
A Non-Two-Phase Locking Protocol fort
Concurrency Control in General Databases.

Partha Dasgupta d Zvi M Kedem
Department of Computer Science

State University of New York
Stony Brook, NY 11794

1 Introduction.

A database is viewed as a collection or data objects
which can be read or written by concurrent transactions. Inter-
leaving of updates can leave the database in an inconsistent
state. A sufficient condition to guarantee consistency of the
databme is seriolizobilify of the actions (reads or writes) per-
formed by the transactions on the data items, that is, the
interleaved execution of the transaction should be equivalent to
some serial execution of the the transactions [1,2,7]. Here we will
assume serializability as the criterion of correctness.

The 2-phase locking protocol is a well known protocol
which produces serializable logs (Eswaran[4]). In database con-
currency control we are not interested in all possible serializ-
able logs. We are interested in logs which maximize allow-
able concurrency. However Zphase locking does far scoring
high in this criterion. There are serializable logs, allowing far
more concurrency than any Zphase locked log.

To achieve greater concurrency, we need to have more
information about transaction behavior. One approach is to
structure the database as a DAG (directed acyclic graph)
(Kedcm]S]J. In this case non-2-phase behavior is attainable, and
due to exploitation of the structure of the database to constrain
transaction behavior it appears to provide higher concurrency.
Another approach is to know in advance the resdset and writeset
of the transactions. This approach has been used for deadlock
avoidance but not for gaining on concurrency [I]. Knowing the
esnrt readset (or writeset) of a transaction is not always feasible,
however 3 superset of the readset (or writeset) can be statically
determined. We will assume this strategy and demonstrate how
thl* information can be used to achieve higher concurrency.

2 The Algorithm.

A transaction T acts upon a set of data elements D. A
da13 clement x E D is in the readset (Rd) of a transaction T
(that is. x E Rd(T)) if the transaction does a read operation on
x. Any element written by the transaction T is contained in the
writeset (LVr) of T. Note that neither Rd(T) need be a subset of
Wr(T) or trite versa, and Rd(T) and Wr(T) may be supersets of

‘This research was partially supported by NSF under grants MCS
81-04882 and MCS 81-10097.

the data items actually read and written by the transaction T.

2.1 Locking.

Each transaction is required to declare its readset and
writes& to the t.ransaction manager before it issues any actions.
Since the readset (and writeset) may be supersets of the data
items actually read (and written), they can be statically deter-
mined during query compilation.

Fig I: Lock Compatibility Table (Note: The table is asymmetric).

The algorithm uses five types of locks, lV/~il~, Blue, Green,
YeNom and Red. The iMite and Blue locks are the weakest locks.
They are used as markers, and are compatible with all other
locks (see Fig 1). The Green lock is the shared lock used for
reading. The Yellow locks are used for locking data items which
will be updated at a later stage. The Red lock is the exclusive
lock used for writ.ing, and is compatible only with the White and
Blue locks. Neither the Green locks nor the Red locks are held
over extended lengths of time. Only YeNow, Blue and lVhile
locks exist nearly as long as the transaction does.

A transaction (T), upon nrrittol declares its readset Rd(T),
and its Writeset Wr(T) to the transaction manager. The Transac-
tion Manager schedules the transaction and obtains all the neees-
sary locks. Then the transaction manager &art8 the transaction.
The transaction, upon commencement is not required to make
any locking requests (i.e. locking is transparent to the transac-
tion).

2.2 Transaction Manager Actions.

The following is a outline of how a Transaction Manager
handles a transaction, after it arrives on the system.

+ Arrival Point (Transaction T arrives)

i) Get YeNow locks on W?(T),
ii) Get Green locks on Rd(T) - Wr(T)
iii) Do validation and lock inheritance processing (explained later)

- Locked Point

iv) Read values of Rd(T) into local storage,
v) Downgrade all Green locks to White locks,
vi) Start transaction processing.

+ Smf Point

i) T commences processing,
ii) if T issues read(x), then return the value of x from local storage,
iii) if T issuea write(x), then update x in local storage.

92

- C’ommif Point

i) Upgrade all Ye1100 lochs to Red locks,
ii) Write 311 updated items to the database,
iii) Release all WA&, Blue, and Red locks held by T.

2.3 Transaction Manager Algorithms.

A transaction is in its lock acquisition phase if it has
arrived but not reached locked point. A transaction is said to be
nrrict if it has reached its locked point, but have not reached
its commit phase. For each transaction T, the Transaction
Xtanager maintains two temporary sets, during lock acquisi-
tion phase. These are called Before(T) and After(T). The set
Before(T) is a set of transaction that are active in the system and
should come before T in the serialization order. Similarly
After(T) contains those active transactions that will come after T
in the serialization order. These sets are constructed by the
transaction manager in a fashion explained below.

The lock compatibility is shown in Fig 1. The While and
Blue locks are compatible with all locks. They do not have any
associated privileges. Informally, a transaction holds a White (or
Blue) lock on a data item, if there is a transaction T’, which
should come after T in the serialization order and has read (or
written) x. The Green lock is the shared lock and allows reading.
It is compatible wit.h itself. The Yellow lock is a partially shared
lock, which is used on data items that will be updated at a later
stage. The Yellow lock allows reading, but it is not compatible
with itself. A Green lock can be obtained on a YeNour locked
item but a Yellow lock cannot be obtained on a Green locked
item (this feature makes the compatibility matrix asymmetric).
That is, a transaction T may read a data-item x, that T’ has
Y’ellotc locked. before T’ writes it. In this case T comes before T’
in the serialization order. However the reading of a Y’ellow locked
item may not be always allowable (as it may violate serializabil-
ity constraints), and this is avoided by t~a[idation.

AS the Transaction Manager acquires the locks for a tran-
saction T, it computes the sets Before(T) and After(T). If T tries
to Green lock x, and x is Blue locked by T’ then T’should be
before T in the serialization order and T’is added to Before(T).
Similarly, an attempt to Yellow lock x. where x is White or Blue
locked by T’ results in the addition of T’ in Before(T). However
if T tries to Green lock x. and T’holds a Ytllow lock on x, then
T ’ is added to After(T).

The validation is simply checking whether Before(T) n
After(T) is empty. If not then the transaction is rescheduled or
restarted. If the transaction passes validation, then the Transac-
tion Manager has to acquire some While and Blue locks. T is
given Il’hife (and Blue) locks on all the data items While (and
Blue) locked by transactions in After(T). Finally all transactions
in Before(T) get While (Blue) locks on the readset (writeset) of T,
and on all data items White (Blue) locked by T.

Note that there is no assumption of atomicity of any part
of the above (except the setting of a lock). These algorithms can
be executed concurrently with all the activities of the other
transaction on the database system, including lock acquisition
phases of other transactions.

2.4 Deadlocks

Deadlocks, though not absent, are easy to deal with. Two
forms of deadlocks are possible in this protocol. Waiting for locks
to be granted could lead to a deadlock. However as all the locks
that need to be obtained are known in advance, this form of
deadlock can be avoided by using the all at once strategy used in
Operating Systems.

The other form of deadlock is unavoidable. As a traasac-
tion T waits for a transaction T’ in After(T) to get validated,
transaction T’ could be waiting for T in After(T) to be vall-
dated, leading to a deadlock. However as this deadlock spans
only those transaction which are waiting to be validated, we can
argue t.hat due to the small number of transactions in this predi-
cament, the chances of a deadlock is low, and so is the cost 01
detecting such deadlocks. Also, as these transactions have not
started any processing, aborting any one of them (to break
deadlocks) will not be costly.

3 Propcrtiem

The proof of correctness is omitted for spaces restrictions.
We present some properties of the protocol, as exemplified by the
Lemmas used to prove its correctness. The precedence relation +
amongst transactions are caused by read-write, write-read and
write-write conflicts (see Bernsteinll]). These conflicts happen
when the transaction actually reads or writes. However for ease
ol modeling we will assume that the arcs are created earlier, after
the conflicting locks are obtained. As just obtaining a lock will
not really cause an arc, especially if the transaction gets
rescheduled after failing validation, we define that the arc is
created when the transaction reaches its locked point.

Definition

If Ti + Tj is an arc, then this arc was created when both
Ti and Tj reached locked point, and was created by the transac-
tron to reach locked point last.

Lemma 1

If Ti+Tj and Tj reached its locked point before Ti did then
the arc can only be caused if Tj gets a Yellow lock on as data
item, and then Ti gets a Green lock on it (and finally Tj converts
its Yellow lock to a Red lock).

Lemma 2

If T.-+T. and T. reached its locked point before Ti did,
then T. is’acliGe when f. reaches its locked poinl.

L’emma 1 and LeAma 2 show that unlike P-phase locking
the precedence graph can grow “backwards” (see 34). However in
order that a transaction T , which arrives later than transaction
T2, may actually precede zr I in the precedence order, T2 must

be active when TI arrives.

Lemma 3

If TI -P T2 -+ . . -P Tn is a chain of transactions, and TI is
active, then

T possesses White locks on Rd(T,) (i.e. Rd(T,) C
i’ &(TI)).

ii) T possesses Blue locks on Wr(Tn) (i.e. Wr(Tn) C

&J)~
Lemma 3 shows the most important property of this proto-

col. This implies that if a transaction TI is active, it “knows”
about the read and write set of all transactions that come after
T . This property is used to achieve serializability by causing a
va rdatron conflict when 3 cycle is created by some transaction. II. .

Informally, a cycle in the + relation is caused if a tran-
saction Tk arrives and takes position before a transaction T
(in the precedence graph) as also after a transaction Tk-I, an d
Tk-I is in the forward path of a chain from TI.

93

Since T, has nlifc (and Blue) lock on the read (and write)
sets of Tk 1. when T
becomes a-member o

t conflicts with Tk- , h due to any cause, Tt
Before(T). Also w en Tk comes ahead o

T , T
\. 1.

becomes a member of A ter(Tk). and the cycle is foiled at

f

va ldatlon (as the intersection of Before and Alter(Tk) is not
empty).

4 DiacursIon.
This protocol ditiers significantly from the aphase locking

protocol in the way the precedence (4) relation may grow. III
the O-phase locking scheme if a transaction reaches its locked
point, a11 transactions which come before T in the precedence
order must have reached their locked points. That is, the chain
can only grow in the jorluard direction. In fact this is the pro-
perty of the ‘l-phase locking scheme that ensures serializability.

In this protocol, the chain of transactions under the pre-
cedence order can grow in 60th directions. Suppose transaction T
has reached its locked point and possesses a YeUow lock on X.

Now a new transaction T’ arrives and gets a Green lock on X.

When T’ reaches locked point, the arc T’ -* T is born. NOW,
even after T terminates, as long as T’ is active, T” may come
and place itself before T’.

Thus the basic mechanism by which a-phase locking
ensures serializability is not present in this scheme. Serializabil-
ity is ensured, in this case by the Bfue and White locks, and the
validation procedure. Intuitively, if T1 + . . -+ T2 is a chain of
transactions, then T1 “knows” about Rd(T) and Wr(T),
because it has While and Bfue locks, respectivey, on these da a T I
items. If any transaction T’ attempts to read any data item in
Wr(T,) (or write any item in Rd(T)) then due to the “trigger-
ing” Faused by Green (Yeflow) lock/ng of a Hue (White) locked
item, T1 becomes a member of Before and T1 inherits Whife
(Bfue) locks on Rd(T3 (Wr(T’)). Thus information about the
read and write sets Bow flow up a chain in the form of
3nherited” White and Blue locks. Now if T’ may cause a cycle
in the + relation by attempting to read an item Yeffoo locked
by T, then T would become a member of After(T’) and violate
the validation constraint.

4.1 An Example
Here is an example of a nor&phase locked log that is

allowed by this protocol. This is a serializable log
which is termed a non-sfricffy-eeriafiza8[c log. A africffy

seriofizobfe log is a log in which non interleaved transaction
appear in the same order as they would appear in the serial
order (Bernstein[4]). In some serializable logs this is not the case.
However all other known concurrency control protocols pro-
duce subsets of strictly seriofizable logs.

R&J W,(z)

Note that in this history the transactions T1 and T3 do not
interleave and T completes execution before T3 stark But in
the serial order, + 3 comes before T1. This property violates sfricf
eeriofiralifify and thus this log is non-sfricffy serializable.

The detailed trace of this log is shown in Fig 2.
Thus we conclude that this protocol can achieve more con-

currency due to the information available to the transaction
manager about the transaction readsets and writeset.

6 Acknowledgementa
We are indebted to the anonymous relerees for their in-

depth comments and very helpful suggestions.

rritcset
R,(X)

R*(Y)

W,(Y)

Ra(‘)

TI
x
Y

Yelloo lock x
Greee lock y
Before = 0
After = 6
pus validation.
Read (x)
Conwrt Green lock
on x to White lock

:onvcrt Yellor, lock
m y to Red lock.
Nnte (y)
f$ye all locks
’ I

T2 Ta

Y I I

Yellor lock ,
Green lock y
yr-$

pur valid&a
lock inbcritmce:

White lock x
Blue lock y

Rd (Y)
Convert Green lock
on y to While lock.

ktvcrt Yellw lock
tn I to Red lock
Nritt (z)
Zelerse all locks
2nd TI

/

Crarr lock I
Before =)
After =T
purs valid& R on
lock inbcritanet:

White lock X, y
Blue lock y, I

Read (t)
Convert Green lock
on I to White lock
Release all lock:
End T2

-

Fig 4: Trace of Example Log

6 Rchrcncee

11 Bernstein P.A., Goodman N. : Fundamentaf Afgorithmnr /or Con-
currency Control in Distributed Systttir, CCA Tech Report, CCA-
80.05.

21 Bernstein P.A., Shipman D.W., Wang W.S. : Formal A~pectr oJ

Seridizabifify in Database Concurrency Control. IEEE Trans. on
Software Engg. sE.5,3 .May’79.

3] Date C.J. : An Introduction to Database Systems, Vol2.

41 Eewaran K.E., Gray J.N., Lo& R.A. : On notions 01 Conrirtcncy
and Predicate Loch in a Refotionaf Databare. Communications of
the ACM, 14,ll pp 624-634.

51 Kedem Z., Silberschatr A. : A Non g Phare locling Protocol with
Shored and Ezcfurioc Lo&. Proc. Conference on Very Large Data-
Bases, Oct.‘80

S] Papadimitriou C.H.. Kanellakis P.C. : On Concuncng Control by

Multiple Versions. Proc. ACM SICACT/SIGMOD Conference on
Principles of Database Systems, March 1982.

71 Papadimitriou C.H. : The Seriafizobifity oJ Concurrenf Dalabase

Updates. Journal of the ACM, 26,4 Oct’79.

81 Rosenkranta D.J.. Stearns R.1, Lewis P.M. : Syrlcm feoef Con-

currency Control Jar Dirlributed Databore Syrtemr. ACM Transac-
tions on Database Systems, 3,2 pp 178-198.

S] Silberschats A.. Kedem Z. : Conrirtcncy in Hierorchicd Datobarc

Systems. Journal of the ACM, 27,l (Jan’80) pp 72-80.

lo] Ullman J.D. :Principfcr OJ Databare Systemr. Computer Science
Press,

94

