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1 Introduction and summary

In recent years, the construction of nonabelian (1,0) and (2,0) superconformal theories in
6D has attracted a lot of attention. Using a Nambu 3-algebra, Lambert and Papageorgakis
have been able to build up a nonabelian (2, 0) tensor multiplet theory in 6D [1]; in [2, 3], the
same theory has been constructed in term of ordinary Lie algebra. One particular feature
of the (2,0) LP theory is that the gauge field is nondynamical. The (2,0) LP theory may be
a candidate of dual gauge description of interacting multiple M5-branes (a general review
of superconformal field theories and multi M-branes can be found in ref. [4]; see also [5]).
On the other hand, upon a dimension reduction, the (2,0) LP theory can be reduced to
a maximally supersymmetric Yang-Mills in 5D [1], which can used to describe interacting
multiple D4-branes.

A little later, a nonabelian (1,0) theory with the same field content of a (2,0) theory,
has been constructed in a series of papers [6-8]|; in this theory, the gauge field is dynamical.

In this paper, we consider another possibility: we construct a nonabelian (1,0) theory
with the same field content of a (2,0) theory, but its gauge field is nondynamical. Specif-
ically, the R-symmetry of this (1,0) theory is SU(2), and the theory contains 5 bosonic
fields, a non-dynamical gauge field, two anti-chiral spinor fields (transforming in the 2 of
SU(2)r and 2 of SU(2)g of the global symmetry group SU(2);, x SU(2)g, respectively),
and a selfdual field strength H,,,,. The fields are in the adjoint representation of the Lie
algebra of gauge group; and the Lie algebra of gauge symmetry can be chosen as the Lie
algebra of ADE type.

One important feature of our (1,0) theory is that it contains a continuous (dimension-
less) parameter b. However, in the special case of b = 1/2, the theory possesses an extra



discrete symmetry: the theory is invariant if we exchange the two anti-chiral spinor fields;
as a result, the supersymmetry can be promoted to (2,0), and theory becomes identical
to the (2,0) LP theory. It is interesting to note that the (1,0) theory with a dynamical
gauge field, also contains a free parameter [8]. Perhaps this is a general feature of (1,0)
theory in 6D.

As in ref. [1], our theory also contains an auxiliary field C*. Following the idea of [1],
if we choose the space-like vector vev (C*) = g%,,65, the (1,0) theory can be reduced
to an N' = 1 supersymmetric Yang-Mills theory (SYM) in 5D, with gy s the coupling
constant. (In section 3.4, we also briefly discuss the rest cases that (C*) is a light-like or
a time-like vector.)

Four dimensional NV = 2 SYM theories were studied intensively. For instance, in ref. [9],
a large classes of N' = 2 theories were constructed and studied (their gravity duals were
constructed in [10]). The 5D maximally (N = 2) supersymmetric Yang-Mills theories were
investigated in [11-14]. It may be also interesting to study the 5D N = 1 SYM theories
constructed in this paper, and to construct their gravity duals.

The paper is organized as follows. In section 2, we construct a (1,0) tensor multiplet
theory without coupling to hypermultiplets; we then couple a (1,0) hypermultiplet theory
to this (1,0) tensor multiplet theory in section 3. In section 3.3, we show that the (2,0)
LP theory can be derived as a special case of our (1,0) theory. In section 3.4, we derive
the N =1 SYM theory in 5D, starting from the (1,0) theory in 6D. The applications of
these theories to D4 and M5-branes are briefly discussed in section 3.4. Our conventions

and useful identities are summarized in appendix A.

2 (1,0) tensor multiplets without coupling to hypermultiplets

2.1 Closure of the superalgebra

For simplicity, in this section we will try to construct a 6D nonabelian (1, 0) tensor multiplet
theory with SU(2) R-symmetry. This theory does not contain hypermultiplets, and its
gauge field is non-dynamical. Another motivation is that this theory is interesting in its
own right: in [6], the (1,0) tensor multiplet theory, with a dynamical gauge field, does not
contain hypermultiplets as well; it is natural to construct a similar (1,0) theory with a
non-dynamical gauge field, and to compare these two types of theories. Of course, in the
next section, we will add the hypermultiplets into this theory such that there are non-trivial
interactions between the tensor multiplets and hypermultiplets, and the field content of the
final (1,0) theory becomes the same as that of the (2,0) theory of LP [1].
The component fields of the (1,0) tensor multiplets in 6D are given by

(fﬁm;Hme,leJr), (21)

where ¢,,, are the scalar fields, with m an adjoint index of the Lie algebra of gauge symme-
try. The fermionic fields ,,; are defined as 1, = %(1 + T6789)®¥m, with 1, anti-chiral
fields with respect to 12345, i-€. To12345¢m = —, (our conventions are summarized in



appendix A). The nonabelian tensor field strengths H,,,,m obey the selfdual conditions

1
H,uzzpm = gg,ul/pa)\an—LAn- (22)

In ref. [1], it was proved that there are no suitable fields By}, such that HJ},, = 3D[MB;’;]
(except that the gauge group is abelian), where the covariant derivative is defined by (2.4).
So in this paper, we do not try to define H;,, in terms of 3D[MBZ‘)]. But later we will see
that H)),, can be solved in terms of the gauge field strength F}; (see (2.30)). We will make

further comments on Hjj,, below eq. (2.30).

We postulate the law of supersymmetry transformations as follows,
6¢m = —i€+¢m+7
11
Oy = FM€+Du¢m + QEFMVAE—FH#LW\
OAY = iey U CY +iciep Oy,
oC” =0,
5H,u1/pm - 3i€+F[WDp]¢m+ + id1€+FngCJ¢n+¢pf”pm, (23)

where C* is an abelian auxiliary field! with scaling dimension —1, and f™,, the structure
constants of the Lie algebra. ¢q and dy are constants; they will be determined by the closure

of superalgebra. The supersymmetry generators are defined as e, = %(1 + D789 )€, where
e are chiral with respect to I'g12345, i.e. I'g12345¢ = €. The covariant derivative is defined

as follows

D,u¢m = ,ugbm + (A,u,)nd)pfnpm- (24)
Notice that in (2.3), it is fine to replace ¥, + by ¥p,— = %(1 — D'¢789)®m, if we replace e
by e = %(1 — Tg789)€ at the same time; but the resulted theory is a new theory.

Now we would like to examine the closure of super-Poincare algebra. Let us begin by
considering the scalar fields. A short computation gives

(61, 02]pm = V" Dy, (2.5)
where
vt = —2ie ey, (2.6)
In the case of gauge fields, we obtain
[01,02] AY' = vV F, — DA™ + 0¥ (F, — Hppy, ) CP + 2¢1C), Dy ¢™) — v, (CY Dyg™),  (2.7)
where

AT = (e = 1" Cro™, (2.8)
FI = 9, AT — 9, AT + [A,, A]™, (2.9)

n a 3-algebra approach, a similar auxiliary field C* is introduced, where a is a 3-algebra index [1]; our
reason for introducing C* into the theory is similar to that of ref. [1] (see also [2, 3]).



with [4,, A" = AﬁAﬁfnpm. In order to close the Poincare superalgebra (up to the gauge
transformation —D, A™), we must require the third and fourth terms of (2.7) to vanish.
This gives the equations of motion of gauge fields and the constraint equations on the
scalar fields:

0= F;Z;j — H;’,%Cp + QCIC[VDM](bm; (210)
0 = CVD,¢™. (2.11)

Taking a super-variation on (2.11), we obtain the constraint equations on the fermionic
fields

0=C"Dym. (2.12)
Note that using (2.8), one can re-write (2.5) as the expected form
[01, 2] ¢m = v Dy + [A, Gl (2.13)
Let us now look at the auxiliary field:
[01,02]C* =0 =v"D,CH + [A, CH]. (2.14)

Since we have assumed that C* is abelian, the commutator [A, C*] vanishes automatically,
implying that D,C* = 9,C* = 0. So C* is actually a constant abelian field.
We now turn to the fermionic fields:
[51) 52]¢m+ = /UVDVQZ)WH- + [A7 w-i-]m
3 g g
+- (1 —c1 + d)v"PIT 0, T C oty Gp f P m

8
" Db+ 5 (Tex = 5dy = 30"yt 6 i
T Dy — ler i+ 30 Ty O b, (2.15)
where
VMR = —%(@JWF&H). (2.16)

The second line of (2.15) must vanish; this can be achieved by setting
1—c1+dy=0. (2.17)

Using (2.17), the third and fourth lines of (2.15) become

1 1
_*UVDuwm+ + *(2(11 + 4)UV zx¢n+¢pfnpm

4 8
1 1% 1 v n
+ZU F/WD“’(/Jer - §(2d1 + 4)U F#VCM’(ﬁner)pf pma
1 v n,
= —ZU F,,(F“D,ﬂbm+ — (dy + 2)F“CM¢n+¢pf P, (2.18)



which leads us to impose the equations of motion
0=T"Dythmy — (dy + 2)T7Cthng - Op f " - (2.19)
On the other hand, taking a super-variation on (2.2) gives
6 Hypm = %fswmﬁéfl;‘,ﬁ”. (2.20)
By the last equation of (2.3), a short computation converts the above equation into
0=T"D, VYms + diITHCptpnydp f . (2.21)
Comparing the above equation and eq. (2.19) determines dy:
dy = —1. (2.22)
Substituting d; = —1 into eq. (2.17), we learn immediately that
c1 = 0. (2.23)

In other words, the second term of the third line of (2.3) is ruled out by the closure of
super-Poincare algebra.
Finally, we examine the supersymmetry transformations of the selfdual H-fields

(01, 62) H wpp
e UUDUH/LVpp + [A, H;Ll/p]p
+3(U[,uFup}m — U[MHVP}UmCU)(bnfmnp (2.24)
o i 7 T mn 1 T mn
+4v [D[MHVpU]p + gguyp)\UT(¢m+F ¢n+)0)\f p+ Zg;wp)\m-¢mD ¢nc)\f p]-

The second line vanishes on account of egs. (2.10) and (2.23), while the third line must be
the equations of motion

1

n T mn 1 T mn
85,uup)\m'(¢m+r wn—i-)C)\f D + 75,uup)\o'7'¢mD (ﬁnc/\f p- (225)

0= Dy Hypolp + 4

Using egs. (2.10) and (2.25), and the Bianchi identity Dy, F,
straint equations

op = 0, one obtains the con-

C?DyH,uppp = 0. (2.26)

The equations of motion for the scalar fields can be obtained by taking a super-variation
on (2.21); they are given by

0= D%, — %(J}mrﬂpw)cv ™. (2.27)



2.2 Summary of the theory

In summary, the equations of the (1,0) theory of this section are given by
0 = D%y = 5 (bt Dbt JCV ™,
0=F),—-H,,C"
0 = " Dyhmy — THCuni o f™m
0 = DyuHupoly + sempror Gns T )OS ™ & Luuprr D760 ™,
0= CDotn, = C? Doty = C? Do Hppprn = 0,C". (2.28)

Multiplying both sides of the second equation by C¥ gives

F,CY =0. (2.29)
Notice that the second equation is equivalent to the equation
1
CH}, = 3F[1 Cy + §eMVpWF§;cT. (2.30)

We emphasize again that the gauge field of the (1,0) theory of this section is nondy-
namical; it seems that due to this reason, one cannot define the nonabelian selfdual field
strength in the following way: H,pm = 3D[,Bym, as analyzed by the authors of [1].
However, in the (1,0) theory of [6], the gauge field is dynamical, and it is possible to con-
struct a field strength H,,,m associated with the nonabelian covariant derivative D, B,
(see also [15-22]). So these two types of theories are not the same; but still, there may
be a connection between them. It would be interesting to investigate these two types of
theories further.

The supersymmetry transformations are

O0pm = —1€4+Pmy,
11 )
5¢m+ = FMEJrD,uqu + giruy)\€+H7l’Ln Aa
5AZL - 7:€+FMV¢TCV,

oC” =0,
OHpwpm = 31T D yjbmy — €41 ype OOy &p f ™ (2.31)
If we make the following replacements
€r =€, Ymar = Py (2.32)

in (2.28) and (2.31), we will obtain a new (1,0) theory.

3 (1,0) tensor multiplets coupling to hypermultiplets

3.1 (1,0) tensor multiplets coupling to hypermultiplets

Having constructed the (1,0) tensor multiplet theory, our next challenge is to couple this
theory to a (1,0) hypermultiplet theory. We begin by considering the free (1,0) hypermul-
tiplet (X%, ¢_). Here X* (i = 6,7,8,9) are a set of bosonic fields; and the ferminoic field



1_ is anti-chiral with respect to I'grgg as well as I'g19345, that is, 1 = %(1 — I'g789) and
To12345¢ = —1 (our conventions are summarized in section A). The (1,0) supersymmetry
transformations are

60X =i Thp_,
S = THT%e, 9, X" (3.1)

The superalgebra is closed by imposing the equations of motion
r“o,p_ = 0. (3.2)

Taking a super-variation on (3.2) gives the equations of motion of the free bosonic fields:
019, X" = 0. Clearly, this free (1,0) hypermultiplet theory has an SU(2) R-symmetry.

To couple tensor multiplets and hypermultiplets, it is natural to assume that they
share the same gauge symmetry, and the hypermultilets furnish the adjoint representation
of the algebra of gauge symmetry, as the tensor multiplets do. Under these assumptions,
we propose the supersymmetry transformations

0bm = —1€4Vmy,
6Xi, = e Ty,
5wm— = FMFiE+D#X7Z'rL + aFAFi5+C)\XzL¢anpmv

11 . o
5y = Tley Dy + T HIYN + b0\ e, CA X XD P,

312!
SAT = ie Ty CY,
5CY =0,
6H,u1/pm = 3i€+F[WDp]¢m+ - iE+Fqugcawn+¢pfnpm
+ider T o thn—C7 X [, (3.3)

where a, b, and d are constants, to be determined later. We see that after coupling to the
hypermultiplets, the field content of this (1, 0) theory is the same as that of the (2,0) theory
of LP [1]. However, the R-symmetry of the (1,0) theory is only SU(2), while the R-
symmetry of the (2,0) theory is SO(5).

Let us now examine the closure of the superalgebra. Using the results of the last
section, the task of examining the closure of the algebra becomes much simpler. The
transformation of scalar fields ¢,,, remains the same form as that of the last section:

[513 52]¢m = UVDV¢m + [A, ¢]m (3'4)

The set of parameters of gauge transformation A™ = —v”C,¢"™ are also unchanged
(see (2.8) and (2.23)), with v” defined by eq. (2.6). Also, the commutator [01, d2]C* remains
the same as eq. (2.14).

In the case of bosonic fields X , a short calculation gives

(61, 02) X, = vV D, XE + a[A, X, (3.5)



It can be seen that we must set

a=1. (3.6)

Using the identity (A.11), we see that the commutator [01,d2] A" also remains the
same form as that of (2.7):

(61, 02] A = V" F), — DA™ + 0" (F), — Hpjp, ,CP) — v, (CYDyg™). (3.7)

The last two terms must vanish separately. In this way, we obtain the equations of motion
of gauge fields and the constraint equations on the scalar fields ¢,,:

_pm _ gm  p
0=1Fr,—H,,",
0=C"Dyo™.

Using the identities in appendix A, one obtains

[517 52]wm— = UVDV¢m— + [A7 w—]m
1 ) .
— iv”Fy(F“Duwm_ +THC W —p [P + F“FZCsznJrX;f”pm). (3.10)
We see that the second line must be equations of motion
0 = I*Dythm— + THCutbn—dp [P + THT Cothn s X f ™ (3.11)
As for 9,1, we have
[51a 52]wm+ = v Dythmy + [A,¢+]m
1 A A
_Z'UVFV (Fqu¢m+ - Fucuwn—&—@bpfnpm + dFMFZC,uwn—X;fnpm)
3 . A
—|—§(2b — d)v”C’“F#Fl,F%n,X;f”pm
3

—5 (20— d)o"PIT D C oty X3 f ™, (3.12)

where v#P% is defined by (2.16). The first line and the first two terms of second line are
the results of section 2 (see (2.15)). The rest terms are due to that we have coupled the
(1,0) theory of section 2 to the (1,0) hypermultiplet theory. It can be seen immediately
that if

d = 2b, (3.13)

the last two lines vanish simultaneously. Thus the second line of (3.12) must be the equa-
tions of motion

0 = I*Dythmy — TFCuthng bp f ™ + 2001 Cputy - X [ . (3.14)

The above equation can be also derived by combining the selfdual conditions 6H,,, pnm =
%%Vpg,\,ﬁH,‘?,’{\“ and eq. (3.13).



Let us now compute the super-variation of the H-fields. After some algebraic steps,

we obtain
[617 62]Hw/pp
= 0" DoHypp + [N, Hyuplp
+3(U[,U,Fup]m - U[,uHVp}omCG)anfmnp (315)
(e Z o T 1 T
+4v D[;LHVpa]p + ggul/p)\m‘ (¢m+r wnJr)C)\fmnp + ZgquAUTQZ)mD anc)\fmnp

7 - 1 ) )
+Zb5,uz/p)\cr7—(wm—r7—wn—)C)\fmnp + ibgpl/p)\oTX;nDTXrlLC/\fmnp
—48bv,,,, 7 (C7 Dy X 1) X2 f.

The first three lines are adopted from (2.24), while the last two lines are due to the coupling
of (1,0) tensor multiplet and hypermultiplet theories. To close the algebra, we must require
the last line to vanish. This can be done by either setting b = 0 or C°D,X! = 0.
However, if b = 0, there wouldn’t be nontrivial interactions between the tensor multiplets
and hypermultiplets. We are therefore led to

C’DyX: = 0. (3.16)
The second line of (3.15) goes away by the equations of motion for the gauge fields, while
the third and fourth lines must be the equations of motion of the H-fields
1
4
1 - 1 . )
Jrzba,“,pm(@/Jm_rwn_)cA s, + §b5,prTXﬁnDTX;lC* . (3.17)

i 7 T T
0= D[,quzpa]p + geuupAaT('@Dm—i—F Q;Z)n-l-)c)\fmnp + 5,uup>\a7'¢mD anc)\fmnp

Taking a super-variation on (3.16) gives the constraint equations
C?Dythp— = 0. (3.18)
Also, in exactly the same way of deriving eq. (2.26), one can obtain the constraint equations
C’DoHpyypp = 0. (3.19)

Finally, one can derive the equations of motion of the bosonic fields X; and ¢, by
taking super-variations on egs. (3.11) and (3.14), respectively; they are given by

0 = D*X] + i(ms DDy )C¥ [, — C*(m X g + 2bX7, X\ XY f7, f%9,, (3.20)
i _ ) .
0 = D%y — S [(miDotbng) = 2b(Pm-Tothn)ICY F™"p = 2C* X0 Xo ™" 0 f 0.

In deriving the above equations, we have used the identities (A.13) and (A.14).

We see that the continuous parameter b survives in the (1,0) theory: it cannot be fixed
by the closure of superalgebra, and it cannot be absorbed into the definitions of fields,
either. In section 3.3 we will see that in the special case of b = %, the (1,0) supersymmetry
can be enhanced to (2,0).



3.2 Summary of the theory

In summary, the equations of the (1,0) theory of this section are

m<*n<*q

1 — — . .
0= D2¢p B 5[(¢m+ru¢n+) - 2b(¢mfru¢n7)]cyfmnp o 2bC2X7Zn¢nX;fmnofoqpv
0= Fy,—H].,,C",

0= DQX; + i(&m+ruri¢nf)cyfmnp - C2(¢mXTzz¢q + Qij Xi Xj)fmnofoqm

uvp
0= F#D,uwm— + Fucuwn—¢pfnpm + Furicuwn-i-X;)fnpm?
0 = D*Dythy — THCutbng bp ™ + 2001 Couty - X [, (3.21)

i _ _
0 = DyuHypap + gEppror (Pmt T70ns) + 26(m T )]C ™,
1 ) .
+Euprar (9m DT dn + 20X5, DX )CH M,

0 = C7Dyy, = C7Dy X}, = C7Dytppy— = C° Dotpy = C7 Do Hppypprn = 9,C".
The supersymmetry transformations are

Om = —i€4Vmy,

6X! = i€ Ty,

0y = THTe, D, X5, 4+ Talle . CA XL by f 1 im,

11 - S
St = THer Dy + — = Tyoner HAA + b0\ e, CAX) XD f

312!
SAT = ie LT C”,
5C” =0,
O Hywpm = 3i€4 L1y Dpjthmy — €4 Lo O thny p [
+2ib€ . T'T 1y potbp— C7 XL [, (3.22)

In constructing the (1,0) theory, we have used €4 as the set of generators of super-
symmetry. The generators e; transform as 2 of SU(2)y of the global symmetry group
SO(4) = SU(2)1, x SU(2)r. We can of course choose €_, transforming as 2 of SU(2)p, as
the set of supersymmetry generators. In fact, if we make the replacement

€4 —> € (3.23)
in (3.22), and switch 1,4 and 9,,,— in (3.22) and (3.21)

wm—i- A wm—v (3.24)

we will obtain a new (1,0) theory, provided that b # %, because the discrete transforma-
tion (3.24) is not a symmetry of the theory (see (3.27) and the comments below (3.27)).

The gauge groups can be classified by specifying the structure constants ", and the
invariant symmetric tensor k,,, on the Lie algebras. (In the case of simple or semi-simple
Lie algebra, kyy,, is the Killing-Cartan metric.) For instance, the Lie algebras can be chosen
as the Lie algebras of type ADE.

,10,



Finally, we expect that the (1,0) theory has a full OSp(8|2) suerconformal symmetry.
One should be able to verify this symmetry explicitly. The ideas for proving the OSp(NV|4)
(N = 4,5,6,8) superconformal symmetries associated with the 3D A > 4 Chern-Simons
matter theories may be useful [23-26].

3.3 Promoting to (2,0) LP theory

Since a theory with fewer supersymmetries must be more general than those with higher
supersymmetries, we should be able to obtain the (2,0) theory as a special case of the (1,0)
theory. To enhance the supersymmetry is equivalent to promote the SU(2) R-symmetry to
SO(5). The first step is to require the bosonic fields to transform as the 5 of SO(5); this
leads us to define

X' = (X', 9), (3.25)
where i = 6,7,8,9 and I = 6,...,10. Similarly, we can combine I'¥ and I''” = T'g12345 6789
to form

! = (i o). (3.26)

With these notations and the properties of €4, ¥, +, and 1,,— (see (A.15)), the fourth and
fifth equations of (3.21) can be unified into the equation

0 = T*Dythyy + THTI Cuthn X fP 1 + (20 — DITHTICothy— X f ™, (3.27)

where ¥, = Ymi+ + ¥m—. It can be seen that under the discrete transformation ), <
Ym—, the first two terms of (3.27) are invariant, but the last term becomes

(20 — DI Cotbny X f P (3.28)

Hence the transformation is not a symmetry of the theory in general. However, in the
special case of

(3.29)

the last term of (3.27) drops, and equation (3.27) is invariant under the transformation

Um+ > Ypy—; more importantly, this equation becomes manifestly SO(5) covariant. Simi-

larly, using b = 1/2, the first two equations of (3.21) can be combined into a single equation

with manifest SO(5) symmetry. The rest equations of (3.21) can be taken care of as well.
In summary, if b = 1/2, we have

0= DX/ + %(z/?mryrf b)CY 1, — CP XXX o, 1o,
0= Fy,—H,CP,
0 = T¥Dythn + T Crthn XL f P, (3.30)

i — 1
0= D[#Hypg]p + ngp/\m'&bmr d}n)C)\fmnp + 4

0 = C'Dy X}, = C?Dytpyy = C”DyHpppm = 9,C".

I I
5uup>\UTXmDTXnC fmnp’

— 11 —



These are essentially the same equations of the (2,0) LP theory, constructed in terms of
3-algebra [1]. Similarly, if b = 1/2, the supersymmetry transformations (3.22) can be recast
into the forms

6X!I = ie T,

11 1
S = TP e, D, X] + Toner HEA 4 iFAF” exCOAXIX P,

m 32l
SAT = ie Ty, CY,
5C” =0,
SHywpm = 3161, Dpyth + 1€ D' T 1y pothn C7 X} . (3.31)

At the end of section (3.2), we asserted that we can obtain a new (1,0) theory by
making the replacement e, — e¢_ and the transformation ¢, <> 1¢,,—. However, this is
not the case if b = % Applying

€L — €, 1/}m+ A4 wm_ (332)

to egs. (3.30) and (3.31), we find that (1) the equations of motion (3.30) do not change
at all, meaning that ©,+ <> ¥, is just a discrete symmetry of the theory; (2) the
supersymmetry transformations (3.31) become

ox!I = ie_Thy,,,

11 1
5y, = DT e D, X1 + Tne  HIYA 4 §FAFU6,C”\XTILXI;7 e,

m 319!
SAT = ie_T,,p™C",
6C” =0,
SHywpm = 3i€-T 4, Dt + €T T s pe0nCo X} P, (3.33)

which must be considered as another independent set of supersymmetry transformations
of the theory. The two sets of supersymmetry transformations (3.31) and (3.33) can be
unified into

6XI = iel Ty,

11 1
Stm = TP eD, X1 + T HI + §PAPU eCr X)X P,

mT 3121
SAT = i€l ™ C",
6C” =0,
S Hywpm = 3i€L 1, Dyt + 1607 T 1 pothn C7 X ) [, (3.34)

where € = €4 4+ e—. These are essentially the same supersymmetry transformations of
the (2,0) LP theory, expressed in terms of Lorentian 3-algebra [1]. In this way, we have
recovered the whole (2,0) LP theory.

3.4 Relating to N =1 SYM in 5D

In this section, we will show our (1,0) theory can be reduced to an N' = 1 super Yang-Mills
theory in 5D by specifying the auxiliary field C*. Since our C* plays the same role as that
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of Cl of the LP theory [1] (see also [2, 3]), it is natural adopt the method in [1] and to
choose the space-like vector vev

<Cﬂ> = 9(07 -0, 1) = 95/;, (335)

where the constant ¢ has dimension —1 and obeys the equation d,g = 0. The equations of
motion of gauge fields (the 3rd equation of (3.21)) now become

Fa,Bm = gHaBSma (336)

where we have decomposed p into p = («,5), with a = 0,1,...,4. On the other hand,
since Fg,, = gHsp5, = 0, we have

F5,3 = 85./45 — 85.45 + [A5, Ag] =0. (3.37)

So locally, we may set the flat connection A5 = 0. As a result, Ag is independent of the
fifth coordinate z°, i.e. 05Ag = 0.
The rest equations in (3.21) can be reduced to those of N'=1 SYM theory in 5D

0= D*Da X}, +ig(mi TsT ) [ — g% (dm X5, bg + 26 X7, X3 X)) ™" o,
i _ . :
0= DaDa¢p - 59[(¢m+r5wn+) - 2b(wm—r5¢n—)]fmnp - 2b92X7Zn¢nX;fmn0foqpa

0= FaDawm— + grg)wn—(bpfnpm + 9F5Fi"/}n+X;fnpm7
0= FaDa@Z)er - grswn+¢pfnpm + 2bgr5riwan;fnpma
0= 9D(aHpgy5p = DiaFisyp (3.38)

i _ _ . .
0= DaFaﬁp_592[(¢m+rﬁwn+)+2b(wm—rﬁwn—)]fmnp_92(¢mD5¢n+sz;nDﬁXyzl)fmnp7
0=05¢0m = 35Xin = OsVm— = Oy = 8E)IJ,uZ/,om = 059.

Here the covariant derivative is defined as

Dopp = 0atp + (Aa)m®nf™"p. (3.39)

It can be seen that the original equations of motion of H-fields are converted into two sets of
equations: (1) the equations of motion of Yang-Mills fields in 5D; (2) the Bianchi identity
for the field strength Fj., in 5D.

And the supersymmetry transformations (3.22) become

Opm = —i€1Vmy,
0X! =g Ty,
0 = DTy Do X}, + gTsT e X [,
§thms = D% Dot + zlgFaBF56+F%B + bgs I €4 X0, X7 f" 0,
SAT = ige, T, Tsip™.
(3.40)
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These are the N’ = 1 supersymmetry transformations associated with the 5D SYM theory.
As observed by LP [1], the coupling constant of the SYM theory is related to the constant
g as follows

g = 912/M' (3-41)

Notice that the continuous parameter b still survives in the N’ =1 SYM theory.
The N/ = 1 SYM theory can be the dual gauge theory of multi D4-branes. It would
be interesting to study their large N limit and to construct their gravity duals.

Recall that in the special case of b = %, the supersymmetry of the 6D (1,0) theory is
promoted to (2,0), and theory becomes the (2,0) theory (see section 3.3). Substituting the
vev (3.35) into the equations (3.30) and the supersymmetry transformations (3.34) of the
(2,0) theory, one can obtain the maximally supersymmetric (N = 2) Yang-Mills theory in
5D. For details, see ref. [1].

We end this section by commenting on the other possibilities: (C*) is a light-like vector
or a time-like vector. In ref. [1], it was argued that if one uses the null reduction

(C*) =g¢(1,0,...,0,1), (C"){C,) =0, (3.42)

i.e. (C*") is a light-like vector, the (2,0) theory can be used to describe a system consisting
of both M2 and M5-branes. Since the (2,0) theory is a special case of our (1,0) theory,
we expect that the (1,0) theory can be also a gauge description of some system containing
M2 and M5-branes by choosing the null reduction. On the other hand, like its (2,0) coun-
terpart [27], this (1,0) theory may be also a light-cone description of multiple M5-branes.
However, we leave the work of exploring this particular 6D (1,0) theory to the future.

Finally, if we choose (C*) as the time-like vector
(C*y = g¢(1,0,...,0), (3.43)
all fields are static:
0 = Do = Do X}, = Dothmm— = Dot = DoH pm = Aog, (3.44)

and the theory may be used to describe static 5-branes in 11D [1]. It would be nice to
investigate this theory further.
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A Conventions and useful identities

Following the idea of ref. [1], we will also work with 32-component Majorana fermions.
However, in our case, these are SO(9, 1) Majorana fermions. The gamma matrices are real.
Under the decomposition SO(9,1) — SO(5,1) x SO(4), one can define the chirality matrix
TCo12345 of SO(5,1) and the chirality matrix T'g7sg of SO(4). The fermionic fields v are
anti-chiral with respect to I'gi2345, i.e.

Lo12345¢ = =1, (A1)

while the parameters of supersymmetry transformations e are chiral,

[o12345€ = €. (A.2)
We also define
Wy = %(1 4+ Tero)t and s — éu + Tgrso)e. (A.3)
Under these definitions, we have
Pergotp+ = £+ and Tersger = tex. (A.4)

The product of two spinors is defined as

Ym =¢TCn =4 Ton, (A.5)

where 1 and ¢ have opposite chiralities with respect to I'g12345. We have chosen I'g = —Fg
as the charge conjugation matrix C. It obeys the equations

crct = T and COT'CT! = T, (A.6)

where p=0,...,5and ¢ =6,...,9.
To work out the Fierz identities, it is convenient to introduce the eleventh gamma

matrix
Pio=Tol'1...T'g = L2345 6789. (A7)
Now the gamma matrices satisfy the Clifford algebra in eleven spacetime dimensions
{T, Tn} = 20, (A.8)
where m = 0,1,...,10, and n,,, =diag(—,+,...,+). The Fierz identity in 11D reads [1]
> 1

€162 = —275 Z —(—1)%(pil)p(ggl—‘mlmmpél)rml"'mp. (Ag)

p=0p!

The antisymmetric part of the above equation is

1 1
€1€x — €9€] = _76 Z H(_1)%(p_l)p(€2]_—‘ml.”mpel)l—‘ml"'mp‘ (AlO)
p=1,2,5""
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Using egs. (A.1), (A.2), (A.4), and (A.7), one can reduce equation (A.10) to

1 1 g g
(Ex4 Y4 )er+ — (Erathy oy = _Z(€2+FM€1+)FH’¢+_@(E2+FMV)\FZEEI+)FHV/\F?¢+, (A.11)

where p,v,A=0,...,5and i, =6,...,9, and I'” are defined by the equations
rii — Lopis o L gk 6789 _ A12
+ = 5( 5° ) (e =1), (A.12)

satisfying '/ = 5k R We see that I} are the two sets of SU(2) matrices® of SO(4) =
SU(2)r x SU(2)g. In deriving equation (A.11), we have used the equation I'Y x4 =

e

This equation can be proved as follows: multiplying both sides of the identity I'V =
—%Eijklfklfmgg by x4, and using Dgrgox+ = X+, one obtains 'y, = —%5”lele+.
Using (A.12), one can see immediately that I'/x, = 0. Similarly, one can prove that
' y_ =0.

Similarly, using (A.9), we are able to derive the identity

1

Y1-thoy = 32 [(&ufuri%—)f‘“Fi(I +T10)(1 + To12345)

_é(qzﬂl“wpri%f)ruuprz‘@ + Flo)] (A.13)

and the identity

Yrathy = 3% [(%—FJWH)F“W(l —T'10)(1 + To12345)

1 - . :
5 2Ty P )T 1~ T (A.14)
Also, with the definition of (A.7), we find that
Pioer = £ex,  Tioths = Fos. (A.15)

Finally, we find that the following identity

(_1)%(1071)17

ey = WEM...ueru”+l"'“6r012345 (A.16)

012345 _

useful, where & —co12345 = 1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

2The =+ signs carried by T'/ are different from those carried by e+ (see egs. (A.3) and (A.12)). We hope
this will not cause any confusion.
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