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Abstract

Nonsingular disclination dynamics in a uniaxial nematic liquid crystal is modeled within
a mathematical framework where the kinematics is a direct extension of the classical
way of identifying these line defects with singularities of a unit vector field represent-
ing the nematic director. It is well known that the universally accepted Oseen-Frank
energy is infinite for configurations that contain disclination line defects. We devise
a natural augmentation of the Oseen-Frank energy to account for physical situations
where, under certain conditions, infinite director gradients have zero associated energy
cost, as would be necessary for modeling half-integer strength disclinations within the
framework of the director theory. Equilibria and dynamics (in the absence of flow) of
line defects are studied within the proposed model. Using appropriate initial/boundary
data, the gradient-flow dynamics of this energy leads to non-singular, line defect equi-
librium solutions, including those of half-integer strength. However, we demonstrate
that the gradient flow dynamics for this energy is not able to adequately describe de-
fect evolution. Motivated by similarity with dislocation dynamics in solids, a novel
2D-model of disclination dynamics in nematics is proposed. The model is based on the
extended Oseen-Frank energy and takes into account thermodynamics and the kine-
matics of conservation of defect topological charge. We validate this model through
computations of disclination equilibria, annihilation, repulsion, and splitting. We show
that the energy function we devise, suitably interpreted, can serve as well for the
modeling of equilibria and dynamics of dislocation line defects in solids making the
conclusions of this paper relevant to mechanics of both solids and liquid crystals.

1 Introduction

Liquid crystals (LC) are matter in a state whose properties are between liquids and solids.
Research on liquid crystals is currently advancing quite rapidly motivated by applications
and discoveries in material science as well as in biological systems. There are many types
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of liquid crystal states, depending on the amount of order in the material. A nematic phase
consists of rod like molecules that retain some long-range orientational order. In this work,
we are primarily interested in modeling disclinations in a uniaxial nematic liquid crystalline
medium, treated by an augmentation of the classical model (cf. [1]) where the director order
parameter is represented by a unit vector field.

The classical theories of liquid crystal mechanics like the Oseen-Frank and Ericksen-Leslie
models predict unbounded energy in finite bodies with discrete disclinations. Recently, a
kinematic augmentation of classical Leslie-Ericksen theory [2, 3] has been devised that al-
lows alleviating the singularity, with results being demonstrated for the case where the defect
field is not allowed to evolve. These works aim to achieve an understanding of the connec-
tions between the classical theory of defects, such as solid dislocations and disclinations
introduced by Weingarten and Volterra, and the theory of defected liquid crystals, a line
of enquiry that began from the work of Kleman [4]. In [2], the model introduces an aug-
mented Oseen-Frank kinematics and involves a director field and an incompatible director
distortion field that is not curl-free. In [3], a finite element based numerical scheme was used
to solve for the director fields of prescribed static disclinations and a critical examination
presented of the similarities and differences that arise between the modeling of LC discli-
nations and solid dislocations using the eigendeformation approach [3]. In this paper, we
study this augmented model with natural constitutive modifications to enable the study of
equilibria and evolution of LC disclinations, including those of half integer strength. First, a
gradient flow dynamics of the augmented energy is utilized and used to calculate equilibrium
solutions. However, we find that the gradient flow dynamics for this energy is not suitable
for modeling the defect evolution problem, and explain why this must be so. Motivated by
the crystal dislocation case, a 2D model based on the augmented energy, thermodynamics,
and the kinematics of conservation of defect topological charge is constructed to analyze ne-
matic disclination dynamics. We validate this model through computations for disclination
equilibria, annihilation, repulsion, and dissociation.

Non-singular equilibria and dynamics of liquid crystal point and line defects have been
studied in the literature, particularly within the Landau de-Gennes (L-dG) framework [5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. A more limited
number of studies have been carried out in the Oseen-Frank and Leslie-Ericksen models as
well as Ericksen’s model for nematics with variable degree of orientation [27, 18, 19, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37]. The general consensus from the literature is that finite energy
line-defects, including those of half-integer strength, can only be predicted by the full L-dG
theory among all the models mentioned above.

As a point of departure, Ball and Bedford [38] suggest the use of discontinuous order
parameter fields, in particular a discontinuous vector order parameter field to represent uni-
axial nematics. The exploration there is essentially kinematical and focuses primarily on
the appropriate mathematical function spaces to be used, stopping short of demonstrating
specific examples of solutions (or approximations thereof) of defect equilibria resulting from
the use of energy functions and dynamical models based on their discontinuous kinemat-
ics. Our work, in essence, achieves precisely this goal, thus being complementary to [38].
While our computational work does not employ discontinuous fields, it is demonstrated and
explained why our approach yields, in a sense, the natural practical approximation of such
discontinuous limiting director fields.
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The work of Gartland [39] demonstrates how the classical Oseen-Frank energy may be
viewed as a constrained form of the Landau-deGennes energy at temperatures below the
‘supercooling temperature.’ Since in this temperature range the bulk Landau-deGennes
energy is minimized by Q-tensors representing the uniaxial nematic phase, the constrained
L-dG energy of nematic configurations that contain line defects is infinite. Our work develops
a modification of the Oseen-Frank energy that enables the prediction of finite-energy defect
fields, utilizing a core energy regularization that involves a material length scale which may
be associated with the ‘nematic correlation length’ ξ as defined in [39].

2 Notation

The condition that a is defined to be b is indicated by the statement a := b. The Einstein
summation convention is implied unless specified otherwise. The symbol Ab denotes the
action of a tensor A on a vector b, producing a vector. In the sequel, a · b represents the
inner product of two vectors a and b; the symbol AD represents tensor multiplication of
the second-order tensors A and D.

The symbol div represents the divergence and grad represents the gradient. In this paper
all tensor or vector indices are written with respect to the basis ei, i=1 to 3, of a rectangular
Cartesian coordinate system. The following component-form notation holds:

(A× v)im = emjkAijvk

(divA)i = Aij,j

(curlA)im = emjkAik,j

where emjk is a component of the alternating tensor X.
The following list describes some of the mathematical symbols we use in this work:
n: director
k: disclination strength
θ: angle of director field
λ: layer field
l: layer thickness
ξ: core width

3 Augmented Oseen-Frank energy and corresponding

gradient flow computations

It is generally believed that a theory of nematic line defects cannot be established with a
representation of the nematic director by a unit vector field. Indeed, consider a nematic
occupying a two-dimensional domain with the director field n taking values in S

1. Assuming
the validity of the universally accepted Oseen-Frank energy density function [27, 40] given
by

FOF = K1(divn)
2 +K2(n · curln)2 +K3|n× curln|2

+K24(divn)
2 − tr(gradn)2)

3



where K1, K2, K3, K24 are material dependent Frank elastic constants, it can be seen that the
planar configuration of a straight, half-integer strength wedge disclination necessarily results
in at least one curve C in the plane connecting the core of the defect to the external boundary
such that the vector field n has to be discontinuous along C. If the discontinuity were to
be approximated by a thin region along C characterized by high gradients of the director,
the Oseen-Frank energy of the resulting configuration would yield a physically unobserved
region of very high energy density. One of our goals in this paper is to propose a model that
adequately resolves this problem by augmenting the director model by an additional field.
The resulting model is different from the Landau De-Gennes Q-tensor model [7], and makes
close connections to models of line defects in other fields, such as crystal plasticity and phase
transitions in solids.

The Oseen-Frank energy function is a quadratic function in the director field1 and its
gradients. With the half-integer defect as a motivation, it would seem that if director dis-
continuity associated with the winding of the director by π radians were to be assigned a
vanishing energy cost, then progress may be made on modeling line defects. Mathematically,
suppose that the director n winds by π radians over the distance l in the direction of a unit
vector p, where l is a parameter with physical dimensions of length. Associating a zero
energy cost to the jump of the director by π radians across the line perpendicular to p can
be stated as a condition

0 = F(n,0) = F
(

n,
2n

l
⊗ p

)

= F(−n,−2n

l
⊗ p) ∀p (1)

as l → 0+. This is equivalent to demanding a zero energy cost for a flip of π radians over a
layer of width l in the limit of vanishing layer width. The second equlity in (1) stems from
the condition

FOF (n, gradn) = FOF (−n,− gradn)

arising from the head-tail symmetry of the nematic molecules2. As illustration, these re-
quirements mean there is no energy in the case shown in Figure 1(a) which is physically
equivalent to Figure 1(b) and Figure 1(c). For fixed n, this implies a multiple-well structure
of the energy density in the director gradient slot of F .

1From here onwards, we will use the imprecise short-form of ‘director field’ to refer to the ‘director vector
field.’

2Of course, the choice of a flip by π radians in (1) is also intimately connected to head-tail symmetry of
the nematic molecules.

4



−0.5 0 0.5

−0.2

−0.1

0

0.1

0.2

Direction of p

(a) Director field, represented as a vector field,
changes direction through a layer in the center of
the body, but there is no disclination and the en-
ergy is zero.
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(b) The equivalent case with a different vector
field.
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(c) The director field without artificial arrows.

Figure 1: Illustration of issues with representation of the director field by a vector field.

Figure 2 shows another justification for demanding nonconvexity of the energy-density. It
shows two spatial points in the nematic liquid crystal located close to each other, represented
as the red dots (point 1 and point 2 ). The director at point 1 is assumed be in the
horizontal direction pointing to the right, shown as the black line. At point 2 , the director
is considered as a vector originating from this point 2 and rotates clockwise. The angle
between the director at point 1 and the director at point 2 is denoted as θ. First, θ will
increase from 0◦ to 90◦, represented as the blue angle in Figure 2, and the angle α used to
identify the angular separation and gradient for calculation of the the energy density equals θ,
which causes the energy density to increase. When the director rotation passes 90◦, although
the angle θ between the two directors keeps increasing, the angle α used to calculate the
energy density is π − θ (the orange angle in Figure 2) since physically the director has no
direction. Thus, when θ increases from 90◦ to 180◦ the energy density decreases. In addition,
the energy density will reach its maximum when the angle θ reaches 90◦.
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Figure 2: Illustration of the reason for non-convexity of the energy density. The angle
between the director and its neighbor displays periodicity with change in direction.

High director gradients, uniform along layers, and with little energy cost from such layers
may be expected in models with the above nonconvexity in the energy density. However, a
state with a single disclination is the limit, as the layer width goes to zero, of a continuous,
global director configuration that has a high, uniform director gradient in a section of a thin
layer, transitioning to gradients of negligible magnitude in the rest of the layer (the parts of
the layer −l/2 < y < l/2 to the right and to the left of x = 0, respectively, in Figure 3(e).
Here 0 < l ≪ 1.). The transition region in the layer is the core of the disclination. Since the
director configuration varies continuously, from its value on the top of the section of the layer
with non-negligible gradient to its value at the bottom (of the same section of the layer) along
any path going around the core, it is easy to see that such a global configuration has to contain
substantial total energy on the whole (see Figure 3(e)). Since it is physically reasonable to
expect such director configurations to exist without imposed loadings, it is clear that the
attainment of such states cannot be a question of global energy minimization, and almost
definitely not in a model whose energy density is quadratic in the director gradients (as
for example in the 1-constant Oseen-Frank energy density approximation in Leslie-Ericksen
theory). It is also believed that disclination cores move under their mutual interaction, even
in the absence of applied loads, with speeds unrelated to causes of orientational or positional
inertia of the material. Indeed, the Ericksen-Leslie equations governing the director field are
most often used without any orientational inertia. Moreover, it seems reasonable to develop
models where motion of defects are allowed even in the absence of flow; as justification we
quote the following excerpt from Ericksen [41], discussing parallel, straight disclinations:

“Saupe is very familiar with observations of disclinations of this kind, his own and those
made by others. Typically, they are observed in specimens contained between a cover plate
and a glass slide, in a polarizing microscope. Generally, they do move, but not alway[s]
rapidly. There are empirical rules, of a topological nature, for determining the kinds that
attract (or repel) each other, such as were discussed by Friedel [12], for example. As they

move, they cause little or no flow; experimentalists tell me that it is hard to detect any so
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caused, although, they don’t doubt that, in principle, there is some.3 Dynamical theory does
involve viscous contributions, modifying the constitutive equations, etc., associated with the
time rate of change of the director as well as the velocity field. From what I know of the
theory and observations, I don’t believe that one can use equilibrium theory to analyze these
phenomena....”

Based on the above observations, it appears to us that accommodating general disclina-
tion dynamics, including that of half-integer strength disclinations, within the structure of
Leslie-Ericksen theory or Ericksen [42] is probably an unattainable goal. Thus, we augment
the kinematics (and dynamical structure) of Leslie-Ericksen theory with an additional field
that allows for equilibria and motion of non-singular disclinations, as described below.

We follow the primarily kinematical ideas presented in [3] and restrict attention to the pla-
nar case. We assume that the director n is a unit vector which therefore can be parametrized
with an angle field, i.e., n = cos θe1 + sin θe2. As in [3] we introduce a layer field λ. Fur-
thermore, we assume that the energy E, depending on the fields grad θ and λ, takes the
form

E =

∫

V

[

K

2
| grad θ − λ|2 + ǫ

2
| curlλ|2 + γf(λ)

]

dv. (2)

Here K > 0 is a constant parameter representing 1-constant Oseen-Frank elasticity. The
parameter ǫ := KCaξ2 depends on the disclination core width ξ > 0, a fundamental length
scale of the model, a non-dimensional parameter C to control the magnitude of the core
energy, and the width of the layer l = aξ, where a ≥ 0 is a non-dimensional scaling factor.
To allow for conventional expectations, we will accommodate the limit a→ 0 and still allow
for finite energy disclination solutions (recall that ξ > 0). The parameter γ is defined as

γ := 2PKk̂
aξ2

, with P being a non-dimensional penalty parameter, and k̂ := 1
2
. f is a multi-

well function with minima of wells at integer multiples of 2πk̂
aξ

. A typical candidate for the
function f that we use in this work is

f(λ) = 1− cos



2π
|λ|
(

2πk̂
aξ

)



 = 1− cos



ξ|λ|
(

k̂

a

)−1


 . (3)

Thus |λ| = 2πk
aξ

for a strength-k disclination, where k is any integer-multiple of k̂ = 1
2
,

minimizes this symmetry related, non-convex energy density term.
The intuition behind why the energy (2) can serve to represent disclinations is as follows.

For a fixed specification of the field λ very similar to as specified in (6), it is shown in detail
in [3] that the director and energy density fields of disclination defects are well captured
by a model whose static governing equation is the Euler-Lagrange equation of the energy
(2) for variations only in the field θ. All that then remains to be convinced of is that the
configuration of λ specified in (6) is close to one that extremizes the energy (2), with the
associated θ field being the solution of the Euler-Lagrange equation of (2) for θ-variations
(i.e. the right-hand-side of (5)1). This is easy to see as the magnitude of the λ field in
(6) does lie in the wells of the function f . The term penalizing curlλ in (2) smooths out

3The italicization here is ours.
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the transition of λ within the layer, as does the elastic energy term (the first term of the
integrand in (2)4). This transition layer in curlλ within the layer signifies the core region
of a disclination, and the parameter ǫ characterizes the core energy of the defect, with

√
ǫ

roughly setting the core-width in the equilibrium solution. It is to be noted that the core
energy (i.e the second term in the integrand in (2)) does not penalize the vertical gradients
of the λ field in (6) across the horizontal boundaries of the layer.

The various parameters of the model have the following physical dimensions: [E] =
Force × Length, [K] = Force, [λ] = Length−1, [ǫ] = Force × Length2, [ξ] = Length,
[γ] = Force× Length−2.

To obtain the gradient flow equations, the first variation of the energy E is,

δE =

∫

V

{

K(θ,i − λi)δθ,i −K(θ,i − λi)δλi + ǫeijkeirsλs,rδλk,j + γ
∂f

∂λi
δλi

}

dv.

Integrate by parts and assume boundary terms to vanish. Then we obtain

δE =

∫

V

{

K(−θ,ii + λi,i)δθi +

(

γ
∂f

∂λk
−K(θ,k − λk)− ǫeijkeirsλs,rj

)

δλk

}

dv.

Extracting terms for θ and λ respectively, we obtain the evolution equations

∂θ

∂t
=M1K(θ,ii − λi,i)

∂λk
∂t

=M2

(

−γ ∂f
∂λk

+K(θ,k − λk) + ǫeijkeirsλs,rj

) (4)

Here M1 and M2 represent mobility coefficients. Their physical dimensions are [M1] =
V elocity × Length× Force−1 and [M2] = V elocity × Force−1 × Length−1.

To non-dimensionalize the above equations, we introduce the following dimensionless
variables,

x̃i =
1

ξ
xi; s̃ = KM2t; γ̃ =

ξ2

K
γ =

2P k̂

a
; λ̃ = ξλ; ǫ̃ =

1

Kξ2
ǫ = Ca

Also, we assume M1 = M2ξ
2; this is justified by the fact that we view the gradient flow

equation for θ as simply a device to achieve equilibrium in θ with λ fixed. Indeed, in all
gradient-flow results presented in the following, we have checked our results to ensure that
they are invariant to solving directly for the equilibrium of θ for fixed λ. Then the non-
dimensionalized version of (4) reads as:

∂θ

∂s̃
= (θ,ii − λ̃i,i)

∂λ̃k
∂s̃

= −γ̃ ∂f
∂λ̃k

+ (θ,k − λ̃k) + ǫ̃eijkeirsλ̃s,rj

where f = 1− cos



|λ̃|
(

k̂

a

)−1


 .

After substituting the expressions for γ̃ and ǫ̃, the nondimensional evolution equations are

4In this special case where λ is expected to have only one non-vanishing component.
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∂θ

∂s
= (θ,ii − λi,i)

∂λk
∂s

= −2P sin



|λ|
(

k̂

a

)−1


 λ̂k + (θ,k − λk) + Caeijkeirsλs,rj























in the body B (5)

where λ̂ is the unit vector in the direction of λ, and we have removed all tildes for con-

venience. For the purposes of Section 4, all symbols henceforth represent non-dimensional
quantities.

In all that follows, we think of our computational solutions employing a > 0 as ap-
proximations of the limiting case a = 0 which assigns no physical significance to the layer.
In Section 4.5 we show that our equilibrium disclination solutions show a trend to finite
total energy even in that limit. Thus, the nondimensionalized model effectively has two

non-dimensional constants, C, P .

4 Static results from gradient flow

We evaluate the gradient flow model by presenting results for straight wedge disclinations.
All calculations are done on a square domain of non-dimensional extent L×L with L = 50.
Unless otherwise specified, we assume a = 1, C = 1 and P = 20.

We compute results for four cases in this section, namely strength half disclinations
(k = ±0.5) and strength one disclinations (k = ±1). The initial condition for the layer field
for calculations in this section is defined as

λ =

{

−2kπ
a

e2, if |x2| < a
2
and x1 > 0

0, otherwise.
(6)

The initial condition on the θ field is based on Frank’s solution [27],

θ = k tan−1

(

x1
x2

)

+Q (7)

where Q is a constant. Here, Q is set to be −π
4
and the range of the arctan function is

assumed to be [−3π
2
, π
2
].

A zero-moment boundary condition is imposed to solve for the θ field, for each given λ.
In the following calculations, θ at the boundary point (x1 = 25, x2 = −a

2
) is fixed to be 0.

4.1 Strength +1
2 disclination

For a positive half disclination, k = 0.5, the director rotates π radians clockwise while travers-
ing a loop clockwise from the bottom of the layer to the top, starting from an orientation of
θ = π with respect to the positive x-axis at the bottom of the layer. The initial prescription
of the λ field is shown in Figure 3(a). λ2 is the only non-zero component inside the layer
and thus the director distortion field is not curl-free at the disclination core where the layer
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terminates. Figure 3(b), 3(d) and 3(e) are computational equilibria obtained from the gra-
dient flow evolution from the initial conditions described in (7). Equilibrium is considered
achieved if the magnitudes of the ‘rates’ of evolution become less than 10−4 for both θ and
λ on the entire domain. The director field over the whole body is represented with dashed
line field in Figure 3(d). A magnified view of the core area is shown in Figure 3(e).In this

paper, the spacing of the dashed curves do not represent spacing of the computational mesh.

Figure 3(b) shows the energy density distribution for this case. The energy is concentrated
in the core and the location of the layer is energetically ‘invisible’.
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(a) Plot of λ2 of initialization. λ is non-zero
only inside the layer, with λ2 as only non-zero
component.

(b) The energy density plot for this positive
half disclination.
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(c) Director field θ on the whole body at
l/L = 0.02.
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(d) Director field θ on the whole body at
l/L = 0.005.
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(e) Magnified view of the director field at l/L = 0.005 near
the core.

Figure 3: Results for strength +1
2
disclination.
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Figure 4(a) shows the director field within the layer at l/L = 0.005. As shown in Figure
4(a), the director field actually rotates within the layer but with no energy cost. In the
limit a → 0 this ‘rotation’ of the director field in the layer becomes ‘invisible’, portraying a
discontinuity without energy cost, except at the core which is physically realistic.

−5 0 5

−2

−1

0

1

2

(a) Magnified view of the equilibrated director field near the layer for + 1

2
disclination.

The director turns in the layer but the corresponding energy is as it should be.

(b) Magnified view of the energy density on the same scale as 4(a).

Figure 4: Magnified view of director field and energy density field near the layer for a +1
2

disclination at l/L = 0.005.

4.2 Strength −1
2 disclination

For the negative half disclination k = −0.5, the director rotates π radians anticlockwise
while traversing a loop clockwise from the bottom of the layer to the top, starting from a
θ = π orientation with respect to the positive x-axis at the bottom of the layer. Figure 5(a)
shows the initial condition on the λ field for this case. The prescribed value of λ inside the

12



layer has the same magnitude as for the positive half disclination, but with opposite sign.
Figure 5(d) shows the equilibrated director field over the whole body. A magnified view of
the core is shown in Figure 5(e). Figure 5(b) shows the energy density distribution for the
equilibrium of this case.
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(a) Plot of λ2 of initialization. λ is non-zero
only inside the layer where λ2 is the only non-
zero component. Compared to the positive
half disclination 3(a), λ in this case has the
same magnitude but opposite sign.

(b) The energy density plot for this strength
− 1

2
disclination.
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(c) Director field θ on the whole body at
l/L = 0.02.
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(d) Director field θ on the whole body at
l/L = 0.005.
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(e) Magnified view of the director field at l/L = 0.005 near
the core.

Figure 5: Results for strength −1
2
disclination.
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4.3 Strength ±1 disclination

Now consider k = ±1, which implies a director rotation of 2π radians across the layer.
Following the definition of λ, we can prescribe λ fields for one disclination as well. Figure 6
presents the equilibrated director results of ±1 disclinations. Since strength ±1 disclinations
contain higher energy than the sum of the total energies of two half disclinations, strength
±1 disclinations are not stable and tend to dissociate into two strength ±1

2
disclinations.

The capability of our model in representing this physical process will be discussed in Section
6.4.
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(a) Director field θ for a +1 disclination.
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(b) Director field θ for a −1 disclination.

Figure 6: The equilibrated director results for ±1 disclinations.

4.4 Comparisons with Frank’s analytical solution

The angle of the director field with the x1 axis in Frank’s solution [27] is

θ = K tan−1

(

x1
x2

)

+ q

where q is a constant. For the purpose of evaluating the energy for the domain involved, it
suffices to consider grad θ given as

K

r2
(−x1e1 + x2e2).

Thus the energy density variation along the x1 axis of the domain for this solution is

ψ =
1

2
| grad θ|2 = K2

2

(

1

x1

)2

.

Figure 7 shows the various contributions for the energy density in our model, as well as a
comparison of the energy density field with that of the Frank analytical solution.
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The energy density should decay as 1/r2 when moving away from core where r is the
distance from core. In Figure 7, the black line is the energy density along the horizontal axis
from the Frank analytical solution, labeled as Frank analytical solution; the red line is the
contribution of the energy density from the Oseen-Frank part K

2
(grad θ − λ)2 in our model,

labeled as OF part; and the blue line is the whole energy density from our model, labeled
as Whole energy density. The overall comparisons as well as the comparisons near the core
area for both +1/2 and +1 disclinations are presented in Figure 7. These comparisons show
good agreement between the energy density and that of the Frank analytical result outside
the core. Inside core, our results are nonsingular while the Frank analytical results blow
up. Figure 8 shows the energy density comparisons for strength +1/2 disclination along
the y axis. The energy densities are symmetrically distributed along both the x and y axes
and they show good agreement with the Frank solution. The profiles for strength −1

2
and

strength −1 disclinations also follow the correct trends.
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(c) Overall energy density comparison for
strength +1 disclination.
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(d) Energy density comparison near strength
+1 disclination core.

Figure 7: Energy density comparisons between Frank analytical results and our results along
x axis, in both overall domain and near-core area, indicating a good agreement.
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(b) Energy density comparison along y axis
near strength + 1
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disclination core.

Figure 8: Energy density comparisons between Frank analytical results and our results of
+1/2 disclination along y axis, for both the overall domain and near-core area, indicating a
good agreement.

Figure 9 shows a convergence study of our approximate solutions for the energy density
along the x-axis for the +1/2 disclination. In Figure 9, the lines of different color represent
mesh sizes from 1 to 0.1. For a fixed problem defined in Section 4.1, the energy density
results converge with mesh refinement.
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Figure 9: Energy density plots along layer direction with different meshing. In the legend,
the form a × b represents the element size, where a is the element size in the x direction
and b is the element size in the y direction. The domain size is 50 × 50. The inset plot is
a magnified view at the center of the core. The energy density results converge with mesh
refinement.

4.5 Variation of total energy as a function of layer thickness

For nematic disclinations, a layer where the director vector ‘unwinds’ is to be considered as
an approximation to the physical case of a sharp discontinuity in the director vector field.
Thus it is necessary to demonstrate, at least approximately, that in the limit a→ 0 the total
energy of the body with a disclination remains non-zero but finite.

Recall the nondimensionalized energy in this work takes the form

E =

∫

V

[

1

2
| grad θ − λ|2 + Ca

2
| curlλ|2 + 2P |k|

a
f(λ)

]

dv.

Figure 10 is a the plot of total non-dimensional value for a +1
2
disclination as a tends to

zero. The red line, labeled as Whole, is the value of total non-dimensional energy E; the
blue line, labeled as Elastic, is the contribution from 1

2
| grad θ − λ|2; the black line, labeled

as Core, is the contribution from Ca
2
| curlλ|2; and the green line, labeled as Symmetry, is

the contribution from 2P |k|
a
f . This plot shows that the total energy as well as the individual
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contributions converge as a tends to zero. The circles represent values obtained from the
calculations at different l/L ratios. The total non-dimensional energy shows a trend of
converging to a finite value of 1.915; the Frank elastic contribution part converges to 17.5%
of the total energy; the contribution from the disclination core converges to 69.3% of the
total energy; and the contribution from the symmetry-related component converges to 13.2%
of the total energy.
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Figure 10: Trends of different parts of the total energy as the layer width tends to zero. The
total energy as well as the individual contributions converge as a tends to zero.

4.6 Shortcoming of the gradient flow dynamics for this energy

function

In spite of the fact that the gradient flow method for this energy works very well in the
computation of defect equilibria as demonstrated in Sections 4.1 - 4.3, it is not able to predict
the motion of disclinations. To illustrate this point, we consider disclination annihilation as
an example. Figure 11(a) shows the corresponding initial |λ| field, i.e., a half disclination
dipole is prescribed within the layer as initial condition. Figure 11(b) shows the initialization
of the θ field, where the red dot represents a strength +1/2 disclination and the green dot
represents a strength −1/2 disclination core.
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(a) Initial prescription for |λ| field.

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

(b) Initial prescription for θ field.
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(c) Director field θ for the disclination an-
nihilation problem using the gradient flow
method.

(d) Energy density in relaxed state achieved
by the gradient flow calculation.

Figure 11: Director field and energy density plot for disclination annihilation using the
gradient flow method. The two white lines are artificially inserted to display the top and
bottom layer boundaries. The results from the gradient flow calculation do not match
physical expectation.

The physical expectation is that on evolution those two disclinations merge with each
other and annihilate, leaving no energy in the end. Recall that for the equilibrium solutions,
P = 20. With this relatively high penalty on the non-convex term, we find that while the two
oppositely charged disclinations evolve to their equilibrium configurations, they simply do
not evolve from their equilibrium positions and annihilate, contrary to physical expectation.
This can be understood as follows: invoking a dynamical process for the evolution requires
continuous evolution in time of the fields at any spatial point. For a disclination to move,
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the value of |λ| at a spatial point ahead of the core has to rise continuously from 0 to
2πk/a (for a prescribed value of k) over a finite time interval. However, for the intervening
states in this path, states that are not minima of the wells of the function f have to be
sampled, and this leads to a large energy barrier - for large P - that has to be overcome by
the driving forces arising from director gradients (grad θ). What occurs in the calculations
is that large restoring energetic forces arise from the multiwell term that forces the spatial
point (just ahead of the core) to stay at the minima of the 0-well of the function f . Hence
the disclination cannot move.

A natural remedy then is to think of reducing the penalty on the non-convex term -
giving it the flavor of a physical component of the total energy function rather than an
artificial mathematical device to represent a constraint limiting |λ| values to discrete states.
To this end, we set P = 2. This raises another problem. The results from the gradient flow
clearly do not match our expectation; there is a clear energy pattern near the core area, as
observed in Figure 11(d), where the two white lines are artificially inserted to display the
top and bottom layer boundaries. Even worse, there is a large area outside the layer where
the corresponding director profile is inhomogeneous, as shown in Figure 11(c). Clearly, the
physical expectation is that the disclinations should annihilate moving in a straight line
leaving behind a homogeneous director field with horizontal orientation everywhere except
the layer, and zero energy everywhere (including the layer). This does not happen because
with a lower penalty, λ can evolve from 0, not only along the layer but elsewhere as well
wherever there is a driving force, and, indeed, since there are director gradients outside the
layer where |λ| = 0, there is no impediment to growth of λ at such points, since a steady
state of (5)1 is given by θ,i = λi, up to constraints posed by Dirichlet boundary conditions
as well as the incompatibility of the field λ.

5 A dynamic model for nematic disclinations in 2D

We seek an alternative to the gradient flow dynamics of the energy (5) to model energet-
ically driven disclination dynamics. We follow the ideas in [2] motivated from the field of
dislocation dynamics in solids to derive an appropriate model for the dynamics of straight
wedge disclinations (a 2d model,) based on the statements of balance of mass, linear and
angular momentum, the second law of thermodynamics, and a conservation statement for
topological charge of these lines. We first show the derivation of the general 2D theory, and
then derive a simple layer model from the theory as a particular example. In this section, λ
and θ have the same meanings as in Sections 3.

5.1 Derivation for general 2D case

As before, we assume that the energy E is given in the form of

E =

∫

V

[ψ(grad θ − λ, curl(λ)) + γf(λ)]dv,

where γ = 2PKk̂
aξ2

with the same definition as in Section 3, f is a multi-well function with

wells at 2πk̂
aξ

, with a → 0. For the sake of numerical approximation, we shall choose a as a
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positive scalar that allows us to approximate director discontinuities of infinite magnitude.
k = n

2
(n can be any integer) is the disclination strength. To be concise in the following

derivations, we denote

e := grad θ − λ

b := curl(e).

b = curl(grad θ−λ) represents the departure of the director distortion from being the director
gradient. In the absence of defects, e = grad θ and hence b = curl(grad θ) = 0. Thus, b is
considered as the defect field.

Balancing the content of topological charge carried by defect lines within arbitrary area
patches, a conservation law for the defect field [2] emerges in the form

∂b

∂t
= − curl(b× v)

− curl

(

∂λ

∂t

)

= − curl(b× v)

∂λ

∂t
= b× v.

The mechanical dissipation is the conversion of mechanical energy into heat, namely the
difference between external power supplied to the body and the sum of the total rate of
change of kinetic energy and the rate of change of free energy. In this case, the dissipation
reads as (we ignore kinetic energy and flow here for simplicity)

D =

∫

∂V

θ̇mνda−
∫

V

ψ̇dv −
∫

V

γḟdv ≥ 0.

where ν is the normal vector on the boundary ∂V andm is the moment given byΛ⊺e3 withΛ

is the couple stress tensor. In the following, superposed dots are meant to represent material
time derivatives (in the language of continuum mechanics), but since we are ignoring flow,
they are identical to spatial time derivatives. Apply the divergence theorem to the dissipation
and require the second law of thermodynamics to be in effect to obtain

D =

∫

{(θ̇mi),i − ψ̇ − γḟ}dv ≥ 0

⇒ D =

∫ (

mi −
∂ψ

∂ei

)

θ̇,i −
(

−∂ψ
∂ei

λ̇i +
∂ψ

∂bi
ḃi + γ

∂f

∂λi
λ̇i

)

dv ≥ 0.

Since nematic elasticity has to be recovered by the model, (mi − ∂ψ
∂ei

)θ̇,i = 0 is necessary for

every possible θ̇,i when dissipative mechanisms are inoperative (i.e. λ̇ = 0 ⇒ ḃ = 0). Thus,

23



to satisfy this requirement, we choose mi =
∂ψ
∂ei

, and perform the following manipulations:

∫

−
[

−∂ψ
∂ei

λ̇i +
∂ψ

∂bi
ḃi + γ

∂f

∂λi
λ̇i

]

dv ≥ 0

∫

−
[

−∂ψ
∂ei

(b× v)i +
∂ψ

∂bi
(−eijk(b× v)k,j) + γ

∂f

∂λi
(b× v)i

]

dv ≥ 0

∫

−
[

−∂ψ
∂ei

(b× v)i +

(

∂ψ

∂bi

)

,j

(eijk(b× v)k) + γ
∂f

∂λi
(b× v)i

]

dv ≥ 0

∫ [

∂ψ

∂ek
ekrsbrvs +

(

curl
∂ψ

∂b

)

k

ekrsbrvs − γ
∂f

∂λk
ekrsbrvs

]

dv ≥ 0

∫ {

ekrs

[

∂ψ

∂ek
+

(

curl
∂ψ

∂b

)

k

− γ
∂f

∂λk

]

br

}

vsdv ≥ 0.

Based on the second law of thermodynamics, we need to ensure a non-negative dissipation
as stated in the above inequality. To fulfill this requirement, the simplest and most natural
choice is to require

v parallel to

[

m+ curl
∂ψ

∂b
− γ

∂f

∂λ

]

× b.

It is characterized in the most simple of circumstances by choosing v of the form

v =
1

Bm|b|m
[(

m+ curl

(

∂ψ

∂b

)

− γ
∂f

∂λ

)

× b

]

with m = 0 and Bm is a material constant required on dimensional grounds. The parameter
m can probe different types of behaviors. With this choice of v, we can verify that the
dissipation is larger or equal to zero globally, which means the second law of thermodynamics
is satisfied by our model.

Recall that

∂b

∂t
= − curl(b× v)

∂λ

∂t
= b× v.

(8)

After substituting v in (8), the evolution equations for b and λ can be written as

∂b

∂t
= − curl

[

b× 1

Bm|b|m
{(

m+ curl

(

∂ψ

∂b

)

− γ
∂f

∂λ

)

× b

}]

∂λ

∂t
=

1

Bm| curlλ|m
curlλ×

[(

m+ curl

(

∂ψ

∂(curlλ)

)

− γ
∂f

∂λ

)

× curlλ

]

.

(9)

We have ignored flow, and assume that balance of linear momentum and mass are trivially
satisfied. Balance of angular momentum, assuming no director momentum is given by

div(m) = 0.
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This reduces to the governing equation

div(grad θ − λ) = 0. (10)

The utility of (9) over the gradient flow dynamics (5) is the presence of a non-vanishing
curlλ in the evolution of the λ field in (9)2. At spatial points where λ is zero and curlλ =
0, λ cannot evolve (regardless of the value of the penalty parameter P ); however, at the
boundaries of the core region where one might expect λ = 0 but curlλ 6= 0, evolution is
possible allowing motion of the core.

5.2 A ‘layer’ model

5.2.1 Model description

Based on the above formalism for the general 2-d case, we build a simple layer model to ex-
plore several physically fundamental behaviors of disclination defects. The model is directly
adapted from [43] that was developed for dislocation dynamics in solids, with a translation
for symbols representing the different fields in the two models.

In the following, we will interchangeably refer to the coordinates x1 as x and x2 as y.
A subscript x, y, or t, even when not following a subscript comma, will refer to partial

differentiation with respect to those independent variables.

The fundamental assumption is that disclinations are allowed to move in a horizontal
line, regularized here to a thin layer (with the correct scaling properties so that total energy
remains finite even in the limit a → 0). Consider a square geometry with a layer L of
thickness l = aξ, as shown in Figure 12,

V = {(x, y) : (x, y) ∈ [−L/2,+L/2]× [−L/2,+L/2]}
L = {(x, y) : (x, y) ∈ [−L/2,+L/2]× [−l/2,+l/2]}

0 ≤ l < L, L > 0.
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Figure 12: Geometry for layer problem. λ has only non-zero component λ2 inside the layer.

The stored energy density function takes the same form as (2). Then the dissipation can
be written as

D =

∫

L

(

K(grad θ − λ)− γ
∂f

∂λ

)

: λ̇dv +

∫

L

∂ψ

∂b
: curl(b× v)dv

D =

∫

L

(

K(grad θ − λ)− γ
∂f

∂λ

)

: (b× v)dv +

∫

L

curl

(

∂ψ

∂b

)

: (b× v)dv +

∫

∂L

∂ψ

∂b
: (b× v)× νda

where λ̇ = b × v, ḃ = − curl(b × v), b = − curlλ, and ν is the unit normal vector of the
layer boundary.

In this model, we assume λ takes the form

λ(x, y, t) =

{

φ(x, t) e2, in the layer (|x2| < l
2
)

0, otherwise.

Therefore b is also non-zero only in the layer, with component form

b = − curlλ = −eijkλk,jei = −e321λ2,1e3 = −φxe3

curl b = eijkbk,jei = e213b3,1e2 = φ11e2.

We assume v to be of the form,

v = v1(x, y, t)e1 =: v(x, t)e1.
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Substitute λ in f (3),

f = 1− cos

(

ξ|φ|
( |k|
a

)−1
)

.

We assume boundary condition φx(±L
2
, t) = 0.

From ḃ = − curl(b× v), we have

φt(x, t) = −φx(x, t)v(x, t).

Since b× v points in the direction of e2, the same direction of ν, then (b× v)× ν = 0.
Thus, only the layer is relevant for the dissipation and this becomes

D =

∫

L

v(x, t)

[

K(θy − φ)− γ
∂f

∂φ
+ ǫφxx

]

(−φx)dv

We note that all terms in the above equation depend only on the x coordinate except for
θy which also depends on the y coordinate. To build the simplest possible model consistent
with thermodynamics, it is essential to average (θy − φ) over the layer[43]. For any feasible
v(x, t), the dissipation can be rewritten as

D =

∫

L

v(x, t)

[

τ(x, t)− γ
∂f(φ(x, t))

∂φ(x, t)
+ ǫφxx(x, t)

]

(−φ1(x, t))dv +R

where

R =

∫

L

v(x, t)[θ2(x, y, t)− φ(x, t)− τ(x, t)](−φx(x, t))dv.

If we make the choice

τ =
K

aξ

∫ aξ

2

−aξ

2

(θy(x, y, t)− φ(x, t)) dy,

it is immediate that R = 0 due to the definition of τ . We make the constitutive assumption
for the velocity as

v(x, t) =
−1

Bm|φx|m
{φx[τ − τ b + ǫφxx]}

∂φ

∂t
=

|φx|2−m
Bm

(

τ − τ b + ǫφxx
)

where τ =
K

aξ

∫ aξ

2

−aξ

2

(θy − φ)dy; τ b = γ
∂f

∂φ
; f = 1− cos

(

ξ|φ|
( |k|
a

)−1
)

.

Here, Bm is a non-negative coefficient characterizing energy dissipation with physical dimen-
sions depending on m. The parameter m can be chosen to probe different types of behavior.
Especially, the model for m = 2 is the analog of the gradient flow case (5) with layer restric-
tion. m = 0 has been shown to demonstrate possible pinning of defects in computational
experiments [44].
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By choosing the following dimensionless variables

x̃ =
1

ξ
x; ỹ =

1

ξ
y; ǫ̃ =

1

Kξ2
ǫ = Ca; τ̃ =

ξ

K
τ ; τ̃ b =

ξ

K
τ b;

s̃ =
K

ξ4−2mBm

t; φ̃ = ξφ

we arrive at the dimensionless governing equations as described below.







θx̃x̃ + θỹỹ − φ̃ỹ = 0 in V
∂φ̃

∂s̃
= |φ̃x̃|2−m

(

τ̃ − τ̃ b + ǫ̃φ̃x̃x̃

)

in L.

After removing tildes for simplicity, the dimensionless system that governs the problem reads
as







θxx + θyy − φy = 0 in V
∂φ

∂s
= |φx|2−m

(

τ − τ b + Caφxx
)

in L
(11)

where

τ =
1

a

∫ a/2

−a/2

(θy − φ) dy, τ b = 2Psin

(

φ

( |k|
a

)−1
)

.

The corresponding numerical scheme for the above dimensionless system is developed in
Appendix A.

6 Disclination annihilation, repulsion, and dissociation

We explore several disclination dynamic cases (in the absence of flow) within the 2D layer
model. The domain is shown in Figure 12 with geometry 50 × 50. The parameter a = 1 is
assumed the same as in the gradient flow simulations. The layer field λ is prescribed and
restricted within a thin layer whose thickness is a, so that the disclination can only move
along the x direction. The penalty parameter P is set to 1 (recall that in the gradient flow
simulations P = 20, and P = 2 was unsuccessful in recovering physically expected equilib-
ria). In the following, we will demonstrate and discuss results on disclination annihilation,
repulsion, and dissociation.

In this section, all cases are calculated from φ evolution equations with m = 0, unless
otherwise mentioned.

6.1 Disclination annihilation

We start with disclination annihilation, which the gradient flow approach failed to predict
in Section 4.6. Even in this dynamic ‘layer problem’, if P = 20, and m = 2 (i.e. the analog
of the gradient flow in the layer case), we find that, as expected, the oppositely charged
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disclinations do not annihilate. Within the layer ansatz and now setting P = 1, initially, a
disclination dipole, i.e., two disclinations with opposite signs of +1

2
and −1

2
, is prescribed

as shown in Figure 13(a). The horizontal axis in Figure 13 represents the x axis along
the layer and the vertical axis shows the magnitude of φ. Figure 13(b) shows the director
field corresponding to the initialized φ prescription obtained by solving (11)1. Figure 14
shows the snapshots of defect movement during the simulation. The vertical axis shows the
gradient of φ along the layer (φx), representing the location of the core. Different colors
represent the results at different times and at each time two opposite bumps are interpreted
as a disclination dipole because curlλ = −b = φxe3. As time evolves, these two cores move
toward each other, and finally merge. In the final result, the disclination dipole annihilates
and no disclination exists in the body.
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(a) Initialization of φ for disclination annihilation.
A φ field corresponding to a strength + 1

2
and a
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disclination is prescribed.
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(b) Director field corresponding to the initialized
φ.

Figure 13: Initialization for the disclination annihilation problem.
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Figure 14: φx snapshots at different time steps. The bumps represent disclination cores.
The disclination dipoles eventually annihilates.
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(a) Director snapshot at t=0. (b) Energy density plot at t=0.
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(c) Director snapshot at t=1. (d) Energy density plot at t=1.
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(e) Director snapshot at t=1.2. (f) Energy density plot at t=1.2.
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(g) Director snapshot at t=1.25. (h) Energy density plot at t=1.25.

Figure 15: Snapshots for the director field and energy density at different time steps. The
disclination dipole merges and annihilates.

Figure 15 shows the snapshots of the director field at different times and their corre-
sponding energy density fields at that time. Both the director snapshots and energy density
plots show that the disclination dipole annihilates in the end, which leads to zero energy.

30



6.2 Disclination repulsion

The difference between the disclination repulsion and annihilation is that now two disclina-
tions with the same sign are used in the initial condition, as shown in Figure 16(a). Figure
16(b) shows the director field corresponding to the initial φ prescription. Figure 17 repre-
sents the motions of the disclination cores during the dynamic simulation. We observe that
the two disclinations move apart due to the repulsive force of elastic origin between them.
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(a) Initialization of φ for disclination repulsion. A
φ fields corresponding to a pair of strength − 1

2

disclinations is prescribed.
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(b) The director field corresponding to the initial-
ized φ.

Figure 16: Initialization for disclination repulsion.
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Figure 17: φx snapshots at different time steps. The disclination dipole moves apart.
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(a) Director snapshot at t=0. (b) Energy density plot at t=0.
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(c) Director snapshot at t=1. (d) Energy density plot at t=1.
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(e) Director snapshot at t=5. (f) Energy density plot at t=5.
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(g) Director snapshot at t=20. (h) Energy density plot at t=20.

Figure 18: Snapshots for the director field and energy density at different time steps. The
two disclinations move apart and repel each other.

Figure 18 shows the director snapshots and energy density plots for disclination repulsion
at different time steps.
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6.3 Velocity profiles with separation distance in different m cases

Figure 19 compares the the velocity versus dipole separation relationship of a single discli-
nation in a dipole field, with the expected result from the linear theory of defects [45]. In
each case, the two disclinations are initialized with a separation distance of 50 in a body of
100× 100. a is set to be 0.5 in these cases. The core locations are marked at every 200 time
steps and the physical discrete time at these instants is recorded. This allows the determi-
nation of the (absolute) velocity of (any) one disclination in the dipole pair as a function
of the separation distance, as shown in Figure 19. In (11), τ serves as the driving force for
the disclination motion. The driving force on one disclination of the dipole core is generated
from the elastic interaction with the other disclination, which scales like the reciprocal of
the separation distance according to the linear theory of defects. Hence, the motion of the
disclinations slows down as the separation distances increases. In Figure 19, the red line
presents a trend of 1/r while the blue line represents the velocity of one disclination. Figure
19(a) shows the relationship between velocity and separation distance in the m = 1 case.
Thus, the velocity matches with 1/r trend very well in this case. Figure 19(b) shows the re-
lationship between velocity and separation distance in m = 2 case. In this case, the velocity
is the largest of all the three cases and matches 1/r trend in the large separation distance
range. Within the separation distance from 5 to 15, the disclinations begin to annihilate.
For m = 0 case, the disclinations are found not to move until the separation distance is less
than 35. Figure 20 shows the velocity profile of the m = 0 case. It shows that the velocity
does not match the 1/r very well when the separation distance is small but has a better
agreement with 1/r trend as far away separation distance.

We note here that there is no reason, a-priori, for the velocity in our nonlinear, dynamic

model to match the expected result from the notion of ‘non-Newtonian forces’ of static defect
theory [45, 41] but our results demonstrate that to a large extent there is consonance between
our results and that of traditional defect theory. However, the differences are noteworthy as
well - in particular the emergence of apparent ‘intrinsic pinning’ in a translationally-invariant
pde model (cf.[44] where the details of this phenomena are investigated in greater detail) for
the case m = 0, the most natural kinetic model in our setting.
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(a) Velocity variation of one disclination in a dipole as a function
of separation distance. m = 1.
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(b) Velocity variation of one disclination in a dipole as a function
of separation distance. m = 2.

Figure 19: Relation between velocity and the separation distance for m = 1 and m = 2.
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Figure 20: Velocity variation of one disclination in a dipole as a function of separation
distance. m = 0.

6.4 Disclination dissociation

We model the process of a strength-one disclination dissociating into two strength-half discli-
nations. Dissociations of a positive and a negative strength-one disclination are simulated.
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We prescribe a strength +1 disclination at the center of the body as shown in Figure
21(a). Figure 21(b) shows the director field corresponding to the initial λ. The initial
condition on the θ field is generated by solving for moment equilibrium using the Neumann
boundary condition on the director field corresponding to the moment distribution on the
boundary generated from the exact solution for a strength +1 disclination in an infinite
medium. During evolution, a 0-moment Neumann boundary condition is imposed. Figure
22 shows how the strength +1 disclination splits into two +1/2 disclinations. We observe
that the strength +1 disclination first splits into two strength +1/2 disclinations and then
these two strength +1/2 disclinations move apart and repel each other.
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(a) Initialization of φ for strength +1 disclination
splitting. A φ field corresponding to strength +1
disclination is prescribed.
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(b) Director field corresponding to initialized φ.

Figure 21: Initialization for strength +1 disclination dissociation.
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Figure 22: φx snapshots at different time steps. It shows one +1 disclination splits into two
+1/2 disclinations and these two disclinations repel each other.
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(a) Director snapshot at t=0. (b) Energy density plot at t=0.
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(c) Director snapshot at t=0.25. (d) Energy density plot at t=0.25.
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(e) Director snapshot at t=1. (f) Energy density plot at t=1.
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(g) Director snapshot at t=1.5. (h) Energy density plot at t=1.5.

Figure 23: Snapshots for director field and energy density at different time steps. One
disclination splits into two half disclinations and these two disclinations repel each other.

Similarly, the director field behaviors are shown in Figure 23. Initially, the director field
represents a strength +1 disclination. And then it splits into two strength +1/2 disclinations
from the core and these two disclinations are both subject to repulsion. From the energy
density plots, we can also see that the energy core splits into two cores and these two energy
cores repel each other.

The splitting of a strength −1 disclination is similar. We prescribed a strength −1
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disclination at the center of the body as shown in Figure 24(a) and the boundary conditions
were set up following exactly the procedure for the previous case, accounting for the change
in strength of the disclination. Figure 25 shows the process of the strength −1 disclination
splitting into two strength −1/2 ones.
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(a) Initialization of φ for −1 disclination dissocia-
tion. φ fields corresponding to strength −1 discli-
nation is prescribed.
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(b) Director field corresponding to initialized φ.

Figure 24: Initialization for strength −1 disclination dissociation.
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Figure 25: φx snapshots at different time steps. It shows −1 disclination splits into two
−1/2 disclinations and these two disclinations repel each other.
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(a) Director snapshot at t=0. (b) Energy density plot at t=0.
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(c) Director snapshot at t=0.25. (d) Energy density plot at t=0.25.
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(e) Director snapshot at t=1. (f) Energy density plot at t=1.
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(g) Director snapshot at t=1.5. (h) Energy density plot at t=1.5.

Figure 26: Snapshots for director field and energy plot at different times. One disclination
splits into two half disclinations and these two disclinations repel each other.

Figure 26 shows the process of the strength −1 disclination dissociating into two strength
−1/2 disclinations in terms of the director field. From both the director field snapshots and
energy density plots, we can see that the dissociation process is qualitatively similar to the
strength +1 disclination dissociation.
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6.5 Invariance of disclination dissociation with different λ initial-

izations

In Section 6.4, the initialization of λ for the k-strength disclination dissociation is given as

λ =











−kπ
a
e2, if |y| < a

2
and x ≥ 0

kπ
a
e2, if |y| < a

2
and x < 0

0, otherwise.

In this Section, we will consider a different λ initialization as follows

λ =

{

−2kπ
a

e2, if |y| < a
2
and x ≥ 0

0, otherwise,

in order to probe the extent of the dependence of the dissociation phenomena, i.e. defect
core dynamics affected by the evolution of the couple stress field in the body, on the fine
details of the layer field (λ) evolution.

This new initialization can be achieved by applying a kπ
a

shift on the original λ field
within the layer, while keeping the ‘jump’ of λ within the layer same equal to 2kπ

a
. Figure

27(a) shows the new φ initialization for +1 disclination dissociation, and Figure 27(b) is the
director field corresponding to the φ initialization. Figure 27(c) and Figure 27(d) show the
results of dissociations of strength +1 disclination. With the new initialization, the single
strength +1 disclination still dissociates into two +1

2
disclinations. Figure 28 shows the |λ|

evolutions with two different φ initializations, and the comparison of φ and φx at different
time steps during the +1 disclination dissociation. In Figure 28, the solid lines represent the
results from the “old” initialization applied in Section 6.4, while the broken lines represent
the results from the new initialization. Although |λ| and φ are different at every time step,
φx maintains the same profile during the whole dissociation process, which shows that the
dissociations are the same with these two different λ initializations. The −1 disclination
dissociation shows the same results. The +1 disclination splits into two +1/2 disclinations
and the −1 disclination splits into two −1/2 disclinations. Thus, although the initializations
are different, the dissociation processes of ±1 disclinations are same as before.

This example shows that to the extent that two λ evolutions maintain identical disclina-
tion fields, the dynamics and energetics of the defect field, at least at an overall ‘macroscopic’
observational level, appears to be unaltered. This fact has important modeling implications,
as will be discussed in the last Section 8.
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(a) Initialization of φ for +1 disclination dissoci-
ation. Difference with the initialization shown in
Figure 21(a) is to be noted.
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(b) Director field corresponding to the initialized
φ. The result is identical to that shown in Figure
21(b).
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(c) φx snapshots at different time steps, showing
the splitting of the +1 disclination.
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(d) A director snapshot after a +1 disclination has
dissociated into two +1/2 disclinations.

Figure 27: Initialization and results for +1 disclination dissociation with the new λ initial-
ization. The dissociation process is the same as the one in Section 6.4.
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(a) |λ| evolution during disclination dissociation
with φ initialization defined in Section 6.4.

(b) |λ| evolution during dissociation of a +1 discli-
nation from the new φ initialization.
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(c) φ comparison for +1 disclination dissociation.
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(d) φx comparison for +1 disclination dissociation.

Figure 28: The comparisons of |λ|, φ and φx for a strength +1 disclination dissociation.
The dashed lines are the results from the “old” initialization defined in Section 6.4 and
Figures 21(a),21(b) and 22. Although the |λ| evolutions and φ are different, the φx prfiles
are identical during the whole process.

7 Modification of the gradient flow dynamics to deal

with disclination motion

In Section 4.6, we have shown that the gradient flow dynamics cannot deal with disclination
motion. In this section, motivated by the insights gained from the disclination dynamics
model in Sections 5 and 6, we suggest a modification to the gradient flow dynamics to enable
it to solve physically realistic disclination dynamics problems. Recall the evolution equation
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(9) in the general disclination dynamic theory:

∂λ

∂t
=

1

Bm| curlλ|m
curlλ×

[(

grad θ − λ+ curl

(

∂ψ

∂ curlλ

)

− γ
∂f

∂λ

)

× curlλ

]

=
| curlλ|2−m

Bm

curlλ

| curlλ| ×
[(

grad θ − λ+ curl

(

∂ψ

∂ curlλ

)

− γ
∂f

∂λ

)

× curlλ

| curlλ|

]

.

We notice that the term grad θ − λ + curl
(

∂ψ
∂ curlλ

)

− γ ∂f
∂λ

in this evolution equation is the
same as the right-hand-side of the gradient flow dynamics (5). As mentioned earlier, a salient
feature of the curlλ multiplier allows evolution only at points where curlλ is non-zero, i.e.
in the core and immediate vicinity of the core. Thus, instead of using the regular gradient
flow evolution of Section 4.6, we modify the λ evolution equation as follow:

∂λ

∂s
= H(| curlλ| − T )

[

grad θ − λ+ curl

(

∂ψ

∂ curlλ

)

− γ
∂f

∂λ

]

.

where T is a prescribed threshold and the Heaviside step function is set to be

H(x) =

{

0 x < 0

1 x ≥ 0.

In other words, the layer field is evolved according to

dλk
ds

=

{

− δW
δλk

= −γ ∂f
∂|λ|

1
|λ|
λk + θ,k − λk + ǫeijkeirsλs,rj if | curlλ| ≥ T

0 otherwise.

Based on the above modified evolution equation, we recalculate the disclination annihi-
lation case. The results are shown in Figure 29(c) and (d). Compared to the energy density
and director results from Section 4.6, the energy density as well as the director results ob-
tained from the modified evolution equations, shown in Figure 29(c) and (d), are much more
reasonable, matching physical expectation.
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(a) Energy density plot from the regular gradient
flow method.
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(b) Director field result from regular gradient flow
method.

(c) Energy density plot from the modified gradient
flow method.
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(d) Director field result from the modified gradient
flow method.

Figure 29: Top: the energy density and director field results from regular gradient flow
method. Bottom: the energy density and director field results from the modified gradient
flow method, which match physical expectation.

8 Some observations

We conclude with three further observations.
Figure 30 shows a comparison of the norm of two different λ fields for the +1/2 discli-

nation. Figure 30(a) is the norm field of the new λ prescription and Figure 30(b) shows

43



the norm of the λ field given in Figure 3. The curlλ fields are identical in these two λ

settings. Figure 31 shows the director pattern and energy density results based on the two
λ prescriptions given in Figure 30. As theoretically explained in [3], the comparison shows
that as far as static director and energy distributions are concerned, an identical ‘one-point’
specification of the director on the domain renders two distinct λ fields with identical curlλ
fields, indistinguishable. Furthermore, the results of Section 6.5 show that this invariance is
carried over to the disclination dynamics as well. Of course, this invariance is not to be mis-
taken with ‘gauge-invariance’ in the sense that, for a fixed b field, the theory requires the use
of at least one, non-divergence-free λ field of the ‘layer-type’ consistent with b = − curlλ for
the correct prediction of the director distribution, i.e. not employing a λ field and insisting
on just the use of the b field is not feasible (even though, in some instances, not introducing
a layer-type λ field can suffice for the correct prediction of only the energy density field).
This partial invariance of the results of our model with respect to the precise details of the
λ field suggests a useful freedom in numerical simulations. Essentially, in principle, the λ

field can be reinitialized at every instant of time, consistent with the evolving b field. Thus,
a strategy may be to evolve the b field instead of λ and use the λ construct to simply
facilitate the calculation of the energetics and the director distribution at each instant of
time. Moreover, our demonstration that a ‘layer’ of finite thickness is merely a geometric
approximation, without energetic consequences, of a surface of director-vector discontinuity
suggests natural ways of associating a ‘non-turning’ director distribution within the layer for
calculations of Leslie-Ericksen viscous stresses. We shall demonstrate such features in future
work.

(a) The norm of a distinct λ field from that in
Fig. 3, but with identical curlλ field, for a +1/2
disclination.

(b) The norm of the λ field given in Figure 3.

Figure 30: The comparison of two |λ| fields with identical curlλ fields for a +1/2 disclination.
The direction of λ is perpendicular to the layer at each point along the layer.
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(a) Director field at l/L = 0.005 with the
λ initialization given in Figure 3.

(b) The energy density plot for the +1/2
disclination with the λ initialization given in
Figure 3.
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(c) Director field at l/L = 0.005 with the
λ initialization given in Figure 30(a).

(d) The energy density plot for the +1/2
disclination with the λ initialization given in
Figure 30(a).

Figure 31: Director and energy density for the +1
2
disclination with two different λ initial-

izations. The results show that two distinct λ fields with identical curlλ fields give identical
director and energy distributions.

Second, Appendix B shows the energetic, dynamic, and topological interoperability be-
tween our model of disclination dynamics in nematic liquid crystals with orientational order
and that of screw dislocation dynamics in elastic solids with positional order. We consider
this as a positive development that can only benefit the understanding of defect dynamics
in liquid crystals and elastic solids, leading to their plasticity.

Third, there are very interesting similarities and contrasts between the models and results
of energy driven pattern formation discussed in the papers [46, 47, 48, 49, 50] and our model.
A comparative study is an undertaking in its own right that will form the subject of future
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study.
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A Numerical Schemes for φ evolution equations in 2D

layer model

We adapt the computational scheme developed in [44] for an exactly similar problem in the
context of dislocation dynamics to solve our equations.

For the sake of completeness, we reproduce the details of the scheme from that paper with
appropriate adjustments for field variable names and parameters. The numerical scheme we
adopt to solve the problem is identical to that in [44], again with just a translation of the
names of the field variables. We include the details here for completeness. In general, the
Finite Element Method (FE) is used to solve the equation for balance of linear momentum
in a staggered scheme that utilizes φ as a given quantity obtained by evolving it in the
remaining part of the scheme. The general computing flow is shown in Figure 32.

Given material properties, initial condi-
tions (φ0), boundary conditions, total time
SS, loading history, initial time s = 0

Given θk and φk, calculate φk+1 with upwinding finite
difference method. With φk+1 solve θxx + θyy − φy = 0
for θk+1 using standard Galerkin method based on φk+1

k = k + 1, s = s + △s. repeat until s ≥ SS

Figure 32: Flow charts for computing scheme: φ and θ are basic unkonwn fields.

An FE mesh with an embedded 1-d finite difference grid is used. We use linear quadri-
lateral elements, with 5× 5 Gauss quadrature points. All elements are of uniform size over
the whole domain.

The 1-d, finite difference grid is embedded in the layer, coincident with the line y = 0.
Suppose that the layer is meshed into M rows and N columns, where N is the total number
of 1-d grid points andM is always an odd number so that the middle row of elements always
have centers on y = 0. Each column of FE elements in the layer correspond to exactly one
grid point. Let xk be the x coordinate of the kth 1-d grid point, which is at the center of
the kth element in the (M + 1)/2 row of layer elements. Recall that τ(xk) is defined as
1
a

∫ a/2

−a/2
(θy − φ) dy. Let (θy−φ)(I, k) denotes the integrand evaluated at the I th Gauss point

whose x coordinate is xk, and let Nk be the total number of such Gauss points. Then τ(xk)
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is calculated as

τ(xk) =
1

Nk

(

Nk
∑

I=1

(θy − φ)(I, k)

)

.

The numerical scheme developed in [51] is adopted and improved to solve (11)2, the
φ evolution. The scheme is called upwinding as the basic idea is to infer the direction
of wave propagation from the linearization of (11)2 and use this direction in the actual
nonlinear equation. Let us denote time step with △t and spatial grid size of the finite
difference grid with △h. Due to the necessity of very small element sizes to demonstrate
convergence, an explicit treatment of the diffusion term in (11)2 becomes prohibitive because
of a△t = O(△h2) scaling. This is circumvented by treating the φxx term implicitly, resulting
in a linearly implicit scheme as follows. We first linearize (11)2 and discretized:

δφkt (xh) = −(2−m)
(

−sgn
(

φkx (xh)
)) ∣

∣φkx(xh)
∣

∣

1−m
[

τ k (xh) + aφk+1
xx (xh)−

(

τ b (xh)
)k
]

δφkx (xh)

+
∣

∣φkx (xh)
∣

∣

2−m [
ǫδφkxx (xh)

]

+
∣

∣φkx (xh)
∣

∣

2−m
[

τ b
′

(xh) δφ
k(xh)

]

,

(12)
where a quantity such as φkx(xh) implies the value of φx(x) evaluated at hth grid point at kth

time step. The first term in (12) provides an advection equation with wave speed

ck(xh) = (2−m)
(

−sgn
(

φkx (xh)
)) ∣

∣φkx(xh)
∣

∣

1−m
[

τ k (xh) + aφk+1
xx (xh)−

(

τ b (xh)
)k
]

.

φkx(xh) and φ
k
xx(xh) are obtained from central finite differences:

φkx(xh) =
φk(xh+1)− φk(xh−1)

2△h

φkxx(xh) =
φk(xh+1)− 2φk(xh) + φk(xh−1)

△h2 .

(13)

Based on the sign of ck, φ
k
x is then computed by the following upwinding scheme:

φkx =















φk(xh+1)−φ
k(xh)

△h
if ck(xh) < 0

φk(xh)−φ
k(xh−1)

△h
if ck(xh) > 0

φk(xh+1)−φ
k(xh−1)

2△h
if ck(xh) = 0.

(14)

The time step is governed by a combination of a CFL condition and a criterion for stability
for an explicit scheme for a linear ordinary differential equation:

△tk = min

( △h
ck(xh)

,
1

|φkx(xh)|2−m(−(τ b′(xh))k

)

. (15)

Note that if φxx was evaluated at k, then the step size would also be bounded by △h2

a|φkx(xh)| ,
leading to a quadratic decrease in △tk with element size. Treating φxx implicitly eliminates
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this constraint resulting in significant savings in computation time. φk+1
h is updated according

to

φk+1(xh)− φk(xh)

△tk = |φkx(xh)|2−m
[

τ k + aφk+1
xx − (τ b(xh))

k
]

⇒φk+1(xh)− a△tk|φkx(xh)|2−mφk+1
xx (xh) = φk(xh) +△tk|φkx(xh)|2−m

[

τ k − (τ b(xh))
k
]

.

(16)

The right hand side of the equation is known at current time k. But noting that φk+1
xx (xh) is

again computed from φk+1 at xh+1, xh and xh−1, a system of linear equations of size N has
to be solved to get φk+1. The computational expense of the linear solve is small compared
to the savings obtained by relaxing △tk corresponding to the explicit treatment of diffusion.

B Layer model for the screw dislocation case

Paralleling the development in Section 5.2, we define a layer model for straight screw dislo-
cation dynamics in solids in this section. Consider the similar geometry as in Section 5.2 as
shown in Figure 12:

V = {(x, y) : (x, y) ∈ [−W,+W ]× [−H,+H]}
L = {(x, y) : (x, y) ∈ [−W,+W ]× [−l/2,+l/2]}

0 ≤ l < 2H, W > 0.

The screw dislocation problem is one of anti-plane shear, i.e. there is only one non-vanishing
displacement component of the solid, this being the out-of-plane one which is a function of
the in-plane coordinates. In the present physical context, u is the displacement vector and
UP is the plastic distortion tensor, that plays an analogous role to λ. The conservation law
for the defect field for the screw dislocation [44] is given in the form

α̇ = − curl(α× v).

The displacement is assumed to be of the form

u = w(x, y)e3

and UP takes the form

UP =

{

φ(x, t)e3 ⊗ e2 in the layer

0 otherwise.

We assume v to be of the form v = v(x, t)e1.
Therefore, α is also non-zero only in the layer, with component form

α = − curlUP = −φxe3 ⊗ e3

curlα = φxxe3 ⊗ e2.
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The stored energy function for the screw dislocation model is assumed as

W =

∫

V

ψ(ǫe,α) + γf(|U p|)dv =

∫

V

[

K

2
| gradu−UP |2 + ǫ

2
(φx)

2 + γf(|φ|)
]

dv.

Here, K is a shear modulus with dimension Force × Length−2; ǫ = KCaξ2 is a parameter
characterizing the energy density of the dislocation core; ξ is the Burgers vector magnitude of
the dislocation, proportional to the lattice interatomic distance (with dimensions of Length),
C is a non-dimensional parameter to control the magnitude of the core energy, and the
product aξ is the separation between two atomic layers with a ≥ 0 a non-dimensional
scaling factor. Unlike the nematic disclination case, the layer has a physical significance
in the case of the crystal dislocation as does the λ field in predicting, often ‘stress-free,’
permanent plastic deformation (with respect to a fixed reference) due to the motion of
dislocations. The combination γf represents the ‘generalized stacking fault energy’ reflecting
lattice symmetries, and measurable from controlled computational atomistic experiments
([52]) and we assume the simple forms γ = PK

a
and

f = 1− cos

(

2π|φ|
(

ξ

aξ

)−1
)

where P is a dimensionless parameter.
From α̇ = − curl(α × v), we have φt = −φxv(x, t). Given the ansatz, only the layer is

relevant for the dissipation and it can be written as

D =

∫

L

v{[T32 − τ b + ǫφxx](−φx)}dv,

where

τ b := γ
df

dφ
= 2πPK sin (2πφ a)

and

T32 = K(u3,2 − φ) := K(ωy − φ).

As in Section 5.2 , we take the average of (wy − φ) over the layer and requiring the
dissipation D ≥ 0, the evolution equation for φ reads as

∂φ

∂t
=

|φx|2−m
Bm

(

τ − τ b + ǫφxx
)

where τ =
K

aξ

∫ aξ

2

−aξ

2

(wy − φ)dy.

Again, Bm is a non-negative coefficient characterizing energy dissipation with physical di-
mensions depending on m. The parameter m can be chosen to probe different types of
behavior. By introducing the following dimensionless variables,

x̃ =
1

ξ
x; ỹ =

1

ξ
y; ǫ̃ =

1

Kξ2
ǫ = Ca; τ̃ =

1

K
τ ; τ̃ b =

1

K
τ b;

s̃ =
K

ξ2−mBm

t; w̃ =
1

ξ
w,
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we obtain the dimensionless evolution equation for the layer model as described below:

∂φ

∂s̃
= |φx̃|2−m

(

τ̃ − τ̃ b + ǫ̃φx̃x̃
)

.

After removing tildes for simplicity, the dimensionless governing equations for the screw
dislocation problem become







wxx + wyy − φy = 0 in V
∂φ

∂s
= |φx|2−m

(

τ − τ b + Caφxx
)

in L
(17)

where

τ =
1

a

∫ a/2

−a/2

(wy − φ) dy, τ b = 2πP sin (2πφ a) ,

and the first equation represents static balance of forces (balance of linear momentum), for
the ansatz being considered here.

As can be seen from a comparison of (17) and (11), the governing equations of the screw
dislocation model are exactly analogous to the disclination model.

50



References

[1] I. W. Stewart, The static and dynamic continuum theory of liquid crystals: a mathe-

matical introduction. CRC Press, 2004.

[2] A. Acharya and K. Dayal, “Continuum mechanics of line defects in liquid crystals and
liquid crystal elastomers,” Quarterly of Applied Mathematics, vol. 72, no. 1, pp. 33–64,
2013.

[3] H. Pourmatin, A. Acharya, and K. Dayal, “A fundamental improvement to Ericksen-
Leslie kinematics,” Quarterly of Applied Mathematics, vol. LXXXIII, no. 3, pp. 435–466,
2015.
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