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Abstract—This paper proposes a novel non-stationary wide-
band multi-confocal ellipse two dimensional (2-D) channel model
for massive multiple-input multiple-output (MIMO) communi-
cation systems. Spherical wavefront is assumed in the proposed
channel model, instead of the plane wavefront assumption used in
conventional MIMO channel models. In addition, the birth-death
process is incorporated into the proposed model to capture the
dynamic properties of clusters on both the array and time axes.
Statistical properties of the channel model such as the space-
time-frequency correlation function and power imbalance on the
antenna array are studied. The impact of the spherical wavefront
assumption on the statistical properties of the channel model
is investigated. Furthermore, numerical analysis shows that the
proposed channel model is able to capture specific characteristics
of massive MIMO channel as observed in measurements.
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I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) technology

has been attracting researchers’ attention for its capabil-

ity of providing improved link reliability and system capacity

without extra spectral resources [1]. MIMO has been deployed

in a number of advanced wireless communication systems

such as Worldwide Interoperability for the Microwave Access

(WiMAX) [2] and the Long Term Evolution (LTE). The latest

LTE standard (Release-12) [3], for instance, can support up to

8-layer transmission which is equivalent to at least 8 antennas at

the base station (BS) and 8 antennas at the mobile station (MS).

A massive MIMO system is equipped with much more

antennas, typically tens or hundreds, than conventional MIMO

systems [4]–[7]. With such a massive number of antennas, it

has been demonstrated that a massive MIMO system is able to

provide many benefits, such as greatly increasing the capacity,

simplifying scheduling design in the frequency domain [4], and

averaging interference according to the large number theorem

[5]. Generally speaking, a massive MIMO system can be con-

sidered as an enhanced version of conventional MIMO by uti-

lizing an enormous number of antennas. As a result, its system

performance, in terms of capacity, efficiency, and reliability, is

significantly better than conventional MIMO systems [4]–[7].

To design and evaluate MIMO systems, an accurate small-

scale fading MIMO channel model is necessary. Conventional

small-scale fading MIMO channel models have been widely

studied in the literature. Extensive geometry-based stochastic

models (GBSMs) for conventional MIMO channels known as

one-ring model, two-ring model, and ellipse model can be

found in [8]–[12]. Also, a combined ellipse and two-ring model

was proposed in [13] and [14], a multiple circular-ring model

was proposed in [15], and three-dimensional (3-D) concentric-

cylinder models can be found in [16] and [17]. The authors in

[18] proposed a twin-cluster model which concerned only the

first and the last bounces. The spatial channel model (SCM)

[19], WINNER II model [20], IMT-A model [21], COST 273

model [22], and COST 2100 model [23], [24] have also been

widely utilized. Besides, correlation-based conventional MIMO

channel models such as the Kronecker model and the Weich-

selberger model were used to investigate the performance of

massive MIMO systems in [25] and [26].

However, according to the measurement observations in [27]

and [28], the above mentioned MIMO channel models [8]–[26]

are not sufficient to accurately capture certain characteristics of

massive MIMO channels. First, conventional MIMO channel
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models solely assume that the distance between a scatterer

and an antenna array is far beyond the Rayleigh distance

[29], [30], i.e., 2M2/λ, where M is the dimension of the

antenna array and λ is the carrier wavelength. Namely, the

farfield and plane wavefront assumptions were usually applied

to simplifying the channel models. However, the authors in [27]

and [28] stated that as the number of antennas is massive, the

plane wavefront assumption is not fulfilled for massive MIMO

channels. Instead, a spherical wavefront channel model should

be considered. Spherical wavefront models and plane wavefront

models were compared in [31] and [32]. The authors in [31]

pointed out that the plane wavefront assumption underestimates

the rank of the channel matrix. However, [31] and [32] only

focused on short range or constant distance communications

which were not applicable for general massive MIMO systems.

Second, dynamic properties of clusters such as cluster appear-

ance and disappearance, angle of arrival (AoA) shifts, as well

as non-stationarities were observed on the antenna array axis

[27], [28]. The characterization of non-stationarities was inves-

tigated in [33]–[36], where the appearance and disappearance

of clusters on the time axis were modeled using the birth-death

or Markov processes. The authors in [37] and [38] analyzed

time-variant geometrical properties such as AoA and angles of

departure (AoD), but they ignored the evolution of clusters.

However, [33]–[38] only took non-stationarities on the time

axis into account and ignored non-stationarities on the array

axis. The authors in [39] considered nearfield effects and non-

stationarities on the array axis. However, in [39], the impact of

spherical wavefront on non line-of-sight (NLOS) components

was missing, characteristics of cluster appearance and disap-

pearance were not studied in detail, and non-stationarities on

the time axis were not included. A 3-D non-stationary twin-

cluster channel model was proposed in [40] for massive MIMO

systems considering spherical wavefront and non-stationarities

on both time and array axes. However, AoAs and AoDs were

assumed independent, channel characteristics such as power

imbalance on the antenn array and space-time-frequency cor-

relation function (STFCF) were not investigated in [40].

In this paper, a novel two dimensional (2-D) non-stationary

wideband multi-confocal ellipse model for massive MIMO

channels is proposed. This channel model is developed to cap-

ture the spherical wavefront effect and non-stationary properties

on both the array and time axes. Also, AoAs and AoDs are as-

sumed dependent in the ellipse model. The major contributions

of this paper are summarized as follows:

1) The plane wavefront assumption for conventional MIMO

channel models is relaxed, i.e., the nearfield effect of

spherical wavefront is considered in the proposed wide-

band ellipse model. The impacts of spherical wavefront

assumption on both the line-of-sight (LOS) component

and NLOS components are studied.

2) Birth-death process is applied to the array axis to capture

the cluster appearance and disappearance on the antenna

array axis as reported in [27]. Combining the birth-death

process modeling cluster time evolution in [33], array-

time evolution of clusters of the proposed wideband mas-

sive MIMO channel model is proposed. A novel cluster

Fig. 1. A wideband multi-confocal ellipse model for massive MIMO systems.

evolution algorithm is developed based on the birth-death

process on both the array and time axes.

3) Statistical properties of the proposed massive MIMO

channel model such as STFCF and cumulative distribu-

tion functions (CDFs) of survival probabilities of clusters

and received power imbalance on the antenna array are

investigated.

This paper is organized as follows. In Section II, the proposed

wideband ellipse MIMO channel model is discussed in detail.

This includes geometrical properties derived under the spheri-

cal wavefront assumption as well as the novel algorithm which

describes the cluster evolution on the array axis. Section III

presents the array-time evolution model, which describes dy-

namic properties of clusters on both the array and time axes.

Statistical properties are investigated as well. In Section IV,

numerical analysis is given. Conclusions are finally drawn in

Section V.

II. A WIDEBAND ELLIPSE MODEL FOR

MASSIVE MIMO SYSTEMS

In this section, a novel wideband ellipse 2-D channel model

for massive MIMO is proposed, including spherical wavefront

and cluster evolution on the array axis as shown in Fig. 1.

(The combination of cluster evolutions on both the time and

array axes will be presented in Section III). Let us assume that

the transmitter and receiver are equipped with uniform linear

arrays (ULAs) with MT and MR omnidirectional antennas,

respectively. The antenna elements are spaced with separation

δT and δR, and they are located at the focal points of the

confocal ellipses with a distance of 2f . Let AntTl represent

the l-th antenna of the transmit array and AntRk represent the

k-th antenna of the receive array. The n-th cluster is on the

n-th ellipse with major axis 2an. The angle βT (βR) denotes

the tilt angle of the transmit (receive) antenna array. The angle

αv denotes the angle between the x-axis and the direction of

movement of the receiver. The maximum Doppler frequency

and carrier wavelength are denoted as fmax and λ, respectively.
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TABLE I
SUMMARY OF KEY PARAMETER DEFINITIONS.

For massive MIMO channel models, there are two important

properties should be noticed. First, the farfield assumption

for conventional MIMO channel models [8], [13], which is

equivalent to the plane wavefront assumption, is not fulfilled

as the dimension of the antenna array can not be ignored when

the number of antennas is massive. As a result, the wavefront

emitted from the n-th cluster to the receive array is assumed

to be spherical as shown in Fig. 1. Then, the AoA is no longer

linear along the array, and it needs to be computed based on

geometrical relationships. The impact of spherical wavefront

will be analyzed in detail in following paragraphs.

Second, as reported in [27] and [28], the behavior of clusters

is not stationary on the array axis, which means that a cluster

may not always be observable to all the antenna elements of an

array in conventional MIMO channel models. An example is

given in Fig. 1 that Cluster1 is observable to AntTl but it is not

observable to AntRk . ClusterNtotal
is observable to AntRk but it is

non-observable to AntTl . Conversely, Clustern is observable to

both AntRk and AntTl but not to AntRp . These situations imply

that different antenna elements may observe different sets of

clusters, which is not assumed in conventional MIMO channel

models. Let CT
l (C

R
k ) denote the cluster set in which clusters

are observable to AntTl (AntRk ), the generation of CT
l and

CR
k will be modeled as birth-death processes as described in

Section II-A. Also, let Ntotal denote the total number of clusters

which are observable to at least one transmit antenna and one

receive antenna, Ntotal can be expressed as [40]

Ntotal = card

(
MT⋃

l=1

MR⋃

k=1

(

CT
l (t)

⋂

CR
k (t)

)
)

(1)

where the operator card(·) denotes the cardinality of a set. Then,

a cluster, say Clustern(n � Ntotal), is observable to both AntTl
and AntRk if and only if Clustern ∈ {CT

l ∩ CR
k }.

Based on the above mentioned analysis and the summary

of key parameter definitions in Table I, the wideband massive

MIMO channel can be presented as an MR ×MT complex

matrix H(t, τ) = [hkl(t, τ)]MR×MT
, where k = 1, 2, · · · ,MR

and l = 1, 2, · · · ,MT . Next, assume the initial phase of the sig-

nal at the transmitter is ϕ0, LOS Rician factor is K and the

LOS component is always connected to all antennas and the

first cluster to arrive at the receiver if the LOS component exists.

Additionally, assume that the mean power of the n-th cluster is

Pn and there are S rays within one cluster and αR
n,i is the AoA

of the i-th ray of the n-th cluster to the receive array center, αT
n,i

is the AoD of the i-th ray of the n-th cluster (i = 1, 2, · · · , S) to

the transmit array center, the multipath complex gains hkl(t, τ)
of the theoretical model (S → ∞) between AntTl and AntRk at

delay τ can be presented as

hkl(t, τ) =

Ntotal∑

n=1

hkl,n(t)δ(τ − τn) (2)

where the complex gain hkl,n(t) of Clustern can be computed as

– if Clustern ∈ {CT
l ∩ CR

k },

hkl,n(t) = δ(n− 1)

√

K

K + 1
ej(2πf

LOS
kl

t+ϕLOS
kl )

︸ ︷︷ ︸

LOS

+

√

Pn

K + 1
lim
S→∞

1√
S

S∑

i=1

ej(2πfn,it+ϕkl,n,i)

︸ ︷︷ ︸

NLOS

(3)

– if Clustern /∈ {CT
l ∩ CR

k },

hkl,n(t) = 0. (4)

For the LOS component, under the spherical wavefront assump-

tion,

ϕLOS
kl = ϕ0 +

2π

λ

[

(
DLOS

l

)2
+

(
MR − 2k + 1

2
δR

)2

− (MR − 2k + 1)δRD
LOS
l cos

(
αLOS
l − βR

)

]1/2

(5)

where

DLOS
l =

[

(2f)2 +

(
MT − 2l + 1

2
δT

)2

− 2f(MT − 2l + 1)δT cos(βT )

]1/2

(6)
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and the AoA αLOS
l of the LOS component from AntTl to the

receive array center can be computed as

αLOS
l = π − arcsin

[
sinβT

DLOS
l

(
MT − 2l + 1

2
δT

)]

. (7)

The Doppler frequency fLOS
kl of the LOS component between

AntRk and AntTl can be calculated as

fLOS
kl =fmax cos

(

π−arcsin

[
DLOS

l

DLOS
kl

sin
(
αLOS
l −βR

)
])

(8)

where

DLOS
kl =

[

(
DLOS

l

)2
+

(
MR − 2k + 1

2
δR

)2

− (MR − 2k + 1)δRD
LOS
l cos

(
αLOS
l − βR

)

]1/2

. (9)

For the NLOS components, AoAs αR
n,i and AoDs αT

n,i are de-

pendent in an ellipse model, their relationship can be presented

as [8]

αT
n,i =

⎧

⎨

⎩

g
(
αR
n,i

)
if 0 < αR

n,i � α0

g
(
αR
n,i

)
+ π if α0 < αR

n,i � 2π − α0

g
(
αR
n,i

)
+ 2π if 2π − α0 < αR

n,i � 2π

(10)

where

g(αR
n,i) = arctan

[ (
k20 − 1

)
sin

(
αR
n,i

)

2k0 + (k20 + 1) cos
(
αR
n,i

)

]

(11)

α0 =π − arctan

(
k20 − 1

2k0

)

(12)

k0 = an/f. (13)

Given the semi-major axis a1 of the first ellipse, an can be

determined by τn relative to the first ellipse as

an = cτn + a1 (14)

where c is the speed of light. Accordingly, the distance between

the n-th cluster and the transmitter via the i-th ray, DT
n,i, as well

as the distance between the n-th cluster and the receiver via the

i-th ray, DR
n,i, can be derived according to their geometrical

relationships:

DR
n,i =

2an sinα
T
n,i

sinαT
n,i + sin

(
π − αR

n,i

) (15)

DT
n,i =

2an sin
(
π − αR

n,i

)

sinαT
n,i + sin

(
π − αR

n,i

) . (16)

Then, the distance between the n-th cluster and AntTl via the

i-th ray within the cluster, DT
ln,i, can be computed as

DT
ln,i =

[

(
DT

n,i

)2
+

(
MT − 2l + 1

2
δT

)2

− (MT − 2l + 1)δTD
T
n,i cos

(
βT − αT

n,i

)

]1/2

. (17)

The distance between the n-th cluster and AntRk via the i-th ray

within the cluster, DR
kn,i, can be computed as

DR
kn,i =

[

(
DR

n,i

)2
+

(
MR − 2k + 1

2
δR

)2

− (MR − 2k + 1)δRD
R
n,i cos

(
αR
n,i − βR

)

]1/2

. (18)

Based on the above equations, the received phase of AntRk via

the i-th ray within the n-th cluster from AntTl , ϕkl,n,i, can be

expressed as

ϕkl,n,i = ϕ0 +
2π

λ

(
DT

ln,i +DR
kn,i

)
. (19)

The Doppler frequency of the i-th ray within the n-th cluster,

fn,i, is

fn,i = fmax cos
(
αR
n,i − αv

)
. (20)

A. Array Axis Evolution—Generation of Cluster

Sets CT
l and CR

k

Thus far, all the geometrical relationships have been derived

from (5) to (20). In this section, we will model the dynamic

properties of clusters, i.e., the appearance and disappearance

of clusters on the array axis, using a birth-death process. In

previous literature [33] and [44], the birth-death process was

deployed to model the channel non-stationarity along the time

axis, describing the cluster variations in terms of the change

of time. For massive MIMO systems, the time axis birth-

death process [33] will be adapted to the array axis [40].

Let λG (per meter) and λR (per meter) denote the cluster

generation rate and the recombination rate. Next, by defining

the scenario-dependent correlation factor Da
c on the array axis,

let the operator
E→ represent evolution on either array or time

axis, when a cluster set evolves from AntTl−1 to AntTl or from

AntRk−1 to AntRk , denoted as CT
l−1

E→CT
l or CR

k−1
E→CR

k , the

survival probabilities of the clusters inside the cluster set at

the transmitter PT
survival and at the receiver PR

survival can be

modeled as [45]

PT
survival = e

−λR
δT
Da

c (21)

PR
survival = e

−λR
δR
Da

c . (22)

According to the birth-death process, the duration between two

cluster appearances and the duration between two cluster disap-

pearances are exponentially distributed [34], [45], the average

number of newly generated clusters NT
new and NR

new based on

the Poisson process can be computed as [45]

E
[
NT

new

]
=

λG

λR

(

1− e
− δT

Da
c

)

(23)

E
[
NR

new

]
=

λG

λR

(

1− e
− δR

Da
c

)

(24)
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Fig. 2. Cluster generation algorithm flowchart.

where E[·] designates the expectation. Cluster sets of each

antenna are generated based on birth-death process on the array

axis. The flowchart of the cluster generation algorithm is shown

in Fig. 2.

First, let the initial number of clusters be N , the initial

cluster set of AntT1 be CT
1 = {cT1 , cT2 , cTx , · · · , cTN}, and the ini-

tial cluster set of AntR1 be CR
1 = {cR1 , cR2 , cRx , · · · , cRN}, where

cTx and cRx denote cluster members of cluster sets of the trans-

mitter and the receiver, and the subscript x(x = 1, 2, · · · , N) of

cTx and cRx denotes the cluster indices. The cluster sets of the

rest of antennas at the transmitter side CT
l (l = 2, 3, · · · ,MT )

and the receiver side CR
k (k = 2, 3, · · · ,MR) can be generated

from the evolution of CT
1 and CR

1 , respectively. The survival

probability of clusters to the next antenna is calculated ac-

cording to (21) and (22). At the same time, new clusters are

generated based on Poisson process with mean numbers as

(23) and (24). These newly generated clusters are added to

the cluster sets of corresponding antennas. Since each cluster

evolves gradually on the antenna array, i.e., it will not appear

again after its disappearance, antenna correlations have been

naturally embedded in the generation process.

Second, after obtaining cluster sets of each antenna,
MT⋃

l=1

CT
l

and
MR⋃

k=1

CR
k are the full collections of clusters observable to

Fig. 3. An example of random shuffling and pairing between the transmitter
and receiver cluster indices.

the transmitter and receiver, respectively. To mimic the arbi-

trariness of the propagation environment, the cluster indices

in
MT⋃

l=1

CT
l and

MR⋃

k=1

CR
k are shuffled and arranged in a random

order. Then, cluster indices of the transmitter and receiver are

paired. This process determines to which transmit and receive

antennas each cluster is observable. An example of the random

shuffling and pairing process has been illustrated in Fig. 3. In

this example, transmit antennas who can observe cT6 share a

common cluster with receiver antennas who can observe cR5 .

Other clusters can be determined in the same way. Meanwhile,

it is possible that the cardinalities of
MT⋃

l=1

CT
l and

MR⋃

k=1

CR
k are

not equal, i.e., there are clusters that are not observable to either
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the transmit array or the receive array. It can be seen in Fig. 3

that two more clusters are observable to the receiver than the

transmitter. In this case, after random shuffling and pairing, two

clusters are eliminated from the full receiver cluster set. Then,

the cluster indices of these remained clusters are reassigned

from 1 to Ntotal.

Last, the delays and mean power of clusters are generated

according to the urban macro-cell scenario in [20] where delays

and mean power are drawn randomly obeying the exponential

distributions. After delays are obtained, the semi-major axes

can be determined via (14). Since mean power is related to

delay in [20], the mean power of a cluster is then related to

the size of its corresponding ellipse. In addition, AoAs are

modeled as the von Mises distribution [41]. As von Mises

distribution can be easily adapted to other distributions such

as uniform distribution and wrapped Gaussian distribution, it is

widely utilized in the literature [8], [13], [14] to model angular

dispersions.

B. Space Cross-Correlation Function (CCF) Analysis

Regarding the analysis of the spatial properties of the wide-

band model for massive MIMO with cluster evolution on the

antenna arrays, the space CCF is introduced in this section. The

normalized space CCF ρkl,k′l′,n(δT , δR; t) between the link

connecting AntRk and AntTl and the link connecting AntRk′ and

AntTl′ of the n-th cluster at time t is defined as [8], [42]

ρkl,k′l′,n(δT , δR; t) = E

⎡

⎣
hkl,n(t)h

∗
k′l′,n(t)

|hkl,n(t)|
∣
∣
∣h∗

k′l′,n(t)
∣
∣
∣

⎤

⎦ (25)

where h∗
k′l′,n(t) denotes the conjugate of hk′l′,n(t). The LOS

component and the NLOS components are independent to

each other. As a result, the space CCF can be rewritten as

the sum of the spatial correlation of the LOS component

ρLOS
kl,k′l′,n(δT , δR; t) and the spatial correlation of the NLOS

components ρNLOS
kl,k′l′,n(δT , δR; t).

ρkl,k′l′,n(δT , δR; t)=ρLOS
kl,k′l′,n(δT ,δR; t) + ρNLOS

kl,k′l′,n(δT ,δR; t).
(26)

For the spatial correlation of the LOS component,

ρLOS
kl,k′l′,n(δT , δR; t)

=
Kδ(n− 1)

K + 1
ej(2πf

LOS
kl

t+ϕLOS
kl

−2πfLOS

k′l′
t−ϕLOS

k′l′
). (27)

For the spatial correlation of the NLOS components, a

cluster observable to AntTl and AntRk has a probability of

e−λR|l−l′|δT /Da
c e−λR|k−k′|δR/Da

c to survive to connect AntTl′ and

AntRk′ . Since the number of rays is infinite in the theoretical

model, the discrete AoAs αR
n,i can be represented by a continu-

ous random variable αR
n . Therefore, given the probability den-

sity function (PDF) of the AoA pαR
n
(αR

n ), ρ
NLOS
kl,k′l′,n(δT , δR; t)

can be computed as

ρNLOS
kl,k′l′,n(δT , δR; t) =

e
λR

−|l−l′|δT −|k−k′|δR
Da

c

Kδ(n− 1) + 1

×
∫ π

−π

ej[ϕkl,n(αR
n )−ϕk′l′,n(αR

n )]pαR
n

(
αR
n

)
dαR

n . (28)

Fig. 4. Geometrical relationship evolution from t = tm to t = tm+1 of the
ellipse model.

Equations (27) and (28) indicate that the difference between

ϕkl,n and ϕk′l′,n, ϕkl,n − ϕk′l′,n does not only depend on the

difference between subscripts l − l′ and k − k′. This means the

process on the array axis is not wide-sense stationary (WSS).

III. ARRAY-TIME EVOLUTION MODEL

To describe the cluster evolution on both array and time

axes, the proposed wideband ellipse model is further improved

by combining the birth-death process on the time axis in

[33]. As a result, an array-time evolution model is established.

Additionally, geometrical relationships among the transmitter,

the receiver, and the clusters need to be updated with time.

An example of a cluster evolving on time axis is illustrated in

Fig. 4. Both clusters and the MS are moving. Clustern and the

receive antenna array move to new positions from t = tm to

t = tm+1. Distances and angle properties have to be updated

based on geometrical relationships. It can be seen that AoD,

AoA, and transmission distance will be time-variant because

of the movement of the cluster and the terminal. Consequently,

αT
n , αR

n , DT
n , DR

n , DT
ln, DR

kn, an, f , αv , and τn become time-

variant as αT
n (t), α

R
n (t), D

T
n (t), D

R
n (t), D

T
ln(t), D

R
kn(t), an(t),

f(t), αv(t), and τn(t) correspondingly. Although there exists

situations when BS, MS, and clusters are all moving, it should

be noticed that those situations can be equivalent to a static BS

situation using the principles of relative motion.

In this case, assume Clustern, (n = 1, 2, · · · , N) moves in

an arbitrary direction ϕc,n with a speed of vc at time instance

t = tm(m = 1, 2, · · ·), then at t = tm+1, the instant distance

between two focal points f(tm+1) can be calculated as

2f(tm+1) =

[

[2f(tm)]2 + [v(tm+1 − tm)]2

+ 4f(tm)v(tm+1 − tm) cos [αv(tm)]

]1/2

. (29)
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Accordingly, the distance between the transmitter and Clustern,

DT
n (t), needs to be updated at t = tm+1 as

DT
n (tm+1) =

[[
DT

n (tm)
]2

+ v2c (tm+1 − tm)2

+ 2DT
n (tm)vc(tm+1 − tm) cos

(
αT
n (tm)− ϕc,n

)]1/2
. (30)

Referencing the instant ellipse of Clustern(tm+1), the instant

AoD and the distance between AntTl and Clustern, DT
ln(tm+1)

can be obtained as

αT
n (tm+1)=αT

n (tm)−θ1−θ2 (31)

θ1=arcsin

[
v(tm+1−tm) sin (π−αv(tm))

2f(tm+1)

]

(32)

θ2=arcsin

[

vc,n(tm+1−tm) sin
(
π−αT

n (tm)+ϕc,n

)

DT
n (tm+1)

]

(33)

DT
ln(tm+1)=

[

DT
n (tm+1)

2+

(
MT −2l+1

2
δT

)2

−DT
n (tm+1)(MT −2l+1)δT cos

(
βT −αT

n (tm+1)
)

]1/2

. (34)

Similarly, the distance between the receiver and Clustern,

DR
n (t), the corresponding instant delay τn(tm+1), and the

instant movement direction αv(tm+1) of the receiver are

derived as

DR
n (tm+1)=

[

[2f(tm+1)]
2 +

[
DT

n (tm+1)
]2

− 4f(tm+1)D
T
n (tm+1)cos

(
αT
n (tm+1)

)
]1/2

(35)

2an(tm+1)=DT
n (tm+1) +DR

n (tm+1) (36)

τn(tm+1)= τn(tm) +
2an(tm+1)− 2an(tm)

c
(37)

αv(tm+1)=αv(tm)− θ1. (38)

Next, according to the law of sines, the AoA of Clustern at

t = tm+1, the distance between AntRk and Clustern,

DR
kn(tm+1), and Doppler frequency fn(α

R
n (tm+1)) are

computed as

αR
n (tm+1) = arcsin

[

DT
n (tm+1) sin

[
αT
n (tm+1)

]

DR
n (tm+1)

]

(39)

DR
kn(tm+1) =

[

DR
n (tm+1)

2 +

(
MR − 2k + 1

2
δR

)2

−DR
n (tm+1)(MR−2k+1)δR cos

(
αR
n (tm+1)−βR+θ1

)

]1/2

(40)

fn
(
αR
n (tm+1)

)
= fmax cos

(
αR
n (tm+1)− αv(tm+1)

)
. (41)

Besides geometrical relationships, cluster sets of each antenna

evolve with time as well. Thus, the time-variant CT
l , CR

k , and

Nnew are denoted as CT
l (t), C

R
k (t), and Nnew(t), respectively.

The evolution of clusters on the time axis is modeled as a birth-

death process [33]. Here, let CT
l (tm)(l = 1, 2, · · · ,MT ;m =

0, 1, 2, · · ·) and CR
k (tm)(k = 1, 2, · · · ,MR;m = 0, 1, 2, · · ·)

denote the cluster set for AntTl and the cluster set for AntRk
at time instant tm. Then at the next time instant, each cluster

member in set {(⋃MT

l=1 C
T
l (tm))

⋃
(
⋃MR

k=1 C
R
k (tm))} evolves

according to the birth-death process on the time axis. A sur-

vived cluster member will remain in cluster sets. On the other

hand, a disappeared cluster member will be eliminated from all

the cluster sets. Newly generated cluster members will be added

to certain cluster sets according to the birth-death process on

the array axis. To sum up, the algorithm is based on two main

operations, the array-axis evolution and the time-axis evolution,

an example is described as follows.

At the initial time instant t = tm, array-axis evolution will be

first operated. As Fig. 2 indicates, given CT
1 (tm) and CR

1 (tm),
the cluster set of AntTl is evolved from the cluster set of AntTl−1,

the cluster set of AntRk is evolved from the cluster set of AntRk−1

CT
l−1(tm)

E→CT
l (tm) 2 ≤ l ≤ MT (42)

CR
k−1(tm)

E→CR
k (tm) 2 ≤ k ≤ MR. (43)

Then, at the next time instant t = tm+1, time-axis evolution is

operated as proposed in [33]

CT
l (tm)

E→CT
l (tm+1) (44)

CR
k (tm)

E→CR
k (tm+1). (45)

To perform the evolution process of clusters on the time axis as

(44) and (45) show, define channel fluctuation in time domain at

t = tm+1 as qm+1. The channel fluctuation is a measure of how

much the scattering environment has changed. Assuming that

the receiver and clusters are moving with a constant velocity,

qm+1 is defined as [33]

qm+1 = qx,m+1 + qt,m+1 (46)

where qx,m+1 is the fluctuation caused by the movement of

receiver [33]

qx,m+1 = v(tm+1 − tm) (47)

and qt,m+1 is the fluctuation caused by the movement of

clusters (PF is the percentage of moving clusters, vc is the

velocity of clusters) [33]

qt,m+1 = PF vc(tm+1 − tm). (48)

Given the scenario-dependent correlation factor Ds
c on the

space axis, each cluster survives with probability Psurvival,

which can be calculated as [45]

Psurvival(qm+1) = e
−λRqm+1

Ds
c . (49)

New clusters are generated according the Poisson process. The

mean number of newly generated clusters at time instant t =
tm+1 on the time axis E[Nnew(tm+1)] is presented as [45]

E [Nnew(tm+1)] =
λG

λR

(

1− e
−λRqm+1

Ds
c

)

. (50)

For survived clusters, their geometrical relationships are com-

puted as from (29) to (41). On the other hand, the delays, mean
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power of newly generated clusters are randomly drawn accord-

ing to [20], where delays and mean power are exponentially

distributed. The AoAs of newly generated clusters obey the von

Mises distribution. To decide which transmit (receive) anten-

nas are able to observe a newly generated cluster, the newly

generated cluster is first attached to one transmit (receive)

antenna with a randomly drawn index, say the ν-th transmit

(receive) antenna. Second, this cluster evolves to both ends of

the transmit (receive) antenna array, ν + 1 to MT and ν − 1
to 1 (or ν + 1 to MR and ν − 1 to 1), based on the survival

probabilities on the array axis PT
survival(P

R
survival). Third, this

cluster is added to antenna cluster sets if it survives on those

corresponding antennas. Finally, all cluster sets CT
l (tm+1) and

CR
k (tm+1) have been updated before entering the next time

instant.

Prior to the derivation of STFCF, the time-variant transfer

function Hkl(ξ, t) of the channel can be expressed as [8]

Hkl(ξ, t) =

∞∫

−∞

hkl(t, τ)e
−j2πξτdτ

=

∞∫

−∞

Ntotal∑

n=1

hkl,n(t)δ(τ − τn)e
−j2πξτdτ

=

Ntotal∑

n=1

hkl,n(t)e
−j2πξτn (51)

where ξ is frequency. The normalized STFCF ρkl,k′l′(δT , δR,
∆ξ,∆t; ξ, t) can be calculated as [8]

ρkl,k′l′(δT , δR,∆ξ,∆t; ξ, t)

= E

[
H∗

kl(ξ, t)Hk′l′(ξ+∆ξ, t+∆t)

|H∗
kl(ξ, t)| |Hk′l′(ξ+∆ξ, t+∆t)|

]

= E

⎡

⎢
⎢
⎢
⎣

Ntotal∑

m=1

Ntotal∑

n=1
h∗
kl,m(t)hk′l′,n(t+∆t)ej2πξτm−j2π(ξ+∆ξ)τn

|H∗
kl(ξ, t)||Hk′l′(ξ+∆ξ, t+∆t)|

⎤

⎥
⎥
⎥
⎦
.

(52)

With the uncorrelated scattering (US) assumption, i.e., clusters

are mutually independent

E
[
h∗
kl,m(t)hk′l′,n(t+∆t)

]
= 0 (53)

for m 
= n, the STFCF in (52) reduces to

ρkl,k′l′(δT , δR,∆ξ,∆t; t)

= E

⎡

⎢
⎢
⎢
⎣

Ntotal∑

n=1
h∗
kl,n(t)hk′l′,n(t+∆t)ej2π∆ξτn

|H∗
kl(ξ, t)| |Hk′l′(ξ +∆ξ, t+∆t)|

⎤

⎥
⎥
⎥
⎦

=

Ntotal∑

n=1

E

[

h∗
kl,n(t)hk′l′,n(t+∆t)ej2π∆ξτn

|H∗
kl(ξ, t)| |Hk′l′(ξ +∆ξ, t+∆t)|

]

=

Ntotal∑

n=1

wnρkl,k′l′,n(δT , δR,∆ξ,∆t; t) (54)

where {wn} are normalization weights such that
Ntotal∑

n=1
wnρkl,k′l′,n(0, 0, 0, 0; t) = 1 and the normalized STFCF

for the n-th cluster ρkl,k′l′,n(δT , δR,∆ξ,∆t; t) is defined by

ρkl,k′l′,n(δT , δR,∆ξ,∆t; t)

= E

⎡

⎣
h∗
kl,n(t)hk′l′,n(t+∆t)ej2π∆ξτn

∣
∣
∣h∗

kl,n(t)
∣
∣
∣ |hk′l′,n(t+∆t)|

⎤

⎦ . (55)

By setting l = l′, k = k′, and ∆ξ = 0, since a cluster has a

probability of e
−λR

v∆t+PF vc∆t

Ds
c to survive from t to t+∆t,

the time autocorrelation function (ACF) of the wideband el-

lipse massive MIMO of the n-th cluster with considerations

on cluster evolution on the time axis, ρkl,n(∆t; t), can be

computed as

ρkl,n(∆t; t)=ρkl,k′l′,n(0, 0, 0,∆t; t)

= E

⎡

⎣
h∗
kl,n(t)hkl,n(t+∆t)

∣
∣
∣h∗

kl,n(t)
∣
∣
∣ |hkl,n(t+∆t)|

⎤

⎦

= e
−λR

v∆t+PF vc∆t

Ds
c

×
π∫

−π

ej[2πfn(α
R
n (t+∆t))(t+∆t)−2πfn(αR

n (t))t+ϕkl,n(t+∆t)−ϕkl,n(t)]

× pαR
n

(
αR
n

)
dαR

n (56)

where ϕkl,n(t) and fn(α
R
n (t)) can be respectively calculated as

given by (19) and (20) including time variations. As can be seen

in (56), the time correlation function is time t dependent, hence

the model is not WSS on the time axis.

By setting l = l′, k = k′, and ∆t = 0, the STFCF in (52)

reduces to the frequency correlation function (FCF) ρkl(∆ξ; t)

ρkl(∆ξ; t) = ρkl,k′l′(0, 0,∆ξ, 0; t)

=E

⎡

⎢
⎢
⎢
⎣

Ntotal∑

n=1
h∗
kl,n(t)hk′l′,n(t)e

j2π∆ξτn

|H∗
kl(ξ, t)| |Hk′l′(ξ +∆ξ, t)|

⎤

⎥
⎥
⎥
⎦

=E

⎡

⎢
⎢
⎢
⎣

Ntotal∑

n=1
|hkl,n(t)|2ej2π∆ξτn

|H∗
kl(ξ, t)| |Hkl(ξ +∆ξ, t)|

⎤

⎥
⎥
⎥
⎦
. (57)
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Fig. 5. Absolute receiver space CCF |ρk1,k′1,1(0, δR; t)| of the ellipse

model under von Mises assumption in terms of different values of (k′, k) pairs
with |k′ − k| = 1. (MR = 32, MT = 1, t = 1 s, a1 = 100 m, f = 80 m,
Da

c = 30 m, Ds
c = 50 m, βR = βT = π/2, λ = 0.12 m, fmax = 33.33 Hz,

αv = π/6, κ = 5, ᾱR
n = π/3, NLOS).

IV. NUMERICAL ANALYSIS

In this section, numerical results of the proposed model will

be analyzed. To perform numerical analysis, delays and mean

power of clusters are assumed to be generated according to the

urban macro-cell scenario in [20] where both of them follow the

exponential distributions. AoAs of clusters to the receive array

center are assumed to be von Mises distributed. The von Mises

distribution can be characterized by its PDF [43]

pαR
n

(
αR
n

)
=

exp
[
κ cos

(
αR
n − ᾱR

n

)]

2πI0(κ)
αR
n ∈ [−π, π] (58)

where I0(·) is the zero-th order modified Bessel function, ᾱR
n is

the mean and κ ≥ 0 controls the width of the distribution.

The receiver absolute space CCF |ρk1,k′1,1(0, δR; t)| of the

ellipse model under spherical assumption in terms of different

values of (k′, k) pairs with |k′ − k| = 1 is illustrated in Fig. 5.

It can be observed that the receive antenna correlation slowly

decreases as the normalized antenna spacing increases. The

numerical results of the receive antenna correlation curves

of the proposed model are compared with measurements on

receiver correlation of massive MIMO in [27], showing that

they share a similar trend. Most importantly, it can be real-

ized that correlation functions of different values of k′ and k
with |k′ − k| = 1 are different. The correlation function does

not only depend of the absolute difference between antenna

indices but also the indices of reference antennas, which means

the WSS properties on the antenna array axis are not valid

under the spherical wavefront assumption. The absolute space

CCF |ρ11,22,1(δT , δR; t)| of the ellipse model under spherical

assumption has been illustrated in Fig. 6. It can be observed

that the spatial correlation gradually drops when the normalized

antenna spacing increases.

Furthermore, an example of cluster evolution on the array

axis has been depicted in Fig. 7. Originally there are 20 clusters

(Cluster1 to Cluster20) observable to the first antenna element.

Then, these clusters evolve according to the birth-death process

Fig. 6. Absolute space CCF |ρ11,22,1(δT , δR; t)| of the ellipse model.
(MR = MT = 32, t = 1 s, a1 = 100 m, f = 80 m, Da

c = 30 m, Ds
c =

50 m, βR = βT = π/2, λ = 0.15 m, fmax = 33.33 Hz, αv = π/6, κ = 5,
NLOS).

Fig. 7. An example of cluster evolution on the receive antenna array. (A “∗”
symbol in the two dimensional plane means its corresponding antenna element
(coordinate on the horizontal direction) is able to observe its corresponding
cluster (coordinate on the vertical direction).)

and probabilities described in Section II-A. It can be observed

that 4 (Cluster10, Cluster14, Cluster15, and Cluster20) of the

original 20 clusters disappear during the evolutin process and 5

new clusters (Cluster21 to Cluster25) have been generated. As a

result, different antenna elements may observe different cluster

sets. The cluster sets of the 4th and the 31st receive antennas

CR
4 and CR

31, for instance, share 18 common clusters. It should

be noticed that, unlike conventional MIMO channel models,

only a total cluster number of a cluster set is not sufficient to

represent the properties of the cluster. The cluster members

inside a cluster set as well as their properties such as delay,

AoA and cluster power should be considered when calculating

the channel coefficients in (3).

Figs. 8 and 9 show the normalized angle power spectrum

(APS) of AoA of the wideband ellipse model for both NLOS

and LOS scenarios. The value of λR is set as 4/m, the values

of λG are chosen as 80/m and 32/m for NLOS and LOS cases,

respectively. Hence, the mean numbers of clusters are aligned

with NLOS (20 clusters) and LOS (8 clusters) cases in the
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Fig. 8. A snapshot example of the normalized angle power spectrum of
AoA of the wideband ellipse model. (MR = 32, MT = 1, a1 = 100 m, f =
80 m, Da

c = 30 m, Ds
c = 50 m, βR = βT = π/2, λ = 0.15 m, δR = 0.5λ,

fmax = 0 Hz, NLOS, λG = 80/m, λR = 4/m, PF = 0.3).

Fig. 9. A snapshot example of the normalized angle power spectrum of
AoA of the wideband ellipse model. (MR = 32,MT = 1, a1 = 100 m, f =
80 m, Da

c = 30 m, Ds
c = 50 m, βR = βT = π/2, λ = 0.15 m, δR = 0.5λ,

fmax = 0 Hz, LOS K = 3 dB, λG = 32/m, λR = 4/m, PF = 0.3).

WINNER II model. The AoAs are estimated using the well-

known multiple signal classification (MUSIC) algorithm [46],

[47] with a sliding window formed by 3 consecutive antennas.

This sliding window is shifted by 1 antenna at a time, from the

first antenna to the last antenna. Therefore, for a 32-element

antenna array, there are in total 30 window positions as Figs. 8

and 9 illustrate. Three properties can be observed via these two

figures. First, it can be observed that several estimated AoAs

gradually change along the array axis. This phenomenon is

mainly caused by the spherical wavefront assumption when the

distances between their corresponding clusters and the antenna

array do not fulfill the farfield assumption. Consequently, the

AoAs of these clusters are no longer constant on every antenna

element. Second, it is the birth-death process that models the

dynamic properties of clusters and the non-stationarities on the

array axis, where the appearance and disappearance of clusters

can be seen in both figures. Different antenna elements may

Fig. 10. Cumulative distribution function of average life periods of clusters
on the array axis in terms of normalized antenna spacing. (Da

c = 30 m, Ds
c =

50 m, λ = 0.15 m, δR = 0.5λ, NLOS, λG = 80/m, λR = 4/m, PF = 0.3).

observe different sets of clusters, and the life periods of these

clusters are continuous on the array axis.

The CDF of the average life periods of clusters on the array

axis is illustrated in Fig. 10. It shows the survival probability of

a cluster decreases exponentially as evolving on the array axis.

Third, the power variations of each cluster result in imbalanced

received power on the array axis. To study this phenomenon, let

pk(k = 1, · · · ,MR) denote the received power of AntRk , then

the maximum received power difference ∆pRmax is defined as

∆pRmax(dB) = 10 log10
max{p1, p2, · · · , pMR

}
min{p1, p2, · · · , pMR

} . (59)

After 200 trials, the CDF of the the maximum received power

difference in difference conditions of correlation factors on

array and space axes can be observed in Fig. 11. It shows

a difference of approximately 2–3 dB between the maximum

and minimum received power over the antenna array, which

is normally not investigated in conventional plane wavefront

MIMO channel models. Also, the received power difference

on the array axis increases as the correlation factor reduces.

Similar conclusions on received power imbalance can be found

in [27] and [28].

The absolute receiver space CCFs of the wideband ellipse

model with different birth-death process configurations is il-

lustrated in Fig. 12. It can be observed that the correlation

with cluster evolution on the array axis is lower than that

without considering array evolution, because a certain number

of clusters would fail to survive when they evolve on the array

axis. Also, the gap between the two curves increases as the

antenna separation grows because of a lower probability for a

cluster to survive. Finally, the time-variant characteristic has

been shown in Fig. 13. It can be observed that the absolute

time ACF varies along with time and hence the numerical result

demonstrates time non-stationarities of the model.

Fig. 14 compares the FCF between NLOS and LOS scenar-

ios. It can be seen that the FCF of NLOS decreases significantly

with the frequency difference whose 50% coherence bandwidth

is approximately 1.2 MHz. On the other hand, the LOS scenario
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Fig. 11. Cumulative distribution function of the maximum power difference
over the antenna array under different LOS/NLOS conditions and correlation
factors on array and space axes. (MR = 32,MT = 1, a1 = 100 m, f =
80 m, βR = βT = π/2, λ = 0.15 m, δR = 0.5λ, fmax = 0 Hz, von Mises
distributed AoA).

Fig. 12. Absolute receiver space CCF |ρ11,21,1(0, δR; t)| of the wideband
ellipse model. (MR = 32,MT = 1, t = 1 s, a1 = 100 m, f = 80 m, Da

c =
15 m, Ds

c = 50 m, βR = βT = π/2, λ = 0.15 m, δR = 0.5λ, fmax =
0 Hz, NLOS, λG = 80/m, λR = 4/m, PF = 0.3, κ = 5).

has a larger 50% coherence bandwidth because the LOS com-

ponent dominates the power of the channel.

V. CONCLUSION

A novel 2D wideband ellipse channel model with non-

stationarities on both time and array axes for massive MIMO

communication systems has been proposed in this paper. Spher-

ical wavefront has been assumed in the proposed model illus-

trating the difference of spatial correlation properties compared

with the plane wavefront assumption used in conventional

MIMO channel models. It has been demonstrated that WSS

properties are not available under the spherical wavefront as-

sumption. Additionally, birth-death process has been applied to

both time and array axes to model the non-stationary behaviors

of clusters on both axes. In this case, different cluster sets can be

observable to different antenna elements in this model. Finally,

Fig. 13. Absolute time ACF of Cluster1|ρ11,1(∆t; t)| in (56) comparison
between t = 1 s and t = 4 s with birth-death process. (MR = 32,MT =
32, a1 = 100 m, f = 80 m, Da

c = 15 m, Ds
c = 50 m, βR = βT = π/2,

λ = 0.15 m, δR = δT = 0.5λ, fmax = 33.33 Hz, vc = 0.5 m/s, NLOS,
λG = 80/m, λR = 4/m, PF = 0.3, κ = 5).

Fig. 14. Absolute FCF |ρ11(∆ξ; t)| comparison between NLOS and LOS.
(MR = 32,MT = 32, a1 = 100 m, f = 80 m, Da

c = 15 m, Ds
c = 50 m,

βR = βT = π/2, λ = 0.15 m, δR = δT = 0.5λ, fmax = 33.33 Hz, vc =
0.5 m/s, λG = 80/m, λR = 4/m, PF = 0.3, κ = 5.

based on the numerical analysis, the proposed model has shown

that there are non-stationarities and dynamic properties of

clusters on the antenna array in massive MIMO channels, where

similar conclusions have also been drawn in measurements [27]

and [28]. For future work, certain parameters of the proposed

channel model may be extracted via measurements. Also, since

GBSMs do not depend on configurations of antenna arrays,

polarized antenna arrays can be employed in future extensions

of the channel model.
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