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A non-volatile organic electrochemical device as a
low-voltage artificial synapse for neuromorphic
computing
Yoeri van de Burgt1†‡, Ewout Lubberman1,2‡, Elliot J. Fuller3, Scott T. Keene1, Grégorio C. Faria1,4,

Sapan Agarwal3, Matthew J. Marinella5, A. Alec Talin3* and Alberto Salleo1*

The brain is capable of massively parallel information pro-
cessing while consuming only ∼1–100 fJ per synaptic event1,2.
Inspired by the efficiency of the brain, CMOS-based neural
architectures3 and memristors4,5 are being developed for pat-
tern recognition and machine learning. However, the volatil-
ity, design complexity and high supply voltages for CMOS
architectures, and the stochastic and energy-costly switching
of memristors complicate the path to achieve the intercon-
nectivity, information density, and energy efficiency of the
brain using either approach. Here we describe an electrochem-
ical neuromorphic organic device (ENODe) operating with a
fundamentally different mechanism from existing memristors.
ENODeswitches at lowvoltage andenergy (<10 pJ for 103

µm2

devices), displays >500 distinct, non-volatile conductance
states within a∼1 V range, and achieves high classification ac-
curacy when implemented in neural network simulations. Plas-
tic ENODes are also fabricated on flexible substrates enabling
the integration of neuromorphic functionality in stretchable
electronic systems6,7. Mechanical flexibility makes ENODes
compatible with three-dimensional architectures, opening a
path towards extreme interconnectivity comparable to the
human brain.

Two-terminal memristors based on filament-forming metal
oxides (FFMOs) or phase change memory (PCM) materials have
recently been demonstrated to function as non-volatile memory
that can emulate neuronal and synaptic functions such as long-term
potentiation (LTP), short-term potentiation (STP), and spike timing
dependent plasticity (STDP)4,5. Crossbar architectures based on
these devices have been projected to reduce energy costs for neural
algorithms by six orders of magnitude, and recently performed
image recognition and data classification when utilized as highly
parallel neuromorphic processing units8,9. However, despite recent
progress in the fabrication of device arrays, to date no architecture
has been shown to operate with the projected energy efficiency
while maintaining high accuracy. A major impediment still exists
at the device level; specifically, a resistive memory device has
not yet been demonstrated with adequate electrical characteristics
to fully realize the efficiency and performance gains of a neural
architecture. State-of-the-art memristors suffer from excessive
write noise10, write nonlinearities8 and high write voltages and
currents11. Reducing the noise and lowering the switching voltage

significantly below 0.3V (∼10 kT) in a two-terminal device without
compromising long-term data retention has proven difficult12.
These limitations reduce the accuracy and scalability of FFMO and
PCMmemristors and pose challenges for these devices to approach
the energy efficiency of the brain8.

Recognizing that different switching mechanisms may be bene-
ficial, organic memristive devices have been recently proposed13–15.
Besides low-cost manufacturing and flexibility inherent to soft ma-
terials, organic devices could also benefit from low-power consump-
tion, added functionality, and biocompatibility. They could act as
biometric sensors and direct interfaces with the brain16,17, opening
up the tantalizing opportunity to build advanced neural prosthe-
ses comprising integrated brain–machine interfaces that combine
neural sensing with training18. However, the operation of these
organic memristors relies either on the slow kinetics of ion diffusion
through a polymer to retain their states or on charge storage inmetal
nanoparticles, which inherently limits performance and stability.

In contrast, the operation of ENODe is based on the non-volatile
control of the conductivity of an organic mixed ionic/electronic
conductor as depicted in Fig. 1. ENODe is essentially similar
to a concentration battery. During the ‘read’ operation, the
cell is disconnected and the electronic charge of the electrodes
remains unaltered by virtue of an ion conducting/electron blocking
electrolyte. The charge in the electrodes is manipulated during the
‘write’ operation. Hence, ENODe is a type of non-volatile redox
cell (NVRC) in which the state of charge determines the electronic
conductivity19. The main advantage of NVRCs is that the barrier
for state retention is decoupled from the barrier for changing states,
allowing for the extremely low switching voltages while maintaining
non-volatility (Fig. 1c).

To demonstrate this concept, we use a poly(3,4-ethylene-
dioxythiophene):polystyrene sulfonate (PEDOT:PSS) film partially
reduced with poly(ethylenimine) (PEI) (see Methods). The three-
terminal device architecture comprises the postsynaptic electrode,
a PEI/PEDOT:PSS film, interfaced with a PEDOT:PSS presynaptic
electrode via an electrolyte (Fig. 1a). Upon applying a positive
presynaptic potential Vpre to the PEDOT:PSS electrode, cations
flow from the presynaptic electrode into the postsynaptic electrode
through the electrolyte, resulting in protonation of the PEI, while
electrons flow through the external circuit. This causes holes
to be removed from the PEDOT backbone in the postsynaptic
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Figure 1 | Structure and electronic states of an organic neuromorphic device. a, Sketch of the device structure. Pre- and postsynaptic layers are separated

by an electrolyte layer transporting ions/protons (red spheres). b, A positive Vpre drives protons into the postsynaptic electrode, which results in the

compensation of some PSS− by the protonated PEI. This reaction causes the reduction of PEDOT in the same electrode due to charge neutrality, which

eliminates a polaron (in red) and decreases the polymer conductivity. The reaction is reversed upon applying a negative Vpre. c, Schematic explaining the

decoupling of the read and write operations. NVRC ensures a very high eVb barrier between the two oxidation states of PEDOT ‘1’ and ‘2’ (corresponding to

two conductance states of the postsynaptic electrode) during an open read operation and a very low barrier during a closed write operation. The open

circuit potential (OCP), depicted in dashed lines, is dependent on the oxidation state of PEDOT and can be overcome by the bias. d, Conductance G of the

postsynaptic electrode, showing reproducible non-volatile switching between five discrete states.

electrode, thereby reducing its electronic conductivity while
ensuring electroneutrality in the electrode (Fig. 1b). The reaction
is reversed upon applying a negative Vpre. While enabling current
continuity by ion transport, the electrolyte also acts as a barrier for
electronic charge transport, maintaining the electrode conductance
state after the presynaptic potential is applied. PEI stabilizes the
neutral form of the PEDOT in the PEDOT:PSS/PEI electrode,
ensuring that the oxidation state of the postsynaptic electrode
is retained20. The conductance states are monitored using a
postsynaptic potential Vpost. As such, the conductance of the
PEDOT:PSS/PEI channel represents the synaptic weight of the
connection between two neurons21, an essential property of an
artificial synapse.

We show that ENODe exhibits some of the synaptic functions
that are the building blocks of neuromorphic computing. To
demonstrate the extremely high density of non-volatile states
available for computation, a series of 500 pulses are applied
(see Methods and Supplementary Information), resulting in 500
distinct conductance states (Fig. 2a). In addition to driving it
with Vpre, ENODe can be operated by injecting a presynaptic
current pulse (Fig. 2b) exhibiting a nearly perfect linear behaviour.
We cycled ENODe between two distinct states over 300 times
using 10mVpotentiation and depotentiation pulses, demonstrating
extremely low noise (Supplementary Fig. 1) (<1%), which enables
the definition of a large number of states in a small voltage range.
The postsynaptic state is programmed by varying the amplitude
or the duration of the presynaptic pulse. The conductance change,
1G, is a linear function of presynaptic pulse amplitude and

duration (Fig. 2d,e), down to approximately millisecond timescales
(see inset).

Below 6ms (>166Hz) the potentiation is only short term
(Supplementary Fig. 3). This timescale is consistent with a
diffusion time constant, τ ∼ L2/D of ∼10ms, estimated using a
previously measured charge carrier diffusivity in PEDOT:PSS of
∼10−8 cm2 s−1 and an electrode thickness of ∼100 nm (ref. 22).
Reducing the channel thickness will reduce the diffusion distance
and improve the time response. As sub-threshold potentiation
in neurons is associated with STP and paired pulse facilitation
(PPF), this functionality is also established in ENODe (Fig. 2c
and Supplementary Fig. 2). Interestingly, the PPF demonstrated
in Fig. 2c exhibits two characteristic timescales, τ1 = 14ms and
τ2 = 240ms, approximately equal to those measured in biological
synapses23. Additional bio-inspired functionality such as STDP can
be achieved using overlapping pulse design (see Supplementary
Information). Although STP is capacitive in nature, applying many
short pulses results in LTP (Supplementary Fig. 3), a behaviour
emulating short-term to long-term potentiation found in nature24.

Size and geometry not only dictate operating speed, but also
define switching energy. To highlight the path towards ultralow-
energy switching of ENODe, power dissipation was measured in
devices with areas spanning five orders of magnitude (see Fig. 2f).
The power dissipated is determined by P = I ×V , and the energy
is calculated by integration over the pulse width (Supplementary
Fig. 4a). The switching energy of our smallest device was mea-
sured to be ∼10 pJ, which is comparable to state-of-the-art PCMs
that are over three orders of magnitude smaller, demonstrating the
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Figure 2 | Neuromorphic behaviour. a, Long-term potentiation and depression displaying 500 discrete states over the operating range when the device is

controlled using voltage pulses. The inset is a zoom-in showing the individual states. b, Long-term potentiation and depression under current control.

c, Short-term potentiation and paired pulse facilitation. The amount by which the synaptic weight is temporarily modified depends on the time interval

between two short pulses. An exponential fit is applied to obtain two characteristic timescales. The inset is a schematic of how such biasing is typically

realized. d,e, Change in postsynaptic conductance as a function of presynaptic pulse amplitude (d) and duration (e). The inset in e shows the relationship

for shorter timescales and Vpre = 10mV. f, Switching energy measured as a function of device area. Linear fits are applied in d to f.

particularly low switching energy density of ENODe25. Since current
scales with area whereas the voltage, determined by the electro-
chemical overpotential at the polymer/electrolyte interface, remains
approximately constant, the switching energy is proportional to the
electrode area, with a slope of 390 ± 10 pJmm−2 (Fig. 2f). Thus,
we project an energy cost of 35 aJ for switching a 0.3 × 0.3 µm
device, which can be fabricated by photolithography26. Downscal-
ing of ENODe will also require that more resistive PEDOT:PSS
formulations be used. We demonstrated using such formulations
to fabricate devices with conductances ranging over three orders
of magnitude (see Supplementary Information and Supplementary
Figs 5,6). The energy advantage of ENODe is further enhanced by
the low switching voltage (∼0.5mV), which greatly reduces the
interconnect capacitive loss in arrays and is ∼×103 lower than the
‘write’ voltage for a typical memristor.

Taking advantage of processing techniques developed for
commodity polymers, we fabricated an all solid-state plastic
device. Nafion was used as the electrolyte, laminated between two
flexible PEDOT:PSS films coated on polyethylene terephthalate
(PET) sheets and permeated with PEI (Fig. 3). This all-plastic
device proves the potential for low-cost fabrication of flexible
ENODe arrays, which would enable the integration of on-board
neuromorphic computing and learning in implantable prosthetics,
neural electrode arrays or any other flexible large-area electronic
system17. Furthermore, bending and folding of arrays may enable
three-dimensional densely connected neuromorphic devices.

As a first simple demonstration of functionality, we integrated
ENODe in a circuit that emulates Pavlovian learning27 (Fig. 4a and

Supplementary Information). The output neuron N3 (salivation) is
triggered by the input neuronN1 (sight of food, panel 1) but initially
not by neuron N2 (bell ringing, panel 2). The synaptic weight
of ENODe (S2) is modified during learning, thereby permanently
associating N2 to N1 (panel 3). The learning process resulted
in a response at N3 (salivation), to the input N2 (bell ringing),
successfully demonstrating associative memory of our artificial
synapse (panel 4).

Further, to fully illustrate the power of the low noise and linearly
programmable conductance states of ENODe, we simulated a
neural network based upon its experimentally measured properties
(see Supplementary Information). We simulated a three-layer
network for training with back-propagation of three data sets:
an 8 × 8 pixel image version of handwritten digits28; MNIST, a
28 × 28 pixel version of handwritten digits29; and a Sandia file
classification data set30. Back-propagation is a well-studied method
that provides benchmarking with the data sets we used8. The
numerical weights in the network layer were mapped directly
onto the experimental device conductance states (Fig. 2a) that are
extracted from ∼15,000 experimentally measured states. Training
a neural network using ENODe gives an accuracy between 93%
and 97%, and is always within 2% of the ideal floating-point-
based neural network performance, which is the theoretical limit
for this algorithm (Fig. 4d–f). Using a similar algorithm on PCM
devices previously yielded far lower classification accuracies8. The
key to this exceptional performance is the linearity and low noise
of ENODe (Fig. 2d,e), allowing extremely efficient analog tuning31.
In contrast, the physics of switching PCMs and FFMOs imposes
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Figure 4 | Learning circuit and image recognition simulations. a, Schematic and results of the Pavlovian learning circuit. Conditioning and permanent

association are shown in the third and fourth panel. b,c, Heat map representation of the 1G versus G switching statistics of ENODe during potentiation (b)

and depotentiation (c). The heat maps encompass data from 15,000 measurements and their colour represents the cumulative distribution function (CDF)

at each conductance state. CDF is the probability that 1G is less or equal to the 1G plotted. d–f, Backpropagation training results using a Sandia file

classification data set (d), an 8×8 pixel handwritten digit image (e) and a 28×28 pixel handwritten digit image (f).

inherently nonlinear device characteristics as it relies on random
nucleation events (PCM) or on modulating a tunnel barrier over a
narrow region (FFMO)8,10.

Analog tuning and extremely low switching voltages are
consistent with the inherently fast and low-energy process of
ion transport into a swollen polymer, requiring only a small
electrochemical overpotential32. We compared the composition of
the pre- and postsynaptic electrodes before and after operation
in liquid electrolyte (KCl) using X-ray photoelectron spectroscopy
(XPS) and propose that cations from the supporting electrolyte
(K+) are mobile in the presynaptic electrode whereas protons
(H+) are the mobile species in the postsynaptic electrode (see
Methods and Supplementary Information). Thus, upon applying
a positive Vpre, K+ cations are emitted from the presynaptic
electrode into the electrolyte. As a consequence of this increase in
positive charge concentration in the electrolyte, protons penetrate

the PEDOT:PSS/PEI postsynaptic electrode and protonate amine
groups in the PEI, which due to charge neutrality reduces
the concentration of PEDOT+, decreasing its conductivity. The
opposite process occurs upon applying a negative Vpre.

The mechanism, which differs fundamentally from that of or-
ganic neuromorphic devices reported to date, explains the origin of
the non-volatile nature of the conductance states of our device13,14.
Electroneutrality in the device imposes that any charging caused
by biasing the presynaptic electrode is balanced by an equal dop-
ing/dedoping in the postsynaptic electrode, resulting in a continu-
ous analog tuning of the ENODe conductivity. Upon programming
the device to a specific state, the presynaptic PEDOT:PSS electrode
and the postsynaptic PEDOT:PSS/PEI film are at different potentials
caused by the different PEDOT+ concentration. Once programmed,
the electrodes are disconnected from sources of charge and have no
direct electrical connection to each other either since the electrolyte
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is not an electrical conductor. Although randomdiffusion of a cation
into the electrolyte could cause the erasing of a state, such a process
would leave an uncompensated anion in the film. The stable, non-
volatile states originate from the extremely large electrostatic barrier
that the uncompensated anion would impose, typically observed
in battery electrodes without connection to a load. State stability
is indeed clearly established in retention measurements, showing a
0.04% standard deviation in conductance measured over 25 h (See
Supplementary Information).

Interestingly, the workingmechanism of ENODEs is reminiscent
of that of natural synapses, where neurotransmitters diffuse through
the cleft, inducing depolarization due to ion penetration in the
postsynaptic neuron. In contrast, other memristive devices switch
by melting materials at relatively high temperatures (PCMs) or by
voltage-induced breakdown/filament formation and iondiffusion in
dense oxide layers (FFMOs).

In conclusion, we demonstrate a new organic electronic device
made with inexpensive and commercially available plastic materials
that behaves as an artificial synapse. Our artificial synapse exhibits
a large number of non-volatile and reproducible states (>500) and
operates at very low voltages. We determined experimentally that
our artificial synapse switches with low energy density and we
project that just∼35 aJ is sufficient to switch a sub-micron device, a
number smaller than that of biological synapses. Circuit simulations
show that networks based on these synapses perform near the theo-
retical limit. The polymeric nature of the synapse opens up a range
of novel applicationswhere biological integration, flexibility and low
cost provide unique opportunities for the adoption of these devices.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 21 September 2016; accepted 12 January 2017;
published online 20 February 2017
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Methods
Fabrication methods. The larger devices were prepared by spin-coating a
PEDOT:PSS solution (Heraeus, Clevios PH 1000) on two indium tin oxide (ITO)
patterned glass substrates. This solution also contained 5wt% ethylene glycol (EG)
to increase the PEDOT:PSS conductivity, 0.1 wt% dodecyl benzene sulfonic acid
(DBSA) as a surfactant and 1wt% (3-glycidyloxypropyl)trimethoxysilane (GOPTS)
as a crosslinking agent to improve film stability. EG, DBSA and GOPTS were all
used as obtained from Sigma Aldrich. After spin-coating, the films where baked at
120 ◦C for 10 min. Next, one of the PEDOT:PSS films was subjected to 5min of
branched polyethylenimine (Mw =800, Sigma Aldrich) vapour (250 ◦C) and baked
for another 10min at 120 ◦C. The liquid electrolyte (100mM NaCl or KCl) was
used in a well, patterned in a polydimethylsiloxane (PDMS) mask. Solid-state
devices were made using Nafion-117, 0.18mm thickness, 0.90meq g−1 exchange
capacity (VWR International LLC) sandwiched between two PET substrates, with
added glycol and sorbitol as surfactants. Smaller devices were fabricated using a
femtosecond laser (Spectra Physics Ti:Sapphire, 808 nm, 500mW, 10 kHz) ablation
process by which wells were precisely defined in crosslinked Parylene C coated
glass. The PEDOT:PSS solution was subsequently spin-coated in these wells.

Electrical characterization. Electrical characterization was done using a Keithley
2610 dual-channel measurement set-up, supplemented by an Agilent 33500B
waveform generator and an Agilent DSO1022A oscilloscope, and interpreted with
customized LabView software. The presynaptic electrode is connected to the
postsynaptic electrode by a Keithley 2610 in series with a 1M� resistance to
ensure no unintentional discharging of the device. By applying potential pulses
with similar amplitudes, the effective voltage drop over the device changes as a
result of the change in conductivity of the device and its value relative to the
1M� in series.

Materials characterization. XPS measurements where done using a PHI
VersaProbe system at the Stanford Nano Shared Facilities. Depth profiles were
obtained after C60 sputtering using a 20 nA current. Ultraviolet–visible
spectroscopy was performed with an Ocean Optics Spectrometer.

Data availability. The data that support the findings of this study are available
within the article and its Supplementary Information or from the authors, see
author contributions for specific data sets.
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