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A NONCONFORMING FINITE ELEMENT METHOD

FOR FOURTH ORDER CURL EQUATIONS IN R
3

BIN ZHENG, QIYA HU, AND JINCHAO XU

Abstract. In this paper we present a nonconforming finite element method
for solving fourth order curl equations in three dimensions arising from mag-
netohydrodynamics models. We show that the method has an optimal error
estimate for a model problem involving both (∇×)2 and (∇×)4 operators.
The element has a very small number of degrees of freedom, and it imposes
the inter-element continuity along the tangential direction which is appropri-
ate for the approximation of magnetic fields. We also provide explicit formulae
of basis functions for this element.

1. Introduction

The magnetohydrodynamics (MHD) equations describe macroscopic dynamics
of electrically conducting fluid that moves in a magnetic field. The MHD model
is governed by Navier-Stokes equations coupled with Maxwell equations through
Ohm’s law and Lorentz force. As an example, a resistive MHD system is described
by the following equations:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ(ut + u · ∇u) +∇p = 1
µ0

(∇×B)×B+ μΔu,

∇ · u = 0,

Bt −∇× (u×B) = − η
µ0

(∇×)2B− di

µ0

∇× ((∇×B)×B)

− η2

µ0

(∇×)4B,

∇ ·B = 0,

where ρ is the mass density, u is the velocity, p is the pressure, B is the magnetic
induction field, η is the resistivity, η2 is the hyper-resistivity, μ0 is the magnetic
permeability of free space, and μ is the viscosity. The primary variables in MHD
equations are fluid velocity u and magnetic field B.

The MHD model has widespread applications in thermonuclear fusion, magne-
tospheric and solar physics, plasma physics, geophysics, and astrophysics. Mathe-
matical modeling and numerical simulations of MHD have attracted much research
effort in the past few decades. Various numerical algorithms have been used in
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MHD simulations; examples include finite difference methods, finite volume meth-
ods, finite element methods, and Fourier-based spectral and pseudo-spectral meth-
ods [27]. In [12, 13, 14, 15, 21], two-dimensional, incompressible MHD problems are
studied in terms of finite element approximations of the stream function-vorticity
advection formulation. Since MHD flows often develop sharp interfaces, adaptive
h-refinement techniques have been applied in MHD simulations [16, 25, 33]. Finite
element computations of MHD problems in three dimensions have been reported in
[5, 6, 17, 23, 24, 32].

In the existing finite element discreitzations for the above MHD model, a stan-
dard pair of stable or stabilized finite element spaces are often used to discretize
the velocity and pressure variables in the fluid equations. For the magnetic field
variable B, however, at least two approaches are possible when the fourth order
term (∇×)4B is not presented in the model, namely when electron viscosity η2 = 0.
One approach is to use the standard edge element ([24]), and the other approach is
to use the Lagrange element after replacing (∇×)2B by −ΔB ([6, 23, 32]). Both
of these approaches will become more difficult when the fourth order term (∇×)4B
is presented. We may still replace (∇×)4B by a biharmonic operator Δ2B, but
discretizing a biharmonic operator in three dimensions is challenging. It requires
220 degrees of freedom per element if a conforming finite element is used. One
possible way to reduce the number of degrees of freedom is to use nonconforming
discretizations which allow weaker inter-element smoothness constraints but still
provid convergent approximations. Among the class of nonconforming finite ele-
ments for fourth order problems, Morley-type elements are special in the sense that
they provide approximations with polynomials of minimal degree [18, 28]. In [29],
a systematic construction of Morley-type elements is provided for solving 2m-th
order partial differential equations in R

n. In particular, we may apply the element
in [29] with n = 3 and m = 2 consisting of piecewise quadratic elements to our
system of biharmonic equations. This amounts to 30 degrees of freedom on each
element. This element provides a reasonable discretization of MHD equations when
it is appropriate to replace the (curl)4 operator by the biharmonic operator. This
approach, however, may lead to difficulty for certain boundary conditions in prac-
tical applications. Indeed, the treatment of boundary conditions is also an issue for
the second order problem if (∇×)2B is replaced by −ΔB [10].

One more natural approach is to discretize the fourth order curl operator by
some generalized higher order edge elements. But such types of edge elements are
not available in the literature. The construction of such types of edge elements is
the main goal of this paper.

Another possible approach to deal with the fourth order term (∇×)4B is to use
operator splitting technique. Namely, one can introduce an intermediate variable
σ = (∇×)2B and then reduce the original problem to a system of second order
equations. However, it is known that for some problems such a technique cannot
be applied. For example, when modeling the bending of a simply supported plate on
non-convex polygonal domains, the original biharmonic problem is not equivalent
to the lower order system of two Poisson equations [2, 22]. In view of this, we
consider discretizing the fourth order problem directly.

In this paper, we investigate MHD equations that contain both fourth order
terms and second order terms. In the literature, the major tool used for performing
MHD simulations involving a fourth order equation has been the pseudo-spectral

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONCONFORMING FEM FOR FOURTH ORDER CURL EQUATIONS IN R
3 1873

method [1]. By choosing an appropriate formulation, we are able to construct
a finite element approximation for this problem. This is a nonconforming finite
element that involves only a small number of degrees of freedom.

The rest of this paper is organized as follows. In Section 2, we describe a sim-
plified model problem and the corresponding variational formulation. In Section
3, we construct a nonconforming finite element and provide basis functions and
convergence analysis.

2. Model problem

In the following, we introduce model problems for the fourth order magnetic in-
duction equations described above. Assume that Ω ⊂ R

3 is a bounded polyhedron.
By considering a semi-discretization in time and then ignoring the nonlinear terms,
we obtain the following equations:

(2.1)

{
α(∇×)4u+ β(∇×)2u+ γu = f , in Ω,

∇ · u = 0, in Ω,

where ∇ · f = 0, and the parameters α, β, γ > 0. We consider homogeneous bound-
ary conditions,

(2.2) u× n = 0, ∇× u = 0, on ∂Ω.

The above choice of boundary conditions arise naturally in the variational formu-
lation given below. On the other hand, in the numerical simulations of the problem
with a pseudo-spectral method, one often uses periodic boundary conditions, e.g.,
[1, 7].

It is worth pointing out that the parameter α is usually much smaller than either
β or γ. This fact imposes some difficulties in designing robust numerical methods,
as have been studied in the context of biharmonic problems; e.g., [20, 30].

The above fourth order curl equations also arise from an interior transmission
problem in the study of inverse scattering problems for inhomogeneous medium;
e.g., [3].

In order to provide an appropriate framework for our analysis, we define the
following function spaces:

H(curl; Ω) = {v ∈ (L2(Ω))3 | ∇ × v ∈ (L2(Ω))3},

H0(curl; Ω) = {v ∈ H(curl; Ω) | v × n = 0, on ∂Ω},

V = {v ∈ H0(curl; Ω) | ∇ × v ∈ H1
0 (Ω)}.

V is a Hilbert space with scalar product and norm given by

(u,v)V � (∇(∇× u),∇(∇× v)) + (∇× u,∇× v) + (u,v),

||u||V �
√
(u,u)V .

The following lemma gives a sufficient condition for a piecewisely defined function
to be an element in V .

Lemma 2.1. If v is piecewise smooth, and if v × n and ∇ × v are continuous

across element interfaces, then v ∈ V .

Using the following identity:

(∇×)2u = −Δu+∇(∇ · u)
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and ∇ · u = 0, the first equation in (2.1) can be rewritten in the following form:

(2.3) −α∇×Δ(∇× u) + β(∇×)2u+ γu = f .

Multiplying equation (2.3) by the test function v and using integration by parts,
we obtain the following variational formulation:

(2.4) Find u ∈ V such that a(u,v) = (f ,v), ∀ v ∈ V,

where the bilinear form a(·, ·) defined on V × V is given by

a(u,v) = α(∇(∇× u),∇(∇× v)) + β(∇× u,∇× v) + γ(u,v).

The well-posedness of the above variational problem follows from the
Lax-Milgram lemma.

The next lemma indicates that the weak solution satisfies the divergence-free
constraint.

Lemma 2.2. Assume ∇ · f = 0, and let u be the solution of problem (2.4). Then

∇ · u = 0.

Proof. Choose test function v = ∇ϕ where ϕ ∈ C∞
0 (Ω). Then

(u,∇ϕ) = (f ,∇ϕ),

and hence, ∇ · u = ∇ · f = 0. �

3. A nonconforming finite element

In this section, we construct a nonconforming finite element to solve the fourth
order equation. One of the advantages for using a nonconforming element to solve
fourth order equations is that the number of degrees of freedom is small compared
to that for conforming elements. The following construction is based on Nédélec
elements of the first family that consist of incomplete vector polynomials [19]. The
advantage of using an incomplete vector polynomial space is that it provides the
same order of convergence in terms of energy norms as the one given by correspond-
ing complete polynomial space. In the following, we define the degrees of freedom
in a special way to ensure that the consistency error estimate holds.

Definition 3.1. The finite element triple (K,PK ,ΣK) is defined by

• K is a tetrahedron;

• PK = R2(K) = P1 ⊕ {p ∈ (P̃2)
3 | p · x = 0}, where P̃2 is the space of

homogeneous multivariate polynomials of degree 2;
• ΣK is the set of degrees of freedom (see Figure 1),

– edge degrees of freedom:

(3.1) Me(u) =

{∫

e

u · τ q ds | ∀ q ∈ P1(e), ∀ e ⊂ K

}
,

where τ is the unit tangential vector along the edge e,
– face degrees of freedom:

(3.2) Mf (u) =

{
1

|f |2

∫

f

(∇× u)× n · q dA | ∀ q ∈ (P0(f))
2, ∀ f ⊂ K

}
,

where n is the unit normal vector to the face f ,
ΣK = Me(u) ∪Mf (u).
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Figure 1. Degrees of freedom of the finite element

In the above finite element triple, the space PK is the same as the second order
Nédélec element of the first family for the H(curl) problem. The difference is
the definition of the second set of degrees of freedom. It is designed specifically to
ensure consistency for the fourth order problems. The total number of the degrees of
freedom for this element is 20, which is the same as the dimension of the polynomial
space R2(K).

It should be pointed out that the scaling factor 1/|f |2 in the definition of the sec-
ond set of degrees of freedom is associated with the construction of basis functions
to be given later.

The next lemma given in [19] describes a relation between edge integrals and
face integrals which will be useful in the error analysis.

Lemma 3.2. If u ∈ R2(K) is such that the edge degrees of freedom (3.1) vanish,

then

(3.3)

∫

f

(∇× u) · n dA = 0, ∀ face f ⊂ K.

Proof. Given u ∈ R2(K) satisfies
∫

e

u · τ q ds = 0, ∀ edge e ⊂ K.

By Stokes’ Theorem,
∫

f

(∇f × uT ) · q dA−

∫

f

(�∇f × q) · uT dA =

∫

∂f

u · τ q ds,

where uT is the tangential part of u and where �∇f× and ∇f× are the surface
vector curl and the surface scalar curl, respectively. Let q be a constant. Notice
that

∇f × uT = (∇× u) · n.

We conclude that ∫

f

(∇× u) · n dA = 0. �
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As a direct consequence of Lemma 3.2, if both the edge degrees of freedom (3.1)
and face degrees of freedom (3.2) vanish, then

∫

f

(∇× u) dA = 0.

The polynomial space R2(K) has the following property [8].

Lemma 3.3. If u ∈ R2(K) satisfies ∇× u = 0, then

u = ∇p, with p ∈ P2.

We recall that the finite element (K,PK ,ΣK) is said to be unisolvent if a function
in PK can be uniquely determined by specifying values for degrees of freedom in
ΣK .

Proposition 3.4. The finite element defined by Definition 3.1 is unisolvent.

Proof. It is sufficient to prove that, given u ∈ R2(K),

Me(u) = Mf (u) = 0, ∀e ⊂ K, f ⊂ K ⇒ u = 0.

Obviously, ∇(∇ × u) is a constant vector. Then using (3.3) and integration by
parts, we obtain

∇(∇× u) =
1

|K|

∫

K

∇(∇× u)dx =
1

|K|

∫

∂K

(∇× u)nT dA = 0.

This implies that

∇(∇× u) = 0 ⇒ ∇× u = const.

Using again (3.3), we have

∇× u = 0.

By Lemma 3.3, we have

u = ∇p, with p ∈ P2(K).

Since Me(u) = 0, we have
∫

e

∂p

∂τ
q ds = 0, ∀q ∈ P1(e).

This implies ∂p/∂τ = 0 on each edge e. Hence, p is constant and u = 0. �

In the following, we construct the basis functions. The explicit form of these
basis functions is not only useful for implementation, but also instrumental for the
interpolation error estimate.

3.1. Basis functions. The main idea of the construction is to consider linear com-
binations of basis functions of a related Nédélec element. Let K be an arbitrary
tetrahedron with four vertices ai, aj , ak and al; see Figure 2. The corresponding
barycentric coordinates are given by λi, λj , λk, and λl, respectively.

On each of the four faces, say face l (with vertices ai, aj , ak), we choose the
following two tangential direction vectors:

qij =
−−→ajai = 6|K|(∇λl ×∇λk),

qik = −−→akai = 6|K|(∇λj ×∇λl).
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Figure 2. A tetrahedron with vertices ai, aj , ak, al. qij and qik

are two tangential vectors on the face Fl.

The edge degrees of freedom on edge eij (with vertices ai and aj) are defined
explicitly by

M
(1)
ij (u) =

∫

eij

u · τ ds,

M
(2)
ij (u) =

∫

eij

u · τ

(
3−

6

|eij |
s

)
ds,

where τ is the unit direction vector of edge eij and s is an arc length parameter.
The face degrees of freedom are defined as

Mlij(u) =
1

|fl|2

∫

fl

(∇× u)× nl · qij dA,

Mlik(u) =
1

|fl|2

∫

fl

(∇× u)× nl · qik dA,

where nl is the unit outward normal vector of the face fl.
We recall that the basis functions of the second order Nédélec element of the

first family in barycentric coordinates are (see, e.g., [9], [26], [31]):
(1) Two basis functions on each edge eij :

Lij = λi∇λj − λj∇λi,

Lji = λi∇λj + λj∇λi.

(2) Two basis functions on each face fl:

Lijk = λi(λj∇λk − λk∇λj),

Ljik = λj(λi∇λk − λk∇λi).

In the following, we list a few useful facts about the geometry of a tetrahedron.
(1) The unit outward normal vector of face fl is given by

−
∇λl

‖∇λl‖
.

(2) The two tangential vectors of face fl are given by qij and qik.
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(3) Let hl be the height of the tetrahedron corresponding to the face fl. Then

∇λl =
1

6|K|
qik × qjk,

|∇λl| =
1

hl
.

(4) Let |K| be the volume of the tetrahedron K. Then

6|K| = |qil · (qjl × qkl)| =
−1

(∇λi ×∇λj) · ∇λk
.

Next, we construct basis functions in barycentric coordinates. They provide a
set of dual basis functions with respect to the prescribed degrees of freedom.

Step 1. Construct eight basis functions {φlij} corresponding to the face degrees of
freedom such that

(3.4) M (t)
mn(φlij) = 0

and

(3.5) Mmnp(φlij) = δmlδniδpj .

We use the basis functions of the second order Nédélec element as building blocks,
as they automatically satisfy the first condition (3.4). Using the facts listed above,
we find that the basis functions corresponding to the facial degrees of freedom on
face fl are given by the following:

φlij = 3|K|(Llij − Lljk),

φlik = 3|K|(Llik − Lljk).

By direct calculation, we have

∫

fl

(∇× Llij)×∇λl · (∇λl ×∇λk) dA

=

∫

fl

[2λl(∇λi ×∇λj) + λi(∇λl ×∇λj)− λj(∇λl ×∇λi)]

· [∇λl(∇λl · ∇λk)−∇λk(∇λl · ∇λl)] dA

= −

(∫

fl

λi dA

)
[(∇λl ×∇λj) · ∇λk](∇λl · ∇λl)

+

(∫

fl

λj dA

)
[(∇λl ×∇λi) · ∇λk](∇λl · ∇λl)

= −
2

3
|fl|

1

6|K|h2
l

and
∫

fl

(∇× Lljk)×∇λl · (∇λl ×∇λk) dA =
1

3
|fl|

1

6|K|h2
l

.
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Hence,

Mlij(φlij) =
1

|fl|2

∫

fl

(∇× φlij)× nl · qij dA

=
1

|fl|2

∫

fl

∇× [3|K|(Llij − Lljk)]×

(
−

∇λl

‖∇λl‖

)
· (6|K|∇λl ×∇λk)dA

= −
18|K|2hl

|fl|2

∫

fl

∇× (Llij − Lljk)×∇λl · (∇λl ×∇λk) dA

= −
18|K|2hl

|fl|2

(
−
2

3
|fl|

1

6|K|h2
l

−
1

3
|fl|

1

6|K|h2
l

)
= 1.

Similarly, Mlik(φlij) = 0, and Mfl′ (φlij) = 0 where l′ �= l.

Step 2. Construct twelve basis functions {ψ
(t)
ij |1 ≤ i < j ≤ 4, t = 1, 2} correspond-

ing to the edge degrees of freedom such that

M (t′)
mn (ψ

(t)
ij ) = δt′tδmn,ij ,(3.6)

Mmnp(ψij) = 0.(3.7)

Here, we use the edge basis functions of the second order Nédélec element as
building blocks since they satisfy condition (3.6). Since ∇×Lji = 0, Lji automat-
ically satisfy condition (3.7).

For functions Lij , we need to subtract from them a linear combination of face
basis functions so that (3.6) and (3.7) hold. This can be done because by construc-
tion, our face basis functions have no edge moments. This strategy for constructing
basis functions can be found in [9, 26].

Finally, we can write the basis functions of the new element as the following:
(1) Two basis functions on each face l (1 ≤ l ≤ 4):

φlij = 3|K|(Llij − Lljk),

φlik = 3|K|(Llik − Lljk),

where Llij = λi(λj∇λk − λk∇λj).
(2) Two basis functions on each edge eij (1 ≤ i < j ≤ 4):

ψ
(1)
ij = Lji,

ψ
(2)
ij = Lij −

∑
Mmnp(Lij)φmnp.

3.2. Convergence analysis. Let Th = {Ki}
Nh

i=1 be a triangulation of the domain
Ω. On this triangulation we introduce the finite element space Vh and define the
discrete norm ‖ · ‖h by

‖v‖h =

[
∑

K∈Th

(
‖v‖20,K + ‖∇ × v‖20,K + ‖∇(∇× v)‖20,K

)
]1/2

.

Consider the following discrete bilinear form:

ah(uh,vh) =
∑

K∈Th

α(∇(∇× uh),∇(∇× vh))L2(K) + β(∇× uh,∇× vh)L2(K)

+ γ(uh,vh)L2(K).
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It is straightforward to verify that the bilinear form ah satisfies

ah(v,v) � ‖v‖2h, ∀ v ∈ Vh,

|ah(u,v)| � ‖u‖h‖v‖h, ∀ u ∈ V + Vh,v ∈ Vh.

The nonconforming finite element discretization of problem (3.10) is:
Find uh ∈ Vh such that for all vh ∈ Vh,

(3.8) ah(uh,vh) = (f ,vh).

The convergence of the above finite element approximation can be analyzed through
the following second Strang lemma [4].

Lemma 3.5.

‖u− uh‖h � inf
vh∈Vh

‖u− vh‖h + sup
wh∈Vh

|ah(u,wh)− (f ,wh)|

‖wh‖h
,

where the first term on the right-hand side is called the interpolation error and the

second term is called the consistency error.

In order to estimate the consistency error we first define an average operator Pf

on a face f by

Pfw =
1

|f |

∫

f

w dA.

Since for any vh ∈ Vh the quantity
∫
f
∇×vh dA is continuous, we know that Pf is

well-defined for ∇× vh. The following two lemmas are standard results.

Lemma 3.6. Given any face f ⊂ K and w ∈ (H1(K))3,
∫

f

|w − Pfw|2 dA � hK |w|21,K .

Lemma 3.7. ∫

∂K

|w|2 dA � h−1
K ||w||20,K + hK |w|21,K .

Next, we estimate the interpolation error and consistency error separately.

3.2.1. Interpolation error estimate. Let K and K ′
f be the two tetrahedra sharing a

common face f , and let rK be the local interpolation operator for the second order
Nédélec element of the first family. Namely, given u ∈ V , define rKu such that

∫

e

rKu · τ ds =

∫

e

u · τ ds, ∀ edge e ⊂ K,

and ∫

f

(rKu× n) · q dA =

∫

f

(u× n) · q dA, ∀ q ∈ (P0(f))
2, ∀ face f ⊂ K.

Define uI ∈ Vh such that

Me(uI) = Me(rKu) = Me(u),

Mf (uI) = [Mf (rKu) +Mf (rK′

f
u)]/2.

If f ⊂ ∂Ω, we set Mf (uI) = Mf (rKu).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONCONFORMING FEM FOR FOURTH ORDER CURL EQUATIONS IN R
3 1881

Lemma 3.8. Given u ∈ V , let uI be defined as above. Then

‖u− uI‖h � h(|u|2 + |∇ × u|2).

Proof. Let rhu be the global interpolation operator defined by rhu|K = rKu. By
triangle inequality,

‖u− uI‖h ≤ ‖u− rhu‖h + ‖rhu− uI‖h.

By the interpolation error estimate of Nédélec element, we have

‖u− rhu‖h � h(|u|2 + |∇ × u|2).

Notice that on each tetrahedron K,

rKu− uI =
∑

f⊂K

∑
Mmnp(rKu− uI)φmnp,

where {φmnp} are basis functions on face f and {Mmnp(·)} are degrees of freedom
on face f . Using Lemma 3.7 and ‖qnp‖L2(f) = O(h2), we get

2|Mmnp(rKu− uI)| = |Mmnp(rK′

f
u)−Mmnp(rKu)|

=
1

|f |2

∣∣∣∣
∫

f

(∇× rK′

f
u−∇× rKu)× n · qnp dA

∣∣∣∣

≤
1

|f |2

∣∣∣∣
∫

f

(∇× (rK′

f
u− u))× n · qnp dA

∣∣∣∣

+
1

|f |2

∣∣∣∣
∫

f

(∇× (rKu− u))× n · qnp dA

∣∣∣∣

�
‖qnp‖L2(f)

|f |2
(‖∇× (rK′

f
u− u)× n‖L2(f) + ‖∇ × (rKu− u)× n‖L2(f))

� h−2(h−1/2‖∇ × (rK′

f
u− u)‖0,K∪K′ + h1/2|∇ × (rKu− u)|1,K∪K′)

� h−1/2|∇ × u|2,K∪K′ .

Notice that ∇λi = O(h−1), and ‖φmnp‖
2
0,K = O(h7). By Cauchy-Schwarz in-

equality we have

‖rKu− uI‖0,K ≤

⎛
⎝

∑

f⊂K

∑
|Mmnp(rKu− rIu)|

2

⎞
⎠

1/2 ⎛
⎝

∑

f⊂K

∑
‖φmnp‖

2
0,K

⎞
⎠

1/2

� h3|∇ × u|2,S(K),

where S(K) =
⋃

K′∈Th,K′∩K �=∅ K
′.

Hence,

(3.9) ‖rhu− uI‖0,Ω = (
∑

K

‖rKu− uI‖
2
0,K)1/2 � h3|∇ × u|2,Ω.

By inverse inequality, we have

‖∇ × (rhu− uI)‖0,Ω � h2|∇ × u|2,Ω,

‖∇(∇× (rhu− uI))‖0,Ω � h|∇ × u|2,Ω.

Combining these estimates, we get

‖rhu− uI‖h � h|∇ × u|2,Ω,

and the desired estimate follows. �
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Remark. We note that the error estimate (3.9) indicates that rhu and uI are super-
close. Such type of estimate cannot usually be obtained by the standard scaling
argument (using the Bramble-Hilbert lemma). In our proof, we made use of the
detailed information of the basis functions constructed in the previous section.

3.2.2. Consistency error estimate. Given a tetrahedron K, in addition to the local
interpolation operator rK , we introduce another local interpolation operator r̃K
corresponding to the first order Nédélec element of the second family, namely, r̃Ku ∈
(P1(K))3 ⊂ R2(K), and

∫

e

((r̃Ku) · τ ) q ds =

∫

e

(u · τ ) q ds, ∀ q ∈ P1(e), ∀ edge e ⊂ K.

Consider two tetrahedra K and K ′
f that share a common face f . Given vh ∈ Vh,

define vK = vh|K . By definition,

r̃KvK = r̃K′

f
vK′

f
, on face f.

Hence,

(3.10)
∑

K

∫

∂K

ϕ · [(r̃KvK)× n] dA = 0, ∀ ϕ ∈ H(curl; Ω),

where n is the unit outward normal vector of ∂K.
Consider the decomposition (see [8])

vK = ∇pK +wK ,

where div wK = 0, wK · n|∂K = 0, and pK ∈ P2(K). Lemma 3.9 below, can be
found in [11]:

Lemma 3.9.

‖r̃KwK −wK‖0,K � h‖∇ × vK‖0,K .

As a consequence of Lemma 3.9, we have the following estimate.

Lemma 3.10.

‖r̃KvK − vK‖0,K � h‖∇ × vK‖0,K .

Proof. Using the interpolation operators defined above, we obtain

r̃KvK = r̃K∇pK + r̃KwK = ∇pK + r̃KwK .

Hence,
r̃KvK − vK = r̃KwK −wK .

By Lemma 3.9, we obtain

‖r̃KvK − vK‖0,K � h‖∇ × vK‖0,K . �

Now we can show the following lemma, which is critical for the consistency error
estimate.

Lemma 3.11. For ϕ ∈ H(curl; Ω),

|
∑

K

∫

∂K

ϕ · (vh × n) dA � h(‖ϕ‖0,Ω + ‖∇ × ϕ‖0,Ω)

(
∑

K

‖∇ × vh‖
2
1,K

)1/2

.
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Proof. By the interpolation error estimates of the Nédélec elements

‖∇ × (r̃KvK − vK)‖0,K � h‖∇ × vK‖1,K ,

Lemma 3.10, and Equation (3.10), we have

∣∣∣∣
∑

K

∫

∂K

ϕ · (vK × n) dA

∣∣∣∣ =
∣∣∣∣
∑

K

∫

∂K

ϕ · [(r̃KvK − vK)× n] dA

∣∣∣∣

=

∣∣∣∣
∑

K

∫

K

(∇× ϕ) · (r̃KvK − vK) dx− ϕ · [∇× (r̃KvK − vK)] dx

∣∣∣∣

≤
∑

K

(‖∇ × ϕ‖0,K‖r̃KvK − vK‖0,K + ‖ϕ‖0,K‖∇ × (r̃KvK − vK)‖0,K)

� h(‖ϕ‖0,Ω + ‖∇ × ϕ‖0,Ω)

(
∑

K

‖∇ × vh‖
2
1,K

)1/2

.
�

Next, we show the consistency error estimate for the nonconforming finite ele-
ment approximation defined above.

Theorem 3.12. Assume that u ∈ V is sufficiently smooth and vh ∈ Vh. Then

|ah(u,vh)− (f ,vh)| � h(‖∇×Δ(∇× u)‖+ |∇(∇× u)|1

+ ‖(∇×)2u‖+ ‖∇ × u‖)

(
∑

K

‖∇ × vh‖
2
1,K

)1/2

.

Proof. By applying integration by parts, we get

(∇(∇× u),∇(∇× vh))K
= −(Δ(∇× u),∇× vh)K + (∇(∇× u) · n,∇× vh)∂K

= −(∇×Δ(∇× u),vh)K + (Δ(∇× u),vh × n)∂K

+(∇(∇× u) · n,∇× vh)∂K

and

(∇× u,∇× vh)K = ((∇×)2u,vh)K − (∇× u,vh × n)∂K .

Hence,

ah(u,vh)− (f ,vh)

=
∑

K∈Th

[α(Δ(∇× u),vh × n)∂K + α(∇(∇× u) · n,∇× vh)∂K

−β(∇× u,vh × n)∂K ]

=
∑

K∈Th

[(αΔ(∇× u)− β∇× u,vh × n)∂K ]

+
∑

K∈Th

[α(∇(∇× u) · n,∇× vh)∂K ] .
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By Lemma 3.11, we have
∑

K∈Th

[(αΔ(∇× u)− β∇× u,vh × n)∂K ]

� h(‖Δ(∇× u)‖0,Ω + ‖∇ ×Δ(∇× u)‖0,Ω + ‖∇ × u‖0,Ω + ‖(∇×)2u‖0,Ω)
(
∑

K

‖∇ × vh‖
2
1,K

)1/2

.

By Lemma 3.6 and the inter-element continuity of ∇× vh, we get
∑

K∈Th

[α(∇(∇× u) · n,∇× vh)∂K ]

≤ α

∣∣∣∣∣∣

∑

K∈Th

∑

f⊂∂K

(∇(∇× u) · n− Pf (∇(∇× u) · n),∇× vh − Pf (∇× vh))f

∣∣∣∣∣∣

� h|∇(∇× u)|1,Ω

(
|
∑

K∈Th

|∇ × vh|
2
1,K

)1/2

.

The theorem follows by combining the above estimates of the two boundary inte-
grals. �

Finally, we have the following convergence result.

Theorem 3.13. Let u and uh be the solutions of the problems (3.10) and (3.16),
respectively. Then

||u− uh||0,h + ||∇ × (u− uh)||0,h + ||∇(∇× (u− uh))||0,h � h||u||4,Ω

when u ∈ (H4(Ω))3.

Proof. Using the second Strang lemma,

||u− uh||0,h + ||∇ × (u− uh)||0,h + ||∇(∇× (u− uh))||0,h

� inf
wh∈Vh

(||u−wh||0,h + ||∇ × (u−wh)||0,h + ||∇(∇× (u−wh))||0,h)

+ sup
wh∈Vh,wh �=0

ah(u,wh)− (f ,wh)

||∇ ×wh||1,h
,

and previous lemmas, the desired inequality follows. �
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19. J.C. Nédélec, Mixed finite elements in R

3, Numer. Math., 35:315-341, 1980. MR592160
(81k:65125)

20. T.K. Nilssen, X.-C. Cai, and R. Winther, A robust nonconforming H
2 element, Math. Comp.,

70:489-505, 2001. MR1709156 (2001g:65158)
21. S. Ovtchinnikov, F. Dobrian, X.-C. Cai, and D.E. Keyes, Additive Schwarz-based fully cou-

pled implicit methods for resistive Hall Magnetohydrodynamic problems, J.Comput. Phys.,
225:1919-1936, 2007. MR2349689 (2008f:76138)

22. R. Rannacher, Finite element approximation of simply supported plates and the Babuska

paradox, ZAMM, 59:73-76, 1979. MR533989 (80d:65122)
23. N.B. Salah, A. Soulaimani, and W.G. Habashi, A finite element method for magnetohy-

drodynamics, Comput. Methods Appl. Mech. Engrg., 190:5867-5892, 2001. MR1848902
(2002e:76032)
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