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1 Introduction. 

A database is viewed as a collection or data objects 
which can be read or written by concurrent transactions. Inter- 
leaving of updates can leave the database in an inconsistent 
state. A sufficient condition to guarantee consistency of the 
databme is seriolizobilify of the actions (reads or writes) per- 
formed by the transactions on the data items, that is, the 
interleaved execution of the transaction should be equivalent to 
some serial execution of the the transactions [1,2,7]. Here we will 
assume serializability as the criterion of correctness. 

The 2-phase locking protocol is a well known protocol 
which produces serializable logs (Eswaran[4]). In database con- 
currency control we are not interested in all possible serializ- 
able logs. We are interested in logs which maximize allow- 
able concurrency. However Zphase locking does far scoring 
high in this criterion. There are serializable logs, allowing far 
more concurrency than any Zphase locked log. 

To achieve greater concurrency, we need to have more 
information about transaction behavior. One approach is to 
structure the database as a DAG (directed acyclic graph) 
(Kedcm]S]J. In this case non-2-phase behavior is attainable, and 
due to exploitation of the structure of the database to constrain 
transaction behavior it appears to provide higher concurrency. 
Another approach is to know in advance the resdset and writeset 
of the transactions. This approach has been used for deadlock 
avoidance but not for gaining on concurrency [I]. Knowing the 
esnrt readset (or writeset) of a transaction is not always feasible, 
however 3 superset of the readset (or writeset) can be statically 
determined. We will assume this strategy and demonstrate how 
thl* information can be used to achieve higher concurrency. 

2 The Algorithm. 

A transaction T acts upon a set of data elements D. A 
da13 clement x E D is in the readset (Rd) of a transaction T 
(that is. x E Rd(T) ) if the transaction does a read operation on 
x. Any element written by the transaction T is contained in the 
writeset (LVr) of T. Note that neither Rd(T) need be a subset of 
Wr(T) or trite versa, and Rd(T) and Wr(T) may be supersets of 
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the data items actually read and written by the transaction T. 

2.1 Locking. 

Each transaction is required to declare its readset and 
writes& to the t.ransaction manager before it issues any actions. 
Since the readset (and writeset) may be supersets of the data 
items actually read (and written), they can be statically deter- 
mined during query compilation. 

Fig I: Lock Compatibility Table (Note: The table is asymmetric). 

The algorithm uses five types of locks, lV/~il~, Blue, Green, 
YeNom and Red. The iMite and Blue locks are the weakest locks. 
They are used as markers, and are compatible with all other 
locks (see Fig 1). The Green lock is the shared lock used for 
reading. The Yellow locks are used for locking data items which 
will be updated at a later stage. The Red lock is the exclusive 
lock used for writ.ing, and is compatible only with the White and 
Blue locks. Neither the Green locks nor the Red locks are held 
over extended lengths of time. Only YeNow, Blue and lVhile 
locks exist nearly as long as the transaction does. 

A transaction (T), upon nrrittol declares its readset Rd(T), 
and its Writeset Wr(T) to the transaction manager. The Transac- 
tion Manager schedules the transaction and obtains all the neees- 
sary locks. Then the transaction manager &art8 the transaction. 
The transaction, upon commencement is not required to make 
any locking requests (i.e. locking is transparent to the transac- 
tion). 

2.2 Transaction Manager Actions. 

The following is a outline of how a Transaction Manager 
handles a transaction, after it arrives on the system. 

+ Arrival Point (Transaction T arrives) 

i) Get YeNow locks on W?(T), 
ii) Get Green locks on Rd(T) - Wr(T) 
iii) Do validation and lock inheritance processing (explained later) 

- Locked Point 

iv) Read values of Rd(T) into local storage, 
v) Downgrade all Green locks to White locks, 
vi) Start transaction processing. 

+ Smf Point 

i) T commences processing, 
ii) if T issues read(x), then return the value of x from local storage, 
iii) if T issuea write(x), then update x in local storage. 
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- C’ommif Point 

i) Upgrade all Ye1100 lochs to Red locks, 
ii) Write 311 updated items to the database, 
iii) Release all WA&, Blue, and Red locks held by T. 

2.3 Transaction Manager Algorithms. 

A transaction is in its lock acquisition phase if it has 
arrived but not reached locked point. A transaction is said to be 
nrrict if it has reached its locked point, but have not reached 
its commit phase. For each transaction T, the Transaction 
Xtanager maintains two temporary sets, during lock acquisi- 
tion phase. These are called Before(T) and After(T). The set 
Before(T) is a set of transaction that are active in the system and 
should come before T in the serialization order. Similarly 
After(T) contains those active transactions that will come after T 
in the serialization order. These sets are constructed by the 
transaction manager in a fashion explained below. 

The lock compatibility is shown in Fig 1. The While and 
Blue locks are compatible with all locks. They do not have any 
associated privileges. Informally, a transaction holds a White (or 
Blue) lock on a data item, if there is a transaction T’, which 
should come after T in the serialization order and has read (or 
written) x. The Green lock is the shared lock and allows reading. 
It is compatible wit.h itself. The Yellow lock is a partially shared 
lock, which is used on data items that will be updated at a later 
stage. The Yellow lock allows reading, but it is not compatible 
with itself. A Green lock can be obtained on a YeNour locked 
item but a Yellow lock cannot be obtained on a Green locked 
item (this feature makes the compatibility matrix asymmetric). 
That is, a transaction T may read a data-item x, that T’ has 
Y’ellotc locked. before T’ writes it. In this case T comes before T’ 
in the serialization order. However the reading of a Y’ellow locked 
item may not be always allowable (as it may violate serializabil- 
ity constraints), and this is avoided by t~a[idation. 

AS the Transaction Manager acquires the locks for a tran- 
saction T, it computes the sets Before(T) and After(T). If T tries 
to Green lock x, and x is Blue locked by T’ then T’should be 
before T in the serialization order and T’is added to Before(T). 
Similarly, an attempt to Yellow lock x. where x is White or Blue 
locked by T’ results in the addition of T’ in Before(T). However 
if T tries to Green lock x. and T’holds a Ytllow lock on x, then 
T ’ is added to After(T). 

The validation is simply checking whether Before(T) n 
After(T) is empty. If not then the transaction is rescheduled or 
restarted. If the transaction passes validation, then the Transac- 
tion Manager has to acquire some While and Blue locks. T is 
given Il’hife (and Blue) locks on all the data items While (and 
Blue) locked by transactions in After(T). Finally all transactions 
in Before(T) get While (Blue) locks on the readset (writeset) of T, 
and on all data items White (Blue) locked by T. 

Note that there is no assumption of atomicity of any part 
of the above (except the setting of a lock). These algorithms can 
be executed concurrently with all the activities of the other 
transaction on the database system, including lock acquisition 
phases of other transactions. 

2.4 Deadlocks 

Deadlocks, though not absent, are easy to deal with. Two 
forms of deadlocks are possible in this protocol. Waiting for locks 
to be granted could lead to a deadlock. However as all the locks 
that need to be obtained are known in advance, this form of 
deadlock can be avoided by using the all at once strategy used in 
Operating Systems. 

The other form of deadlock is unavoidable. As a traasac- 
tion T waits for a transaction T’ in After(T) to get validated, 
transaction T’ could be waiting for T in After(T) to be vall- 
dated, leading to a deadlock. However as this deadlock spans 
only those transaction which are waiting to be validated, we can 
argue t.hat due to the small number of transactions in this predi- 
cament, the chances of a deadlock is low, and so is the cost 01 
detecting such deadlocks. Also, as these transactions have not 
started any processing, aborting any one of them (to break 
deadlocks) will not be costly. 

3 Propcrtiem 

The proof of correctness is omitted for spaces restrictions. 
We present some properties of the protocol, as exemplified by the 
Lemmas used to prove its correctness. The precedence relation + 
amongst transactions are caused by read-write, write-read and 
write-write conflicts (see Bernsteinll]). These conflicts happen 
when the transaction actually reads or writes. However for ease 
ol modeling we will assume that the arcs are created earlier, after 
the conflicting locks are obtained. As just obtaining a lock will 
not really cause an arc, especially if the transaction gets 
rescheduled after failing validation, we define that the arc is 
created when the transaction reaches its locked point. 

Definition 

If Ti + Tj is an arc, then this arc was created when both 
Ti and Tj reached locked point, and was created by the transac- 
tron to reach locked point last. 

Lemma 1 

If Ti+Tj and Tj reached its locked point before Ti did then 
the arc can only be caused if Tj gets a Yellow lock on as data 
item, and then Ti gets a Green lock on it (and finally Tj converts 
its Yellow lock to a Red lock). 

Lemma 2 

If T.-+T. and T. reached its locked point before Ti did, 
then T. is’acliGe when f. reaches its locked poinl. 

L’emma 1 and LeAma 2 show that unlike P-phase locking 
the precedence graph can grow “backwards” (see 34). However in 
order that a transaction T , which arrives later than transaction 
T2, may actually precede zr I in the precedence order, T2 must 

be active when TI arrives. 

Lemma 3 

If TI -P T2 -+ . . -P Tn is a chain of transactions, and TI is 
active, then 

T possesses White locks on Rd(T,) (i.e. Rd(T,) C 
i’ &(TI)). 

ii) T possesses Blue locks on Wr(Tn) (i.e. Wr(Tn) C 

&J)~ 
Lemma 3 shows the most important property of this proto- 

col. This implies that if a transaction TI is active, it “knows” 
about the read and write set of all transactions that come after 
T . This property is used to achieve serializability by causing a 
va rdatron conflict when 3 cycle is created by some transaction. II. . 

Informally, a cycle in the + relation is caused if a tran- 
saction Tk arrives and takes position before a transaction T 
(in the precedence graph) as also after a transaction Tk-I, an d 
Tk-I is in the forward path of a chain from TI. 
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Since T, has nlifc (and Blue) lock on the read (and write) 
sets of Tk 1. when T 
becomes a-member o 

t conflicts with Tk- , h due to any cause, Tt 
Before(T ). Also w en Tk comes ahead o 

T , T 
\. 1. 

becomes a member of A ter(Tk). and the cycle is foiled at 

f 

va ldatlon (as the intersection of Before and Alter(Tk) is not 
empty). 

4 DiacursIon. 
This protocol ditiers significantly from the aphase locking 

protocol in the way the precedence (4) relation may grow. III 
the O-phase locking scheme if a transaction reaches its locked 
point, a11 transactions which come before T in the precedence 
order must have reached their locked points. That is, the chain 
can only grow in the jorluard direction. In fact this is the pro- 
perty of the ‘l-phase locking scheme that ensures serializability. 

In this protocol, the chain of transactions under the pre- 
cedence order can grow in 60th directions. Suppose transaction T 
has reached its locked point and possesses a YeUow lock on X. 

Now a new transaction T’ arrives and gets a Green lock on X. 

When T’ reaches locked point, the arc T’ -* T is born. NOW, 
even after T terminates, as long as T’ is active, T” may come 
and place itself before T’. 

Thus the basic mechanism by which a-phase locking 
ensures serializability is not present in this scheme. Serializabil- 
ity is ensured, in this case by the Bfue and White locks, and the 
validation procedure. Intuitively, if T1 + . . -+ T2 is a chain of 
transactions, then T1 “knows” about Rd(T ) and Wr(T ), 
because it has While and Bfue locks, respectivey, on these da a T I 
items. If any transaction T’ attempts to read any data item in 
Wr(T,) (or write any item in Rd(T )) then due to the “trigger- 
ing” Faused by Green (Yeflow) lock/ng of a Hue (White) locked 
item, T1 becomes a member of Before and T1 inherits Whife 
(Bfue) locks on Rd(T3 (Wr(T’)). Thus information about the 
read and write sets Bow flow up a chain in the form of 
3nherited” White and Blue locks. Now if T’ may cause a cycle 
in the + relation by attempting to read an item Yeffoo locked 
by T, then T would become a member of After(T’) and violate 
the validation constraint. 

4.1 An Example 
Here is an example of a nor&phase locked log that is 

allowed by this protocol. This is a serializable log 
which is termed a non-sfricffy-eeriafiza8[c log. A africffy 

seriofizobfe log is a log in which non interleaved transaction 
appear in the same order as they would appear in the serial 
order (Bernstein[4]). In some serializable logs this is not the case. 
However all other known concurrency control protocols pro- 
duce subsets of strictly seriofizable logs. 

R&J W,(z) 

Note that in this history the transactions T1 and T3 do not 
interleave and T completes execution before T3 stark But in 
the serial order, + 3 comes before T1. This property violates sfricf 
eeriofiralifify and thus this log is non-sfricffy serializable. 

The detailed trace of this log is shown in Fig 2. 
Thus we conclude that this protocol can achieve more con- 

currency due to the information available to the transaction 
manager about the transaction readsets and writeset. 
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Fig 4: Trace of Example Log 
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