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ABSTRACT

Here we investigate the automatic detection of fire pixel
regions in conventional video (or still) imagery within real-
time bounds. As an extension to prior, established approaches
within this field we specifically look to extend the primary use
of threshold-driven colour spectroscopy to the combined use
of colour-texture feature descriptors as an input to a trained
classification approach that is independent of temporal infor-
mation. We show the limitations of such spectroscopy driven
approaches on simple, real-world examples and propose our
novel extension as a robust, real-time solution within this field
by combining simple texture descriptors to illustrate maximal
~98% fire region detection.

Index Terms— fire detection, texture, real-time, non-
temporal

1. INTRODUCTION

A number of factors have driven forward the increased need
for fire (or flame) detection within video sequences for de-
ployment in a wide variety of automatic monitoring tasks.
The increasing prevalence of industrial, public space and
general environment monitoring using security-driven CCTV
video systems has given rise to the consideration of these
systems as secondary sources of both initial fire detection
(in addition to traditional smoke/heat based systems). Fur-
thermore, the on-going consideration of remote vehicles for
fire detection and monitoring tasks [1, 2] adds further to the
demand for autonomous fire detection from such platforms
themselves move towards autonomous navigation and tasking
[3]. In the latter case, attention turns not only to the detection
of fire itself but also its internal geography of the fire and
temporal development [4].

Prior work in area concentrates itself either on the use of
a purely colour based approach [5, 6, 7, 8, 9, 4] or a combi-
nation of colour and high-order temporal information [10, 11,
12, 13]. Early work emanated from the colour-threshold ap-
proach of [5] which was extended with the basic consideration
of motion by [10]. Later work considered the temporal varia-
tion (flame flicker) of fire imagery within the Fourier domain
[11] with further studies formulating a Hidden Markov Model
problem [12]. More recently work considering the temporal
aspect of the problem has investigated time-derivatives over
the image [13]. Although flame flicker is generally not sinu-
soidal or periodic under all conditions, a frequency of 10Hz
has been observed in generalised observational studies [14].
As such, [15] considered the use of the wavelet transform as a
temporal feature. In later applications [7] we still see the ba-

sic approaches of [10] underlying colour-driven approaches
although more sophisticated colour models based on a deriva-
tive of background segmentation [9] and consideration of al-
ternative colour spaces [8] are proposed. In general recent
works report ~98-99% detection rates with frame rates in the
region of 10-40 fps on relatively small image sizes (CIF or
similar) [9, 8].

Notably work on the application of machine-learning type
classification approaches to the fire detection problem is lim-
ited with the work of [16] considering a colour-driven ap-
proach utilising temporal shape features as an input to a neural
network and similarly the work of [17] utilising wavelet co-
efficients as an input to an SVM type classifier. The major-
ity of early work purely considers colour-based classification
within RGB colour-space [5, 10] with these approaches see-
ing further merit in later work [13, 15, 4]. Further refinements
considered alternative chromaticity, HSV or YCrCb colour-
space formulations [6, 8, 17]. Here, by contrast to previous
classifier-driven work [16, 17, 4], we consider a non-temporal
classification model for fire regions within the image based
on a novel combination of HSV colour and statistical tex-
ture features [18]. We show that comparable detection re-
sults are achievable using similar classification approaches to
[16, 17] without consideration of temporal information mak-
ing the proposed approach applicable to still or video imagery
alike.

2. FEATURE EXTRACTION

As previously discussed, prior work on the automatic detec-
tion of fire within imagery centres around the consideration of
colour, movement (or scene change) and short-order temporal
characteristics [12, 15, 17, 16]. Although, an increasing range
of generalized object recognition approaches are becoming
prevalent for objects of varying visual complexity [19], the
target deployment of an automatic vision-based fire-detection
system has an integral real-time requirement. To this end, it
is the simpler detection strategies that are achievable within
real-time bounds that come to prominence. Here we investi-
gate the strength of simple, non-temporal colour spectroscopy
based approaches [5, 10], illustrate their weaknesses (Section
4.1) and propose an combined texture and colour based fea-
ture descriptor as an input to a trained classifier based detec-
tion/decision boundary (Section 4.2) .

2.1. Colour Features

In a similar vein to the prior work of [6, 17] we utilise a
perceptual colour-space, namely HSV (Hue, Saturation, Vari-
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Fig. 1. Example of fire image separated into HSV colour
channels (H with false colour added)

ance), representation for our colour features [20]. In con-
trast to early work on fire detection [5, 10], the use of an
HSV colour representation allows us to isolate the illumina-
tion component of the scene (Variance channel) and the con-
sideration of image pixel characteristics corresponding to fire
within the Hue / Saturation channels alone (see example - Fig-
ure 1). Here the remaining Hue and Saturation channels are
quantized as 10 element normalised histograms (per channel)
for input as features for classification.

2.2. Texture Features

In addition to these summary colour features (Section 2.1), we
also employ texture features within the fire detection prob-
lem. From the example of Figure 1 (top left) the nature of
texture within such fire imagery is clearly apparent within the
original RGB image. Its importance within the visual charac-
teristics of fire is further supported by a) the flame frequency
observations of [14] and b) the temporal nature of other work
within the field [10, 11, 12, 13]. Both suggest that a given im-
age frame within a fire sequence (i.e. “snap-shot”) will con-
tain statistical variation inherent of its nature that (in earlier
works) have been integrated over time for identification pur-
poses. Furthermore an examination of an extracted (ground
truth) fire example as a distribution in both RGB and HSV
space (Figure 2) suggest that this statistical variation is in-
deed apparent within a very limited subs-space of the colour
palette. With this in mind we look to utilize the established
Grey Level Co-occurrence Gray Matrix (GLCM) texture fea-
tures to capture this indicative and compact statistical texture
variation [18].

The GLCM is an adjacency matrix indexed by pixel in-
tensity values calculated by considering pairs of pixels at a
certain relative spatial distance, d, in all or a subset of the
{N,NE,E,SE,S,SW,W, NW} orientations with the im-
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Fig. 2. Typical fire pixel distribution in RGB and HSV colour-
space
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Table 1. GLCM Summary Statistics

age [18]. Each normalized GLCM entry, G(i,j), specifies
the probability of finding a pixel of value j at spatial separa-
tion d from a pixel of value ¢ in a given orientation. From each
GLCM a range of summary statistics can be used to charac-
terise the texture distribution captured by the matrix. In or-
der to reduce computation, and representational redundancy,
we calculate five such summary statistics (see Table 1) in the
{E,SE,SW, S} orientations resulting in the use of a 20 ele-
ment texture descriptor (with d = 1). From our review of lit-
erature, this consideration of texture is novel within prior fire
detection work with authors instead opting for additional tem-
poral features to boost detection of otherwise colour-driven
approaches [5, 10, 6, 11, 12, 15,13,2,9,7, 17, 8, 16, 4].

3. FEATURE CLASSIFICATION

Feature classification is performed based on a two stage
approach:- a) isolation of candidate fire pixel regions using a
basic colour spectroscopy approach [5, 6] and b) combined
colour-texture classification of these regions using a trained
classification approach. This two stage approach reduces the
computation required for texture descriptor calculation by
limiting such calculations to the regions identified by colour
spectroscopy in the first stage thus aiding real-time perfor-
mance.

3.1. Fire Region Isolation

Candidate fire regions within an RGB image are initially iso-
lated based on an empirical colour spectroscopy rule-set de-
rived from the earlier combined work of [5, 6]:



1. R > Ry
22 R>G>18B
3. 8> (ST(255—R))/RT

where {R, G, B}are the channels of the RGB image respec-
tively, S is the saturation channel of the HSV colour-space
equivalent, Ry is the red channel threshold (range: {115 —
135} [6]) and St is the saturation channel threshold (range:
{55 — 65} [6]). If all rules return true a given pixel is as-
signed as a candidate fire region pixel. These isolated can-
didate regions are then post-processed using morphological
closing [20]. This approach can additionally be supplemented
by simple frame differencing as required.

3.2. Colour-Texture Classification

The combined colour-texture descriptor consisting of both
Hue and Saturation channel histograms (10 elements per
channel) and the 20 element GLCM texture descriptor is
used as an input to both regular decision tree (post-pruned)
and neural network classifiers [21]. Classifier training is
performed using k-fold cross-validation over 1194 example
images (class split 50/50: { fire/non — fire}, k = 8) with
testing performed over an isolated set of 53 video sequences
varying in day/night, illumination, camera source and fire
combustible etc. (each > 1 minute in length, evaluation on
a per image frame basis). Both classifiers are experimen-
tal tested over varying levels of complexity (decision tree -
max tree depth, neural network - number of hidden nodes).
Decision tree construction used the CART algorithm whilst
back-propagation was used for neural network training [21].
Principle Components Analysis (PCA) was subsequently
used to identify a dimensionality reduction 36 — 30 [20] and
the performance of the two classification approaches with and
without this reduction compared.

4. RESULTS
4.1. Colour Spectroscopy

Colour spectroscopy alone [5, 10] is a weak non-temporal ap-
proach for the detection of fire pixels within an image. This
is illustrated in the classical example of Figure 3 where we
see the identification of both fire and (false positive detection)
of fire appliance (engine) as fire regions within the image.
The examples of Figure 7 A-C are similarly mis-classified by
colour spectroscopy alone (but not by extended 2-stage clas-
sification).

4.2. Colour-Texture Classification

By contrast in Figure 4 (from the same video sequence as Fig-
ure 3) we see the isolation of the true fire pixel regions (Fig-
ure 4, red highlighted regions) as a subset of those identified
by colour spectroscopy alone (Figure 4, green and red high-
lighted regions). An example of using colour spectroscopy

Fig. 3. Original image (left) and corresponding fire pixels
regions detected using colour spectroscopy (right).

Fig. 4. Fire pixels regions detected using 2-stage colour spec-
troscopy and decision tree classification (red), single-stage
colour spectroscopy only (green)

for initial candidate region identification and a trained neu-
ral network classifier for final fire detection (i.e. secondary
confirmation) is shown in Figure 5.

Empirically a post-pruned decision tree classifier with a
maximal tree depth of 9 was found to give optimal perfor-
mance. The mean test performance of this approach over 8
cross validation folds was 87.83% with ~7% false positive
detection. Maximal detection of 97.8% was achieved using
this approach over all cross-validation subsets. A neural net-
work classifier, experimentally optimised to a final 3-layer
and 25 hidden node topology, resulted in 83.09% mean suc-
cessful detection with a ~8% false positive rate over 8 cross-
validation folds. Maximal detection using this neural network
approach was 88.1%. The use of PCA dimensionality reduc-
tion was found to only increase the successful detection rates
by a marginal ~1-2% using either selected approach.

Using the decision tree approach, 360x288 resolution im-
ages within a video sequence could be classified at ~12fps
whilst classification using the neural network approach
achieved ~6fps. This mild-reduction in real-time perfor-
mance compared to prior classification work on this problem
[17, 16] is attributable to texture descriptor calculation.

Further examples of successful fire detection are shown
in Figure 6 whilst in Figure 7 we see both the successful
non-fire classification of regions commonly mis-classified by
colour spectroscopy based approaches [5, 10] (Figure 7 A-C
- red/yellow/orange objects and high illumination/saturation
solar reflectance) and additionally a case where our proposed
colour-texture feature approach itself fails due to a combina-
tion of smoke/flame transparency artifacts (Figure 7 D).



Fig. 5. Fire pixels regions detected using neural network clas-
sification (red)

Fig. 6. Fire pixels regions detected using decision tree classi-
fication (red)

5. CONCLUSIONS

We successfully show comparable classification results, using
simpler trained classifier techniques, to recent prior work in
the field [17, 16] without any requirement for temporal infor-
mation. The proposed technique can be applied to both video
and still imagery alike and offers a more robust fire detection
capability than approaches reliant only upon colour features
[5, 6, 7,9, 8]. Within the framework proposed the impact of
texture feature calculation on real-time performance is mini-
mal and the approach remains within the bounds of deploy-
able use. Future work will investigate the use of alternative
texture descriptors and the possible use of texture descriptors
to improve the performance of state of the art temporal fire
detection approaches.
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Fig. 7. Successful non-fire detection (A-C) and false negative
example (D)
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