS

kl,n (∆t; t), are

calculated separately as

ρLOS
kl,n (∆t; t)=

Kδ(n−1)

K + 1

× ej[2πf
LOS
kl

(t+∆t)(t+∆t)−2πfLOS
kl

(t)t+ϕLOS
kl

(t+∆t)−ϕLOS
kl

(t)].

(49)

Regarding the correlation of the NLOS components, the survival

probability of a cluster is e−λR(‖v‖∆t+PF(‖vT
n‖+‖vR

n‖)∆t/Ds
c) when

evolving fromhkl,n(t) tohkl,n(t+∆t), the temporal ACF of the

NLOS components is scaled by e−λR(‖v‖∆t+PF(‖vT
n‖+‖vR

n‖)∆t/Ds
c),

ρNLOS
kl,n (∆t; t)=

1

Kδ(n−1)+1
e
−λR

|v|∆t+PF (|vT
n |+|vR

n |)∆t

Ds
c

×
π∫

−π

π∫

−π

π
2∫

−π
2

π
2∫

−π
2

ejΦ2pR
(
ξRn , θ

R
n

)
pT

(
ξTn , θ

T
n

)
dξRn dξ

T
n dθ

R
n dθ

T
n

(50)

with

Φ2 = 2πfkn(t+∆t)(t+∆t)− 2πfkn(t)t

+ ϕkl,n(t+∆t)− ϕkl,n(t). (51)

As the temporal ACF ρkl,n(∆t; t) depends on the values of t,
and cannot be reduced to solely be with respect to ∆t, the WSS

assumption on the time axis for the proposed massive MIMO

channel model is not valid.

D. Doppler Power Spectral Density

The Doppler PSD Sn(f ; t) with respect to the Doppler fre-

quency f is the Fourier transform of the temporal ACF, which

can be presented as

Sn(f ; t) :=

∞∫

−∞

ρkl,n(∆t; t)e−j2πf∆td(∆t). (52)

It should be also noticed that the Doppler PSD is time dependent.

E. Doppler Frequency Standard Deviation on the

Antenna Array

As spherical wavefronts are assumed in the proposed channel

model, different antennas on the same array will experience

different Doppler shifts. Namely, Doppler frequencies may

vary on the antenna array. To study the variations of Doppler

frequency of the receiver on the array axis, the average Doppler

frequency on the k receive antenna, f̄kn, is calculated as

f̄kn =

π∫

−π

π
2∫

−π
2

fkn
(
ξRn , θ

R
n

)
p
(
ξRn , θ

R
n

)
dξRn dθ

R
n . (53)

Next, the average Doppler frequency on the array axis µf̄n

is presented as µf̄n = E[f̄kn] =
∑MR

k=1 f̄kn/MR. Finally, the

standard deviation of Doppler frequency σf̄n on the array axis

can be obtained as

σf̄n =

√
∑MR

k=1

(
f̄kn − µf̄n

)2

MR
. (54)

For conventional MIMO channel models, the Doppler fre-

quency on the whole antenna array is assumed to be the same

which is equivalent to σf̄n =0. Conversely, for massive MIMO

channel models, σf̄n may not be 0 and a larger σf̄n means that

the Doppler frequency varies more significantly on the antenna

array.

F. Condition Number

Condition number is used to measure the correlation of the

channel matrix [4]. A larger condition number implies higher

correlation. The condition number is defined by the quotient

of maximum eigenvalue and the minimum eigenvalue of the

channel matrix

γ(dB) = 20 log10
λmax(H)

λmin(H)
(55)

where the operators λmax(·) and λmin(·) represent the maxi-

mum eigenvalue and the minimum eigenvalue, respectively.

IV. A NON-STATIONARY 3-D WIDEBAND SIMULATION

MODEL FOR MASSIVE MIMO CHANNELS

Previously, in the proposed channel theoretical model, the

number of scatterers is assumed to be infinity (S1, S2 → ∞)
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which is capable of providing accurate analytic channel charac-

teristic results. However, with respect to a channel simulator,

infinite scatterers are not practical as the complexity of im-

plementation is enormous. Therefore, a compromise between

accuracy and complexity should be addressed. The target of

this section is to develop a channel simulator with a finite and

proper scatterer number while capturing channel characteristics

as accurate as possible. The corresponding simulation model

of the proposed massive MIMO channel model is obtained by

reducing (3) as

hkl,n(t) = δ(n− 1)

√

K

K + 1
ej(2πf

LOS
kl

t+ϕLOS
kl )

+

√

Pn

K + 1

S1∑

i1=1

S2∑

i2=1

ej(2πfkn,i1
t+ϕkl,n,i1i2)

√
S1S2

. (56)

Let x be the vector of AoAs and AoDs defined by x =
(θR, ξR, θT , ξT ). In the theoretical model, define g(x) =
(h∗

kl,n(t)hk′l′,n(t+∆t))/(|h∗
kl,n(t)||hk′l′,n(t+∆t)|) with x

distributed according to the cumulative distribution function

(CDF) F (x) of AoAs and AoDs. The spatial-temporal correla-

tion function ρkl,k′l′,n(δT , δR,∆t; t) for the theoretical model

in (39) is calculated as the expectation of g(x),

ρkl,k′l′,n(δT , δR,∆t; t) = E [g(x)] =

∫

g(x)dF (x). (57)

On the other hand, a simulation model aims at approximating

ρkl,k′l′,n(δT , δR,∆t; t) with S1S2 discrete vectors {xi}S1S2

i=1 ,

where each xi follows the CDFF (x) and xi=(θRi , ξ
R
i , θ

T
i , ξ

T
i ).

Then, the approximated value ρ̂kl,k′l′,n(δT , δR,∆t; t) can be

expressed as

ρ̂kl,k′l′,n(δT , δR,∆t; t) = E [g(x)] =
1

S1S2

S1S2∑

i=1

g(xi). (58)

The remaining issue is to determine the vector sequence

{xi}S1S2

i=1 with reasonable computational complexity to approx-

imate ρkl,k′l′,n(δT , δR,∆t; t) with ρ̂kl,k′l′,n(δT , δR,∆t; t). A

number of algorithms to calculate {xi}S1S2

i=1 such as the method

of equal distances (MED), method of equal areas (MEA), ex-

tended method of exact Doppler spread (MEDS), and the Monte

Carlo Method (MCM) have been introduced in [10]. Here, the

MEA is applied to calculating the discrete vectors {xi}S1S2

i=1 of

the simulation model according to
∫
xi

xi−1
dF (a) = 1/S1S2 [10].

Since x is four dimensional in this model, the ‘area’ in

MEA in this case is generalized as the probability measure

of a set. As a result, F (x) is divided into S1S2 sets with the

same probability of 1/S1S2, then xi can be computed as xi =
F−1(i/S1S2) where F−1(·) is the inverse function of F (·).

V. NUMERICAL RESULTS AND ANALYSIS

The distributions of azimuth and elevation angles at the

transmitter side and the receiver side are assumed to obey

the two dimensional (2-D) von Mises distribution [41], where

azimuth angles and elevation angles are assumed to be mutually

independent. Therefore, the probability density function (PDF)

Fig. 4. Absolute values of the spatial CCF |ρ11,22,1(δT , δR; t)| of the 3-D
twin-cluster model. (MR=MT =32, D=200 m, Da

c =30 m, Ds
c =50 m,

υT
A
=π/3, υT

E
=π/6, υR

A
=π/4, υR

E
=π/4, θ̄T

1
=−1.03, ξ̄T

1
=1.19, θ̄R

1
=

1.65, ξ̄R
1
=0.16, t=4 s, λ=0.15 m, fmax=33.33 Hz, αv=π/6, κ = 5,

NLOS).

of angles of the nth cluster pZ(ξ
Z
n , θ

Z
n ) with Z = {T,R} can be

expressed as

pZ
(
ξZn , θ

Z
n

)
=

exp
[
κ
(
cos

(
ξZn −ξ̄Zn

)
+cos

(
θZn −θ̄Zn

))]

[2πI0(κ)]
2 (59)

where ξ̄Zn and θ̄Zn are the mean elevation and azimuth AoD/AoA,

and I0(·) is the zero-th order modified Bessel function. More-

over, κ � 0 controls the width of the distribution functions.

By setting ∆t to 0, the absolute values of the spatial CCF

|ρ11,22,1(δT , δR; t)| of the three dimensional twin cluster model

are illustrated in Fig. 4. A decreasing trend can be observed as

the normalized antenna spacings increase at both the transmitter

and receiver sides. The absolute values of spatial CCF drop

smoothly when antenna spacing at the transmitter side enlarges.

Meanwhile, fluctuations can be seen as antenna spacing at the

receiver side increases. These fluctuations are caused by non-

stationary properties due to the movements of the receiver.

Next, by setting δT and ∆t to 0, the impact of cluster

elevation angles at the receiver side on the absolute spatial cor-

relation function |ρ11,12,1(0, δR; t)| of the receiver is depicted

in Fig. 5. The increase in cluster elevation angles at the receiver

side results in high receive antenna correlations. Besides, the

spatial correlation function of the simulation model is compared

with the theoretical model, showing that the simulation model

is able to capture the channel spatial correlation characteristic

at the cost of slightly less accuracy.

The absolute values of the temporal ACF in terms of cluster

elevation angles at the receiver side are analyzed in Fig. 6.

The figure shows that the temporal ACF decreases slower as

the elevation angles become larger. The philosophy is that the

Doppler frequency equals the product of fmax, cosine of the

azimuth angle, and cosine of the elevation angle. For fixed

fmax and azimuth angle, the absolute Doppler frequency is

decreasing as the elevation angle increases from 0 to π/2. Con-

sequently, when the elevation angle reaches π/2, the absolute

Doppler frequency is minimum which results in the slowest

decrease of the temporal ACF. Meanwhile, the normalized
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Fig. 5. Absolute values of the receiver spatial CCF |ρ11,12,1(0, δR; t)| in
terms of cluster elevation angles at the receiver side. (MR = 32, D = 200 m,
Da

c = 30 m, Ds
c = 50 m, ς = 1 s, υT

A
= π/3, υT

E
= π/6, υR

A
= π/4, υR

E
=

π/4, θ̄T
1

= −1.03, ξ̄T
1

= 1.19, θ̄R
1

= 1.65, t = 4 s, λ = 0.15 m, fmax =
33.33 Hz, αv = π/6, κ = 5, NLOS).

Fig. 6. Absolute values of the temporal ACF |ρ11,1(∆t; t)| in terms of cluster
elevation angle at the receiver side (MR = 32, D = 200 m, Da

c = 30 m,
Ds

c = 50 m, ς = 1 s, υT
A

= π/3, υT
E

= π/6, υR
A

= π/4, υR
E

= π/4, θ̄T
1

=

−1.03, ξ̄T
1

= 1.19, θ̄R
1

= 1.65, t = 4 s, λ = 0.15 m, ‖vT
n ‖ = ‖vR

n ‖ =
0.25 m/s, PF = 0.3, fmax = 33.33 Hz, αv = π/6, κ = 5, NLOS).

Fourier transform of the temporal ACF, i.e., the PDF of Doppler

frequency of the proposed model is illustrated in Fig. 7. The

PDF of Doppler frequency of the conventional MIMO channel

model is symmetrical with respect to 0. However, this may not

be necessary for the proposed non-stationary massive MIMO

channel model. There are two observations that should be no-

ticed in Fig. 7. First, the PDFs of Doppler frequency at different

time instants vary because of the non-stationary properties on

the time axis. Namely, the WSS condition on the time domain

is not available as a consequence of time-variant properties

and the inclusion of birth-death process on the time axis. The

factor e−λR(‖v‖∆t+PF (‖vT
n ‖+‖vR

n ‖)∆t/Ds
c) of the temporal ACF

in (50) with respect to ∆t is equivalent to a translation in the

Fourier transform domain. Moreover, simulation models align

well with theoretical models as shown in Figs. 6 and 7.

Fig. 7. The normalized Doppler PSD at different time instants (MR = 32,
D = 200 m, Da

c = 30 m, Ds
c = 50 m, ς = 1 s, υT

A
=π/3, υT

E
=π/6, υR

A
=

π/4, υR
E
=π/4, θ̄T

1
=−1.03, ξ̄T

1
=1.19, θ̄R

1
=1.65, λ = 0.15 m, λG =

80/m, λR=4/m, ‖vT
n ‖=‖vR

n ‖=0.25 m/s, PF = 0.3, fmax = 33.33 Hz,
αv = π/6, κ = 5, NLOS).

Fig. 8. Standard deviation of the Doppler frequencies on the antenna array
(D = 200 m, Da

c = 30 m, Ds
c = 50 m, ς = 1 s, υT

A
= π/3, υT

E
= π/6,

υR
A

= π/4, υR
E

= π/4, θ̄T
1

= −1.03, ξ̄T
1
=1.19, θ̄R

1
=1.65, ξ̄R

1
=0.16, λ =

0.15 m, ‖vT
n ‖ = ‖vR

n ‖ = 0.25 m/s, PF = 0.3, fmax = 33.33 Hz, αv =
π/6, κ = 5, NLOS).

In addition, Fig. 8 shows the standard deviation of Doppler

frequencies on the antenna array. Conventional MIMO channel

models assume far field condition which results in a constant

Doppler frequency on the entire antenna array. Conversely,

the near field condition is assumed in the proposed massive

MIMO channel model. As a result, the Doppler frequencies for

different antennas are different. Since the near field effect is

more significant as the number of antennas grows, the standard

deviation increases accordingly.

Furthermore, a comparison of condition numbers between

the 2-D and 3-D models is shown in Fig. 9. Stronger correla-

tions are observed in the 2-D model than the 3-D model due to

the fact that clusters have higher probabilities to be correlated

in a 2-D space than a 3-D space. However, this difference is
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Fig. 9. Comparisons of CDFs of condition numbers between the 2-D and
3-D model (MT = 4, MR = 32, D = 200 m, Da

c = 30 m, Ds
c = 50 m,

ς = 1 s, υT
A

= π/3, υT
E

= π/6, υR
A

= π/4, υR
E

= π/4, θ̄T
1

= −1.03, ξ̄T
1

=

1.19, θ̄R
1

= 1.65, t = 4 s, λ = 0.15 m, λG = 80/m, λR = 4/m, ‖vT
n ‖ =

‖vR
n ‖ = 0.25 m/s, PF = 0.3, fmax = 33.33 Hz, αv = π/6, κ = 5, NLOS).

Fig. 10. A snap shot of the angular power spectrum of the receiver antenna
array (MT =1, MR=32, D=200 m, Da

c =30 m, Ds
c =50 m, ς=1 s, υT

A
=

π/3, υT
E

= π/6, υR
A

= π/4, υR
E

= π/4, θ̄T
1

= −1.03, ξ̄T
1

= 1.19, θ̄R
1

=
1.65, t = 4 s, λ = 0.15 m, λG = 80/m, λR = 4/m, fmax = 0 Hz, NLOS).

relatively less significant because the random distribution of

cluster locations partially averages out the impact.

Fig. 10 illustrates the non-stationary properties on the array

axis in the form of the receiver angle power spectrum (APS).

It should be noticed that the estimated angle here means the

angle between the cluster and the receive antenna array. Here,

the multiple signal classification (MUSIC) algorithm [42] is ap-

plied to AoA estimation. A sliding window formed by 3 consec-

utive receive antennas is shifted by 1 antenna at a time from the

first to the last antenna. Consequently, for a 32-element antenna

array, there are in total 30 window positions as Fig. 10 shows.

Clusters appear and disappear on the array axis, which results

in that different antennas may observe different sets of clusters.

Additionally, angles of a number of clusters shift on the array

axis due to the near field effect. Finally, receive power varia-

tions can be observed on the antenna array. Similar conclusions

on these mentioned features of the proposed model were also

observed in measurements in massive MIMO channels in [24].

Fig. 11. Cluster evolution on the time axis (Ds
c = 50 m, ς = 1 s, λ =

0.15 m, λG = 80/m, λR = 4/m, ‖vT
n ‖ = ‖vR

n ‖ = 0.25 m/s, PF = 0.3,
fmax = 33.33 Hz, NLOS).

Regarding cluster evolution on the time axis, an example

of cluster sets in different time instants is shown in Fig. 11.

Clusters evolve according to the birth-death process. Thus, it

can be seen that there are clusters disappearing and new clusters

appearing. In this case, the transmit and receive antenna arrays

observe a time-variant set of clusters.

It is important to note that in the numerical analysis, pa-

rameters such as mean and standard deviation of azimuth

AoAs/AoDs of the transmitter and receiver, mean and stan-

dard deviation of delays, maximum delay, spatial correlation

distance, and cluster powers were generated according to the

WINNER II channel model in [18]. The generation and re-

combination rates of clusters and percentage of moving clusters

were adapted from [29] and [30]. However, certain parameters

such as cluster distances to the transmitter or receiver were

given based on reasonable assumptions, since we have not

found any relevant measurement data so far. These parameters

of the model can be further validated by measurements when-

ever available in the future.

VI. CONCLUSION

Key characteristics of massive MIMO channels have not

been captured by conventional MIMO channel models. In this

paper, we have proposed a novel theoretical non-stationary 3-D

wideband twin-cluster channel model along with the corre-

sponding simulation model for massive MIMO systems with

carrier frequencies in the order of GHz. Spherical wavefronts

have been assumed to characterize near field effects resulting in

AoA shifts, received power variations, and Doppler frequency

variations on the antenna array. The impact of elevation an-

gles of clusters on the correlation properties of the massive

MIMO channel model has been studied. Most importantly, non-

stationary properties on both the time and array axes have

been modeled by birth-death processes. The proposed massive

MIMO channel model is able to describe not only the appear-

ance and disappearance of clusters on the time axis, but also

the cluster evolution on the array axis, which is normally not

included in conventional MIMO channels. Moreover, it has
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been shown that the channel characteristics of the simulation

model are consistent with those of the theoretical model. In ad-

dition, important channel features of massive MIMO channels

are characterized by the proposed models, which may serve as a

design framework to model massive MIMO channels. Finally,

certain parameters of the proposed channel model need to be

further validated by relevant channel measurements, which will

be our future work when such channel measurements become

available in the literature.
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