A NONCOMPLETELY CONTINUOUS OPERATOR ON $L_1(G)$ WHOSE RANDOM FOURIER TRANSFORM IS IN $c_0(\hat{G})$

N. GHOUSSOUB AND M. TALAGRAND

ABSTRACT. Let T be a bounded linear operator from $L_1(G, \lambda)$ into $L_1(\Omega, \mathcal{F}, P)$, where (G, λ) is a compact abelian metric group with its Haar measure, and (Ω, \mathcal{F}, P) is a probability space. Let (μ_{ω}) be the random measure on G associated to T; that is, $Tf(\omega) = \int_G f(t) d\mu_{\omega}(t)$ for each f in $L_1(G)$.

We show that, unlike the ideals of representable and Kalton operators, there is no subideal B of $\mathcal{M}(G)$ such that T is completely continuous if and only if $\mu_{\omega} \in B$ for almost ω in Ω . We actually exhibit a noncompletely continuous operator T such that $\hat{\mu}_{\omega} \in l_{2+\varepsilon}(\hat{G})$ for each $\varepsilon > 0$.

I. Random measures associated to operators on L_1 **.** Let K be a separable compact Hausdorff space, λ a Radon probability on K and (Ω, \mathcal{F}, P) a probability space. Denote by $\mathcal{M}(K)$ the space of all Radon measures on K. We will call random measure on K every measurable map $\omega \to \mu_{\omega}$ from (Ω, \mathcal{F}, P) into $\mathcal{M}(K)$ when $\mathcal{M}(K)$ is equipped with the σ -field generated by the $\sigma(\mathcal{M}(K), C(K))$ topology.

The starting point of this paper is the following disintegration theorem established by Kalton [3] and Fakhoury [2].

(a) If T is a bounded linear operator from $L_1(K, \lambda)$ into $L_1(\Omega, \mathcal{F}, P)$, then there exists an essentially unique random measure (μ_{ω}) verifying the following properties:

(i) Each f in $L_1(K, \lambda)$ belongs to $L_1(K, |\mu_{\omega}|)$ for P almost all ω .

(ii) $Tf(\omega) = \int_K f(t) d\mu_{\omega}(t)$ for P almost all ω .

(iii) $\int |\mu_{\omega}| dP(\omega) \leq M \cdot \lambda$, where M = ||T||.

(b) Conversely, every random measure (μ_{ω}) verifying (i) and (iii) defines uniquely an operator T from $L_1(K, \lambda)$ into $L_1(\Omega, \mathcal{F}, P)$ verifying (ii).

One can easily see that the lattice properties of the operators are compatible with the lattice properties of the random measures associated to them; that is, if $T = T^+ - T^-$ is the canonical decomposition of T into its positive and negative parts, then T^+ and T^- are given by the random measures (μ_{ω}^+) and (μ_{ω}^-) associated to (μ_{ω}) by the Hahn-decomposition.

This representation allows us to associate to each order ideal B in $\mathcal{M}(G)$ an order ideal of operators $\mathcal{L}_B(L_1(K), L_1(\Omega))$ in $\mathcal{L}(L_1, L_1)$ via the formula

$$T \in \mathcal{L}_B ext{ iff } \mu_\omega \in B ext{ for almost all } \omega.$$

In this paper, we investigate whether a reasonable order ideal of operators Vin $\mathcal{L}(L_1, L_1)$ can be characterized in terms of its associated random measures belonging in a suitable order ideal in $\mathcal{M}(K)$. A positive answer was given by Fakhoury [2] in the case of the space of *representable operators* (i.e. the operators T such that there exists a Bochner integrable function $\varphi: K \to L_1(\Omega)$

Received by the editors March 15, 1983 and, in revised form, October 12, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47G05; Secondary 47B10.

with $Tf = \int_K f \cdot \varphi(t) d\lambda(t)$ for all f in $L_1(K)$. Fakhoury shows that T is representable if and only if μ_{ω} is absolutely continuous with respect to λ for almost all $\omega \cdot (\mu_{\omega} \in \mathcal{M}_{ac}(K))$. Moreover, Kalton [3] proved that an operator T in $\mathcal{L}(L_1(K), L_1(\Omega))$ does not preserve a nontrivial projection band of $L_1(K)$ (T is a non-Kalton operator) if and only if for almost all ω, μ_{ω} is a continuous measure on K ($\mu_{\omega} \in \mathcal{M}_c(K)$).

Several subideals of $\mathcal{M}(K)$ can be defined if one assumes that K is a compact abelian group G. For instance, let $\mathcal{M}_{sc}(G)$ be the space of strongly continuous measures on G: these are the bounded regular Borel measures μ on G such that $|\mu|(g + H) = 0$ for all g in G, and all closed subgroups H of G such that G/H is infinite. Let $\mathcal{M}_0(G)$ be the ideal of measures whose Fourier transforms go to zero at infinity. Following Rosenthal [4], we also define $\mathcal{M}_{\Lambda}(G)$, the space of Λ -measures: these are the measures μ such that for each $\delta > 0$, there exists p > 2 such that $H = \{\gamma; \gamma \in \hat{G}, |\hat{\mu}(\gamma)| > \delta\}$ is a Λ_p set (i.e. the L_p and the L_1 norms are equivalent on the linear span of the characters in H). Note that

$$\mathcal{M}_{\mathrm{ac}}(G) \subseteq \mathcal{M}_{0}(G) \subseteq \mathcal{M}_{\Lambda}(G) \subseteq \mathcal{M}_{\mathrm{sc}}(G) \subseteq \mathcal{M}_{\mathrm{c}}(G).$$

One can define the corresponding order ideals of operators on $L_1(G)$ via the above representation.

Recall that an operator $T: L_1(G) \to L_1(\Omega)$ is said to be a *completely continuous* operator or a Dunford-Pettis operator (resp. an Enflo operator) if $T(\text{Ball}(L_{\infty}(G)))$ is norm compact (resp. if there exists a subspace X of $L_1(G)$, isomorphic to L_1 , such that $T \mid_X$ is an isomorphism). It is well known [4] that a convolution operator T_{μ} on $L_1(G)$ is Dunford-Pettis if and only if $\mu \in \mathcal{M}_0(G)$ and T_{μ} is a non-Enflo operator whenever $\mu \in \mathcal{M}_{\Lambda}(G)$. In the following, we shall prove that the random analogues to these properties do not hold, and that unlike the representable and the Kalton operators, there is no ideal in $\mathcal{M}(G)$ which can characterize the Dunford-Pettis and the non-Enflo operators.

We shall need the following fact [1]: If (X_n) is a sequence of mean zero Bernoulli random variables on a probability space (Ω, \mathcal{F}, P) then

(*)
$$P\left[\left|\sum_{i=1}^{m} X_i\right| > \lambda\right] < e^{-2\lambda^2/m} \text{ for each } 0 \le \lambda \le m/2.$$

LEMMA. For each m, there exists a nonnegligible set A_m in $\{-1, 1\}^m$ such that $|\int_{A_m} \chi d\lambda| \leq 2\sqrt{m} \cdot 2^{-m/2}$ for each character χ of $\{0, 1\}^m$ which is not the identity.

PROOF. Let $\{\chi_k; 1 \leq k \leq 2^m\}$ be an enumeration of the characters. For each k, write $\chi_k = \chi_{B_k^1} - \chi_{B_k^2}$, where B_k^2 is the complement of B_k^1 , and let $\{x_j^i; 1 \leq j \leq 2^{m-1}\}$ be an enumeration for the elements of each set B_k^i (i = 1, 2).

Define now, on the probability space of the subsets of $\{0,1\}^m$ (which can be identified with $\{0,1\}^{2m}$), the following Bernoulli random variables:

$$X^i_{x_j}(A) = egin{cases} 0 & ext{if} \; x_j
otin B^i_k \cap A, \ 1 & ext{if} \; x_j \in B^i_k \cap A, \end{cases} \qquad i=1,2.$$

We get from (*) that

$$P\left(A; \left|\sum_{j=1}^{2^{m-1}} X_{x_j}^i(A) - 2^{m-2}\right| > \alpha 2^{(m-1)/2}\right) < e^{-2\alpha^2}, \qquad i = 1, 2,$$

whenever $0 < \alpha \leq 2^{m-3/2}$. In other words if we denote by Ω_k^i the set

$$\{A; |\operatorname{card}(A \cap B_k^i) - 2^{m-2}| \le \alpha 2^{m-1/2}\},\$$

we have

$$P\left(\bigcap_{\substack{k=1\\i=1,2}}^{2^{m}} \Omega_{k}^{i}\right) \geq 1 - \sum_{\substack{k=1\\i=1,2}}^{2m} P([\Omega_{k}^{i}]) \geq 1 - 2^{m+1} \cdot e^{-2\alpha^{2}}$$

If we take $\alpha = \sqrt{m}$, we get that there exists A_m , such that for each $\{B_k^i; i = 1, 2, 1 \le k \le 2^m\}$,

$$(**) \qquad |\operatorname{card}(A_m \cap B_k^i) - 2^{m-2}| \leq \sqrt{m} \cdot 2^{m/2}.$$

Let $\chi_k = \chi_{B^1} - \chi_{B^2}$; we have

$$igg| \int_{A_m} \chi_k \, d\lambda igg| = 2^{-m} \left[\left| \operatorname{card}(A_m \cap B_k^1) - \operatorname{card}(A_m \cap B_k^2) \right|
ight] \ \leq 2 \cdot 2^{-m} \cdot \sqrt{m} \cdot 2^{m/2} = 2\sqrt{m} \cdot 2^{-m/2}.$$

Now we can prove the following

THEOREM. There exists a compact abelian group G and an Enflo operator $T: L_1(G) \to L_1(\{0,1\}^N)$ such that the Fourier transform of the random measure associated to T is in $l^{2+\varepsilon}$ for each $\varepsilon > 0$.

PROOF. For each m, define the random measure $\mu^m: \{0,1\} \to \{-1,1\}^m$ by $\mu_0^m = \lambda_{A_m}/\lambda(A_m)$ and $\mu_1^m = \lambda_{A_m^c}/\lambda(A_m^c)$, where λ_B denotes the restriction of the Haar measure on $\{-1,1\}^m$ on the set B.

Let now G be the group $\prod_m \{-1,1\}^m$ and define the random measure $\mu: \{0,1\}^N \to G$ by $\mu_{(x_1,x_2,\ldots)} = \bigotimes_m \mu_{x(m)}^m$.

Let T be the operator from $L_1(G) \to L_1\{0,1\}^{\mathbb{N}}$, defined by

$$Tf(x_1,x_2,\ldots)=\int_G f(t)\,d\mu_{(x_1,x_2,\ldots)(t)}$$

To prove that T is bounded, it is enough to notice that for each set A in G, we have

$$\int \mu_{(x_1,x_2,\ldots)}(A) \, d\lambda(x_1,x_2,\ldots) = \mu(A),$$

where λ is the Haar measure on $\{0,1\}^{\mathbb{N}}$ and μ is the Haar measure on $G = \prod_m \{-1,1\}^m$. For each finite set $F \subseteq \mathbb{N}$, let $A_F = \{\chi; \chi = \prod_{k \in F} \chi^k \text{ and } \chi^k$ is a character on $\{-1,1\}^k$ which is different from one}. Note that

$$\sum_{\chi \in A_F} |TX|^{2+\varepsilon} \leq 2^{L_F} \cdot \left(\prod_{k \in F} 2\sqrt{k} 2^{-k/2}\right)^{2+\varepsilon} \leq \prod_{k \in F} (4k)^{1+\varepsilon/2} \cdot 2^{-\varepsilon k/2},$$

where $L_F = \sum_{k \in F} k$.

Therefore, for each q,

$$\sum_{\operatorname{card}(F)=q} \sum_{\chi \in A_F} |T\chi|^{2+\varepsilon} \leq \sum_{\operatorname{card}(F)=q} \prod_{k \in F} (4k)^{1+\varepsilon/2} \cdot 2^{-\varepsilon k/2} \\ \leq (q!)^{-1} \left(\sum_k (4k)^{1+\varepsilon/2} \cdot 2^{-\varepsilon k/2} \right)^q.$$

Finally,

$$\sum_{\chi} |T\chi|^{2+arepsilon} \leq \exp\left(\sum_k (4k)^{1+arepsilon/2} \cdot 2^{-arepsilon k/2}
ight) < \infty \quad ext{for each } arepsilon > 0.$$

Hence for each $x = (x_1, x_2, ...)$ in $\{0, 1\}^{\mathbb{N}}$, $\hat{\mu}_x \in l_{2+\varepsilon}(\hat{G})$. Now let $B_m = \{(y_n) \in \Pi \ \{-1, 1\}^n : y_m \in A_m\}$. Note the

Now let
$$B_m = \{(y_n) \in \prod_n \{-1, 1\}^n; y_m \in A_m\}$$
. Note that

$$TX_{B_m}(x) = \mu_{x_m}^m(A_m) = \begin{cases} 1 & \text{if } x_m = 0, \\ 0 & \text{if}_x x_m = 1, \end{cases}$$

from which follows that T is not a Dunford-Pettis operator. Moreover, if \mathcal{F} is the σ -field generated by $\{B_m; m \in \mathbb{N}\}$ and if we let S be the operator T restricted to $L_1[G, \mathcal{F}]$, one can easily see that the random measures $\nu_{(x_1, x_2, \ldots)}$ associated to S are Dirac measures, which implies that S is a Kalton operator and that T is an Enflo operator.

COROLLARY. There is no subset B and $\mathcal{M}(G)$ such that the ideal of Dunford-Pettis operators (or the non-Enflo operators) is equal to $\mathcal{L}_B(L_1(G))$.

PROOF. If there exists such a B for the Dunford-Pettis operators (resp. non-Enflo operators) then by considering convolution operators we must have $\mathcal{M}_0(G) \subseteq B$ (resp. $\mathcal{M}_{\Lambda}(G) \subseteq B$). But the above example shows the existence of an Enflo operator T such that the corresponding random measures belong to $\mathcal{M}_0(G)$ and hence to B, which is a contradiction.

REMARK. There exists a Dunford-Pettis operator on L_1 of a group G such that none of the random measures associated to it belongs to $\mathcal{M}_0(G)$. For that, it is enough to take $G = \prod_n \{-1, 1\}^{\{0,1\}^n}$ and, for each s in $\{0,1\}^n$, let $A_s^n = \{y \in \{-1,1\}^{\{0,1\}^n}; y(s) = 1\}$ and $\nu_s^n = 2\mu_{A_s^n}^n$ (the restriction of the Haar measure μ^n of $\{-1,1\}^{\{0,1\}^n}$ on the set A_s^n). We leave it to the reader to check that the operator $T: L_1(G) \to L_1\{\prod_n \{0,1\}^n\}$ associated to the random measure $\nu: \prod_n \{0,1\}^n \to \mathcal{M}(G)$ defined by $\nu(x_1, x_2, \ldots) = \bigotimes_n \nu_n^{x_n}$ verifies the claimed properties.

REFERENCES

- H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist 23 (1952), 493-509.
- 2. H. Fakhoury, Représentations d'opérateurs à valeurs dans $L^1(X, \Sigma, \mu)$, Math Ann. 240 (1979), 203-213.
- 3. N. Kalton, The endomorphisms of L_p ($0 \le p \le 1$), preprint, 1979.
- 4. H. P. Rosenthal, Convolution by a biased coin, The Altgeld book 1975/1976, University of Illinois Functional Analysis Seminar.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA, CANADA V6T 1W5

Département de Mathématiques, Université Paris VI, Jussieu, France