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S. A. AMITSURC)

Abstract. A finitely generated central extension A[ux,..., uk] of a commutative

noetherian ring A, satisfies the ascending chain condition for ideals P for which

A[u1}.. ., uk]/P can be embedded in matrix rings Mn(K) over arbitrary commutative

rings K and n bounded. The method of proof leads to an example of a ring R which

satisfies the same identities of M„(K) but nevertheless cannot be embedded in any

matrix ring over a commutative ring of arbitrary finite order.

1. Introduction. Let A be a commutative integral domain (with a unit), we shall

use the following notations and constructions: >4[x] = y4[xi, x2,..., xk] be the free

ring generated by a set {x¡} of noncommutative indeterminates which commute

with the elements of A.

Denote by Jtn the ideal of all polynomials p[x] e A[x] such thatp[xx,..., xk]=0

for all substitutions x¡=£i of nxn matrices in an arbitrary commutative ring £

containing A.

Let {|A(1} i=l.k, A, /*=1,2,..., n be n2k commutative indeterminates over

A. Let A[¿¡] denote the ring of all commutative polynomials in the &« over A.

Consider the k generic matrices A'i = (fAB) in the ring MniA[¿¡]) of all nxn

matrices with entries in A[(j].

The subring of Mn(/1[£]) generated by A and the generic matrices X¡ will be

denoted by A[X] = A[XX,..., Xk]. The injection A[X] -* Mn(y4[|]) will be denoted

by i but often will be omitted as A[X] will be considered as a subring of MniA[£]).

If Q is any subset of A [X] we shall denote by {ß} the ideal generated in Mn(/1[£])

by the set Q.

Procesi has shown in [2, Theorem 2.5] that the ring A[X] for A noetherian, as

well as any finitely generated extension of A which satisfies an identity—satisfies

the ascending chain condition on semiprime ideals. This is an extension of one

form of the famous Hubert's basis theorem for the noncommutative case. In the

first part of the present paper we follow Procesi's proof to show that the free ring
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134 S. A. AMITSUR [May

A[xx, x2,..., xk] will satisfy the ascending chain condition for sequences of ideals

Pq^Px^: ■ ■ ■ ̂Pn= - - - such that the rings A[x]IP¡ can be embedded in matrix

rings Mn¡(K¡) for commutative rings Kx and where the set of integers nt is bounded.

This probably cannot be extended much more. In fact we prove that even the ring

A[X] of generic matrices does not satisfy the ascending chain condition on two-

sided ideals. The method of proof of this result yields an example of a homomorphic

image of a subring of the matrix ring Mn(K) over a commutative ring K (n ä 3)

which satisfies exactly the identities of Mn(A) (as well as of Mn(K)) and yet cannot

be embedded in any finite matrix ring over any commutative ring.

2. The ascending chain condition. If P is an ideal in the ring of generic matrices

A[X], we are interested in the problem of embedding the quotient ring A[X]jP

in a matrix ring Mn(K), for some commutative K. We shall restrict ourselves only to

embeddings as /1-algebras, namely K will be assumed (sometimes proved) to be

an /f-algebra and without any loss of generalization K can be assumed to have a

unit and, therefore, we have a canonical homomorphism t0: A^-K given by

r0(a) = a-1 for every ae A.

Our fundamental lemma:

Lemma 1. The ring A[X]/P can be embedded (as an A-algebra) in some matrix

Mn(K) over a commutative A-algebra K—if and only ifiP satisfies:

(*) {P}nA[X]=P.

Assume that there exist a monomorphism j: A[X]¡P -> Mn(K) for some com-

mutative ring K, and as it was pointed out before we have a homomorphism

t0: A -> K given by TQ(a) = a-1. Consider the following commutative diagram

A[X]—l-^Mn(A[èJ)

A[X]IP -+-* Mn(K)

where i is the inclusion A[X]çMn(A[^\), and -¡r is canonical projection of A[X]

onto A[X]/P. The homomorphism t is the extension of t0: A —> K determined as

follows : ifj(XA = (rAw) = Tx is a matrix in Mn(K) extend t0 to a mapping tx : A [f ] -> K

by setting r1(fAw) = /Aw, and then extend tx to a homomorphism t: Mn(A[$])^-

Mn(K) by setting t(/?A(I) = (t1(Ph11)). Clearly tx and t are well defined and satisfy

the commutativity condition jn = tí.

Now, clearly {P) n A[X]^P. To prove the inclusion in the other direction, we

note that since jn(P) = 0, it follows by the commutativity that ri(P) = 0. This means

that i(P) = P is in the kernel of t, hence also the whole ideal {P} in Mn(A[£])

generated by P belongs to Ker r. Thus, if Te{P}nA[X] then t(T) = 0. Since

i(T) = T for TeA[X] we have 0=ri(T)=jir(T) and since y is assumed to be a

monomorphism, it follows that 7r(r) = 0 i.e. Te Ker -n=P.    Q.E.D.
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1970] A NONCOMMUTATIVE HILBERT BASIS THEOREM 135

Conversely, let £ satisfy the relation (*). The ideal {£} = MniL) for some ideal £

in A[£]. This is the form of every ideal in MniA[í¡]) since A contains a unit element.

Thus, the injection i: A[X] -*■ MniA[£]) maps £ into {£}; hence / induces a homo-

morphism ip: A\X]jP-> Mn(/l [£])/{£}. It follows by (*) that iv is actually a mono-

morphism since a class q+P in A[X]jP belongs to Ker ip if and only if qe{P}

which is equivalent to q e{P} n A[X]=P by (*). Finally

M MUMP) = MniA[ñ)IMniL) £ Mn(£)

where £= /I [£]/£ is a commutative v4-algebra and thus from iv we obtain a mono-

morphism ^[A']^ -»■ Mn(£) which is an ^-algebra monomorphism. This completes

the proof of our lemma.

Remark. (1) The method of proof is due to Procesi [2, Theorem 2.5] who has

shown that (*) holds for semiprime ideal £ and field F=A, since then F[X]jP

can be embedded in a matrix ring over a commutative ring.

(2) Note also that the order n of the matrix ring Mn(£) is the same as that of the

generic matrices.

(3) If ^ofA'] is the subring of A[X] generated by all polynomials in the generic

matrices with free coefficient zero, then the preceding lemma and its proof remain

valid also for ideals £0 in /40[A'], as long as embeddings of A0[X]jP0 as ^-algebras

are considered.

(4) If A = Z the ring of integers, then every embedding of Z0[X]/P0 as well as

Z[X]jP is a Z-homomorphism.

The preceding lemma enables us to prove the following generalization of the

Hubert (basis) ascending chain condition theorem.

Theorem 1. Let A be a noetherian commutative domain, and A[u] = A[ux,u2,..., ur]

a finitely generated extension of A (i.e. ap[u] =p[u]a for every ae A, p[u] e A[u]),

then A[u] satisfies the following chain condition:

(**) Any nondecreasing sequence of ideals £0Ç£i£ • • • ç£kÇ ■ ■ ■ such that the

rings /4[w]/£¡ can be embedded as A-algebras in a matrix ring MniiK) with K{ com-

mutative and {n) bounded—contains only a finite set of different ideals Pj.

Proof. Let 77 be the greatest common multiple of all 77¡. Consider the ring

A[Xx,...,Xr] of the generic 77x77 matrices over A, and the homomorphism

r¡: A[X] ->A[u]jP0 given by r¡iXi) = ui. This is a well-defined homomorphism,

since /l[w]/£0^Mno(£0) and n0^n—hence every relation p[X]=0 in A[X] will

yield p[u] = OiP0). Let £i = 7/_1(£l), then £ are ideals in A[X] and r¡ induces iso-

morphisms A[X]IPi^iA[u]jP0)liPiIP0)^A[u]IPi. Now A[u]IPt can be embedded,

by assumption, as an ^4-algebra in Mn((£j) and since 77 is a multiple of the 77¡ we

clearly may assume 77j = 77. Thus A[X]IP¡ has the same property and, therefore, it

follows by the preceding lemma that (*) holds, namely {£} n A[X]=P(.

From this point we follow Procesi's proof of [2, Theorem 2.5].

Each of the ideals {£} generated by £¡ in MniA [£]) is of the form Mn(£¡) where
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136 S. A. AMITSUR [May

L¡ is an ideal in A[é]. The sequence (**) implies thatP¡cPi+1 and therefore, we also

have {Pi}'^{Pi + x} which yield a nondecreasing sequence {L,} of ideals in A[£\.

The latter is a finitely generated polynomial ring over a noetherian domain and

hence satisfies the ascending chain condition, which in our case implies that for

some m and ally'^O, Lm=Lm+j. Hence {Pm} = {Pm+j}, which yield by (*) that:

Pm = A[X] n {Pm) = A[X]n {Pm+,} = Pm+, Q.E.D.

The preceding proof requires that A[ux,..., un] contain a unit element and so

does A—this was assumed when 77 was defined, but actually this is not necessary.

One overcomes this difficulty by either considering the ring /i0[A'] of all poly-

nomials in the generic matrices with zero free coefficient, or by adding a unit to

A[ux, ■ ■., un] and noting that this will not essentially change the assumption on the

sequence {Px} of (**).

Remark. The preceding theorem is an extension of one form of the Hubert

basis theorem; namely, the fact that the ascending chain condition hold for certain

two-sided ideals, which for the commutative case are all ideals (though our method

does not yield a new proof for this case). The last theorem raises some interesting

questions:

It is well known that without the assumption that each A[u]¡Px can be embedded

in Mni(K)—the theorem is false. A simple counterexample is the free ring. Never-

theless one would expect that this would be true for the ring A[X] of finite generic

matrices. We shall prove that even this is false for matrices of order n ^ 2. Thus,

the Hubert basis theorem for rings with polynomial identity is false even for rings

which satisfy all identities of matrix rings. This already implies that it is even not

sufficient to require that in (**) only A[X]jP0 can be embedded in Mn(K). We shall

give an example to this effect.

Another question to which we have no answer is the validity of the other form

of the Hubert basis theorem. Namely, does each of ideals Pt of (**) have a finite

basis? This is true for maximal ideals as shown by Procesi [2].

3. Subrings of Mn(K). In the following we shall use in A[X] only two generic

matrices and we prefer to denote them by X=(Çik) and Y=(r)ik) i, k= 1, 2,..., n

and A [f, r¡] will denote the ring of all commutative polynomials in the 2n indetermi-

nates Çik, r¡tk. Let Sk[xx,..., xfc] = 2 ±xhxi2- ■ x(k denote the standard polynomial

in k noncommutative indeterminates {x¡}. Recall that the sum ranges over all

permutation of k letters with sign plus for even permutations and minus for odd

permutations.

Consider the polynomials p,[X, Y] = Sn[Yn~1+iX, Yn~2X, Yn~3X,..., YX, X]

fory'^0. Let P0 he the ideal in A[X, Y] generated by p0[X, Y] and similarly Pk

the ideal generated in A[X, Y] by Po[X, Y],px[XY],.. .,pk[XY].

Our main result is the following

Theorem 2. (a) The quotient ring A [X Y]¡P0 cannot be embedded (as an A-algebra)

in any Mn(K), K a commutative A-algebra.
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1970] A NONCOMMUTATIVE HILBERT BASIS THEOREM 137

(b) Similarly the ideals A[X, Y]/Pk cannot be embedded in any Mn+fc(£) with the

same restrictions as in (a).

(c) The sequence £0c£1cp2c:... c/>fcc ... ¡s a strictly increasing sequence of

ideals in A[X, Y].

Before proceeding with the proof of the theorem we compute the polynomials

pk[Y, X] for diagonal matrices:

Proposition. // Y0 is the diagonal matrix with yx, y2,.. .,yn in the diagonal

then: pk[Y0, X]=P[X]- Vkiyx,. ■ -,yn) where £[^1/0 is a matrix depending on X

only, and

Vk(yx,...,yn) =

ltn-l + fc i,n-2
yi yi

,,n - 1 + k ,,n -2
yi yi

y\

y\

vn- 1 +k      vn - 2
yn yn A

is a scalar depending on Y0. In particular, V0iyx- ■ •yn) = l~[i<j (yt-y) and

Vk(yx, •.., JV)= V0(yx, • --,yn)-sk(yx, ...,yn) where sk is a symmetric polynomial

in the y¡'s.

Proof. The entry in the (A, p.) place of the matrix

pk[X, T0] = Sn[Y»0-1 + kX, YS~2X..., To]

is the element:

"** = Z 2 "wJrxXMxJfoUi**- ■ yh~-\x*«-2*«-y¿-iX*»-ii"
(i)   (A)

where the first sum ranges over all permutations iix,..., /„) of («—1+k, n—2,...,

1, 0) with the appropriate sign <r(1)= + l and the sum ranges over all Ay=l, 2,..., n

for all7=1, 2,..., n— 1. Reversing the order of summation we have

ta« = 2 ^(A>x» • • •» A»-i> /*) 2 amyily£- • -yt.x-
(A) (¡)

The term with the y's is by definition of determinants Vkiy^, yhl,..., yÁn _j) where

Vk was defined in our proposition for yx,..., yn. Clearly, VkiyK, yKl,..., yKn _ j)=0

if any two of the /s are equal, and otherwise

Vk(y\, yx,, ■ • •» y*n-i) = a(A)- vk(yi, y2,---, yn)

where o(h) = + 1 is the sign of the permutation

/i   2    •••   «    y

\A   Ai    ...    XnJ

Thus we have

wat. = Vkiyi, ■ ■ -, Jn)"2* aaoX\\iXxi\a- ' -Xa»-,« = ^^ahW
(A.)
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where 2* ranges over all permutation (X Xx- ■ ■Xn_1) of (I 2- • -n) with A fixed and

Aj=l, 2,..., n, and o-(A|) = ± 1 the sign of the permutation. This proves the first

part of our proposition with P = (Ph¡l).

To prove that P[X]=£0, we substitute for Y the matrix

C =

0     1     0

0        01

c„     • ■ •    Cx

One readily observes that in a monomial of the form Zj C Z2C ■ ■ ■ Z, C where

the Z¡ are diagonal matrices, the first n—j+l rows are the same as that of C1

but each entry multiplies by a monomial in the coefficient of the Z¡. In particular,

since we know that pk[Y0, C]= Vk(y)P[C] it follows that the first row of P[C] is

the same as that of Cn, namely (<"„<?„_ i- • Ci) which is not zero. The second part

is well known, but for the sake of completeness we indicate a proof that: Vk= V0sk

with sk symmetric. Indeed, the yx satisfy the equation yn — c1yn~1+ ■ ■ ■ +(—l)"cn

= F] (y—yA with the c, the elementary symmetric polynomials. This readily implies

that each y=y¡ satisfy a relation yn~1 + k = skyn~2+ ■ ■ ■ where the other terms are

of the form axy\ 0^/<n —2 and ax symmetric. Substituting this presentation of

each y?~1 + k in Vk yields our result.

A more general computation of this type will be used elsewhere to obtain a

relation between symmetric functions and identities of matrices.

Remark. The computations involved in our proof can be readily used to prove

the following:

Let Y¡ = 2k yikckk be diagonal matrices then

SA\YxX, Y2X, ...,YnX]= P[X] det \yxk\.

We are now in positition to give the:

Proof of Theorem 2. In view of Lemma 1 it suffices to show that {P0} n A [X, Y]

î=P0 in the ring of nxn generic matrices. Indeed, we shall show that^J Y, X] e {P0}

n A[X, Y] but $P0- To prove the first assertion, we note that Y satisfies its

characteristic polynomial Yn — tlYn~1+ ■ ■ ■ =0. Hence

Pl[x, Y] = sn[Y*x, y-2x,...] = 2 (-îy-wr-'ir, y«~2x,...,x]
i = l

= txSn[Y-1X,...] = t1Po[X, Y]

since the other terms have two equal entries in Sn[- ] and hence they are zero. Now,

retrace Y=ZyH, so that px[Y, X]e{P0} n A[X, Y].

Next/?! $ P0. If this were not the case then/>! = ]> axp0bA where aA, bA e A[X, Y].

This will yield a relation

q\X, Y]=px[X, Y]-2a,[X, Y]p0[XY]bÁ[X, Y] = 0
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1970] A NONCOMMUTATIVE HILBERT BASIS THEOREM 139

which vanish for the generic matrices and hence vanish in all Mn(£) for commutative

K^A. Hence, each homogeneous part of q[X, Y] (in Y or X, or both) vanishes

identically. px,p0 are of degree 77 in X, and their degree in Y differ in 1 so by taking

the homogeneous part of the polynomial q we get a relation

(R) px[X, Y]-aYp0[X, Y]-bpx[X, Y]Y = 0   for some a, b e A.

But no identity (R) can hold in M„(£) for any £2/1. Indeed, substitute for Y

the diagonal matrix T0 then we obtain from (R) by our proposition that

P[X]sxV0iy)-aYP[X]V0iy)-bP[X]YV0iy)=0. The first row of P[X] contains

nonzero elements, hence by computing the element in the (1/) place of our last

relation, we readily obtain that sx — ayx — by¡=0, where sx is symmetric yx, ■ ■ -,yn

and the relation holds for allj which is clearly impossible (since ii^O). This com-

pletes the proof of (a).

The proof of (b) follows similar lines but needs some important modifications:

Let A[X, Y] be the ring of generic matrices of order n + k over A, and A[x, y]

the free polynomial ring in noncommutative indeterminate x, y commuting with

the element of A. Let p: A[x, y] -> A[X, Y] and p: A[x, y] -*■ A[X, Y] given by

p(x) = X, piy) = Y and similarly p(x) = X, piy) = Y. Since every relation of fix, y) = 0

which holds for generic matrices of order n + k will hold also for generic matrices

of order 77, it follows that Ker pÇ Ker p. Hence there exist a homomorphism over

A, o: A[X, Y]-+A[X, Y] such that oiX) = X and oi?)= Y. If Pk is the ideal

generated by p0iX, Y),. ..,pkiX, Y) in A[X, Y] then we denote by £fc = a"1(£fc)

and a induces an isomorphism A[X, Y]jPk^A[X, Y]jPk. Note that Pk is generated

by Po(X, Y),..., pkiX, Y) and Ker o which is the set of all fiX, Y) which vanish

for 77 x77 matrices. Finally, we prove that A[X, Y]jPk cannot be embedded in any

Mn+fc(£) by utilizing Lemma 1 ; namely, it will be shown that{£te} n A[X, Y]^Pk.

This is achieved by proving that pk+xiX, Y)e{Pk} n A[X, Y] and $Pk.

Indeed, Ye Mn+kiA[£, 17]) hence Y satisfy a polynomial relation Yn + k =

2"=í tiYn + k~i, furthermore the coefficients ti are polynomials in the entries of Y,

i.e. ti e A[£, ■»]. Hence

Pk+xiX, Y) = Sn[Yn+kX, Y"-2X, ...,X]=2 ttSn[Y»+k-% Y"-2X, ...,X]
i = i

=  2 'AM =  2 'A-,+ Ä Y)e{Pk}nA[X, Y).
f = i ( = 1

Next if pk+x(X, Y) ePk, then we have a relation

P*+i(X, Y) + IaMiX, Y)plX, Y)bMiX, Y)+giX, Y) = 0

where giX, Y) e Ker o and i=0,1,..., k. Hence if we apply o on (Rk) we get

qiX, Y) = Pk+xiX, T) + 2 aMiX, Y)PiiX Y)bMiX, Y) = 0.
A, i

Again by the argument on the homogeneous part of qiX, Y), as in the proof of
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part (a), it follows that aM = <pKi(Y), bM = tfiM(Y) are polynomials in Y only and

degy aÁi + degy bM = k- i since degy pk+1- degy px = k- i.

Substituting the diagonal matrix Y0 for Y, and applying Lemma 1 we have

P[X]-Vk+1(y) + 2<Pu(Y)P[X]<pM(Y)Vly) = 0.

Again computing the elements in the (Ij) place of this matrix and noting that the

entries of P[X] are nonzero we obtain a relation:

vk+x(y)+2<p»(yA>J'Mviy) = o

for 7= 1, 2,..., n and the sum ranges for some A, but / ranges over 0,l,...,k and

also deg <pAi + deg ifiM = k — i for all possible A. This leads in view of our proposition

that:
te

(Ríe) sk+1(yx,...,yn)+2 2 nlydfolydslyi■ ■ -yn) = o
A     i = 0

and our contradiction will be obtained by showing that no relation of the type

(Rk) can exist between the sx. To this end we shall show first that for each i,

slyi, ■ ■ -,yn) is homogeneous of degree n + i and has the term y1 + i as well as

y2+i among its monomials: It follows readily from the determinant form of

PiOv ' -yn) of our proposition that it is homogeneous, hence, since Vx= V0sx it

follows that sx(y) is homogeneous. The polynomial Vx(y) has a nonvanishing term

yï + i~1y2~2y3~1- ■ -yn-i and V0(y) has the term yl~1y2~2- ■ -y°- From a lexico-

graphically ordering argumentation it follows clearly since s¡ is of degree / (and

symmetric) that the relation Vx= V0sx implies that sly)=y{+y2 +

Next consider the polynomial in a new indeterminate z given by (Rk):

k

u(z) = ifc+1(jv -yn)+2 2 <PM(yi)slyi, ■ ■ .J.M)
A     1 = 0

then u(z) vanishes for all yt. By a straightforward division of u(z) by z—ylt z—y2,

..., z—yn it follows readily that u(z) is divisible in A\yx, ■ ■., yn] [Z] by the poly-

nomial n"=i (z-yù=S(z)- But no relation of the type u(z)=g(z)h(z) where the

coefficient of h(z) are polynomials in y exists. For, set z = 0 and obtain a relation

sk+i(ji, ■ ■ -,y«)+2^yMyi" •jO'/'AfiO) = m(yx-- -yn)yxy2- ■ -yn

where m is a polynomial in yt. From the fact that <pAi and >pM are homogeneous

and deg <pAj + deg </>Ai = k +1 — / it follows that i/rAi(0) = 0 unless degcpM = k+l—i

so our last relation can be put in the form

te

sie+i(yi,...,yn)+ 2 «»^{e+1"'ii(j'i,•••»a) = m(yi---yn)yi---yn-
i = l

The coefficient of y^ + 1 on the right side is by our previous remark equal to 1,

coming only from sk+1(yx- • -yn) since the other will have jï+1_i and k+l-i>0.
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But, this is impossible since the right side is a multiple of yxy2- • -yn. This completes

our contradiction, so that pk+1iX, Y) $ Pk and the validity of (b) is obtained.

In fact the preceding proof yields also (c). For, pk+x$ Pk but pk+x is one of the

generators of £te+i—thus Pk¥^Pk+x and clearly PkclPk+x.

4. Remarks and examples. The quotient rings A [X, Y]jPk yields also interesting

examples of rings.

Theorem 3. For n^3, there exists rings which are homomorphic images of sub-

rings of nxn matrices over commutative rings, and satisfies exactly the identities

of MniZ) (Z—the rings of integers) but nevertheless cannot be embedded in any

MTiK)fior any finite r and any commutative ring K.

Proof. Consider the ring Z[X, Y]jPk = 3$k the 0tk is a homomorphic image of

Z[X, Y] which is a subring of Mn(Z[£ifc, r¡ik\). Thus Mk satisfies all identities of

MniZ), and to show that these are exactly the identities of ¿%k we prove for the

case 77 ̂ 3 the existence of a homomorphic image which is almost the complete

MniZ), and in any case satisfies only the identities of MniZ).

Consider the homomorphism of t: Z[X, Y] -> MniZ) given by

\0 vj

where v( are different elements of Z and

\1    1    •••    1

Then U2-nU=0, hence pffJ, V) = Sn[Un + t-1V, Un~2V,..., UV, V] = 0. Since

U' = a¡U for i_2 and so if 77 —2ä 1 (i.e. « =:3), two of the entries in Sn[- • •] are

linearly dependent and so Sn[- ■ ] = 0. The image of t which is the ring Z[U, V]

will contain all elements of the form maßCaß for some 0^=mae e Z and where CaS

is the matrix with 1 in ath row and /9-column. Indeed, consider the polynomial

fi = IataXt = Ui*AX-vi) then fiiV) = maCaa, ma^0 and hence fiiV)UfißiV) =

mamßCaß as required.

Thus riZ[U, V]) ®jt Q = MniQ) where Q is the field of all rationals, and thus

riZ[U, V]) satisfies exactly the same identities as that of Mn(ß) which are the

same as those of MniZ).   Q.E.D.

It follows by Theorem 2 that Z[X, Y]jPk cannot be embedded in any Mn+ic(£)

since for A = Z any embedding is a Z-algebra embedding.

Finally, the direct sum 2 iZ[X, Y\jPk) = 3/t is clearly a ring satisfying Theorem 3.

The preceding results lead to the interesting question of finding necessary and

= U.
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sufficient conditions for a ring R to be embeddable in a matrix ring Mn(K) over a

commutative ring K. It follows from our result that the validity of the identities

of a matrix ring by R is only a necessary condition but not sufficient. The following

theorem gives another necessary condition for finitely generated rings, and the

problem we propose : are those two conditions together necessary and sufficient.

Theorem 4. Let R = F[wx,..., wr] a finitely generated F-algebra where F is a

field, which can be embedded in some Mn(K) as an F-algebra, then the Jacobson

radical J(R) of R is nilpotent.

Proof. As in the proof of Lemma 1, we have an isomorphism F[Xlt..., X2]/P

= F[ux,..., uT] for some ideal P is the ring of n x n generic matrices F[X], and P

satisfies condition (*) of Lemma 1. As in the proof of that lemma we have an

embedding of F[X]¡P into Mn(F[t;]¡L) where L is the ideal in F[f] generated by

all entries of the matrices of {P}. Let J\L be the Jacobson radical of F[ij]¡L.

If U is a nil subring of Mn(F[£]¡L) then U is nil mod Mn(F[fl¡J). Now F[i]¡J

is a subdirect sum of field and the nil subrings of matrices over fields are nilpotent

of index n, hence Un^Mn(JjL). Now J is nilpotent modulo L, as the Jacobson

radical in a finitely generated commutative algebra. Thus Unm = 0 for some m.

The final step of the proof is the observation that the Jacobson radical J(R) for

finitely generated algebras which satisfy an identity is nil [1]. Hence J(R)nm = 0.

Q.E.D.
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