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MATHEMATICAL MODELUHG AND HUMERICAL ANALYS1S
MOOEUSATtOH MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 23, n 4, 1989, p. 627-647)

A NONCONFORMING FINITE ELEMENT METHOD OF UPSTREAM TYPE
APPLIED TO THE STATIONARY NAVIER-STOKES EQUATION (*)

F. SCHIEWECK (1), L. TOBISKA (l)

Commumcated by P G. CIARLET

Abstract. — We present a nonconforming finite element method with an upstream discreti-

zatwn of the convective term for solving the stationary Navier-Stokes équations. The existence of

at least one solution of the discrete problem and the convergence of subsequences of such

solutions to a solution of the Navier-Stokes équations are estabhshed In addition, under certain

assumptions on the data, uniqueness of the solution can be guarenteed and error estimâtes of the

approximate solution are given Moreover, some favourable properties of the discrete algebraic

system are discussed

Resumé — Nous présentons une méthode non conforme d'éléments finis avec une

discrétisation décentrée amont du terme de convection pour la résolution des équations de Navier-

Stokes statwnnaires On prouve l'existence d'une solution au moins du problème discret et la

convergence des sous-suites de telles solutions vers une solution des équations de Navier-Stokes

statwnnaires En outre on peut sous certaines hypothèses sur les données garantir l'unicité et on

donne alors des estimations d'erreur de la solution approximative En outre on discute quelques

propriétés importantes du système algébrique discret

1. INTRODUCTION

The Navier-Stokes équations for viscous, incompressible flow problems
have been the object of considérable research efforts. Because of its great
flexibility finite element methods have received considérable attention, both
from a theoretical and computational point of view. In gênerai one uses
finite éléments of higher-order shape functions in order to get better
approximations of velocity and pressure fields. However, this can be
guaranteed, at least theoretically, only for sufficiently smooth solutions of

(*) Received in July 1987, revised m May 1988
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628 F. SCHIEWECK, L. TOBISKA

the considered problem. Moreover, the use of higher-order shape functions
causes computational costs which can be too expensive for the problem
under considération. Therefore we propose a finite element method with
lower-order shape functions. Taking into considération the dominate
influence of the convective term in the case of a higher Reynolds number,
we shall use a special upstream discretization of this term.

In this paper we propose a method combining a Pi-P0 nonconforming
finite element method due to Crouzeix and Raviart [2] with an upstream
discretization of the convective term which has been applied by Ohmori and
Ushijima [9] in case of a scalar convection diffusion problem. The method in
[2] proposed for the Stokes problem was extended to stationary Navier-
Stokes équations in [7], But the results concerning the nonconforming
éléments are stated without proof. An extension to time-dependent Navier-
Stokes équations was done in [6].

A similar upwinding technique was first introduced in [8] to solve the
Neutron transport équation. For solving the Navier-Stokes équations in
terms of stream function and vorticity, this technique was applied in [3] and
analyzed in [5].

The plan of the paper is the following. In Section 2 we introducé the
notations used in the subséquent sections. The finite element method for the
approximate solution is presented in Section 3. Section 4 contains a
discussion of the properties of the algorithm and in Section 5 we give
existence and convergence results for the discrete solutions.

2. NOTATIONS AND PRELIMINAIRES

Throughout this paper, fl is supposed to be a convex polygon in
R2 with boundary F. Let n be the unit outer normal to fi. D/?

7 = 1,2 dénotes the differential operator — and of ten we will use the

summation convention, that one has to take the sum over an index occuring
twice in some term. For a scalar function s on a measurable subset G c ü ,
let ||s ||̂  G and \s\k G be the usual norm and seminorm on the Sobolev
space Wk*p(G) [1], respectively. Then for a vectorvalued function
v — (vl9 v2) belonging to (WkiP(G))2 we will use the norm

and the semi-norm

i = 1

JVPAN Modélisation mathématique et Analyse numérique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 629

In this paper we consider the stationary Navier-Stokes problem for
incompressible flows, i.e. we have to find the velocity field u = (ul3u2) and
the pressure p such that

-v Au + ut DjU + grad p = ƒ in O

(2.1) diva = 0 in O
u = 0 on F

where v dénotes the constant inverse Reynolds number and ƒ a given body
force. In order to write (2.1) in a weak form we introducé the notations

(2.2) V = (H

(2.3) Q = L|(O) = Iv e L2(O) ; j v dx = 0

(.,.) inner product in L2(ft) and (L2(fl))2, respectively (the meaning
becomes clear from the context)

f
(2.4) a(u,v) = Dj^DjVtdx u,veV

(2.5) (u,v, w) = ut D{v}w}dx u,v,w
Ja

Then the variational form of (2.1) reads :
Find (u,p) e V x Q such that

(2.6) va(u,v) + b(u9u,v)- (p,divv) = (f,v) VÜ E V

(q,divu) = Q Vq e Q .

It is well known that (2.6) admits at least one solution which is unique
provided that v~2\\ f\\ is sufficiently small [4].

3. FINITE ELEMENT APPROXIMATION OF ÜPSTREAM TYPE

For solving the continuous problem (2.6) approximately, we will combine
a nonconforming finite element method due to Crouzeix/Raviart, Temam
[2, 11] with an upstream discretization of the convective term which has
been applied by Ohmori, Ushijima in case of a scalar convection-diffusion
problem [9].

Let {T^} be a family of triangulations of O into triangles K with

vol. 23, n 4, 1989



630 F. SCHIEWECK, L TOBISKA

which is assumed to be regular in the usual sensé, and let hK be the diameter
of the triangle K. We also assume that the inverse assumption on the mesh

is fulfilled f h = max hK 1.
\ K€Th /

We dénote by Bt, 1^ i ^ N, the midpoints of inner edges and by
Bl7 N + 1 ̂  i ^ TV + M, the midpoints of edges lying on the boundary F.
Now we define the finite dimensional spaces Vh and Qh for V and
Q, respectively, by

(3.1) Vh = {ve (L2(H))2 :v\Ke (P^K))2 VX e rh, v is continuous

atBl,l^i^N9v(Bl) = 0 f o r N + l^iïâN +M}

(3.2) Qh= {qefc }

where Pm(K), m = 0 ,1 , dénotes the set of ail polynomials on K with degree
not greater than m.

Because of Vh<tV, we have to extend the divergence operator, the
bilinear form a and the trilinear form b, respectively.

For M, v, w ELV + V h and q e L2(O) we define these extensions by an
elementwise calculation of the corresponding intégrais such that

(3.3) (q, divhu) = Y l q div u dx

(3.4) flA(M,i?) = y f DjUtDjVtdx
K JK

(3.5) bh(u, v, w) = £ f ut A v} w} dx .
K JK

It is well known [2] that ||.||A with

(3.6) | |M | |A= (ah(u,u))m

is a norm on Vk.

In [11] instead of (3.5) the trilinear form

(3.7) bh(u9 v, w) = \ V | (U.D.VJWJ- ut v} Dt w}) dx

Modélisation mathématique et Analyse numérique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 631

was used which can be regarded as an extension of b(u, v, w) too, because
of

b(u, v9w) = - (ut Dt v] w} - MI v, Dt w}) dx
z Jn

(3.8)
Vu, v, w e V with div u = 0 .

Moreover, bh satisfies the skew-symmetric property

hh(u,v,w) = -bh(u,w9v) Vu,v,weVh ,

which is useful in the analysis of existence and convergence. In the case of
small value of v, one needs a suitable discretization of the convective part
b(u, u, v) of (2.6) in order to avoid instabilities and numerical oszillations,
respectively. Therefore we will define a modified discretization of upstream
type bh of b following the lines of [9].

Figure 1.

Let each triangle K be devided into six barycentric fragments Sl}

i, j e {k, l, m}, i ^ j , as it is indicated in figure 1. Then, for each node
Bh l = 1, ..., N +M, we define a lumped région R( by

(3.9) Ri =

where A, dénotes the set of all indices k, for which B{ and Bk are neighbour
nodes. Furthermore, let Alk be defined by

(3.10)

vol. 23, n° 4, 1989
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632 F SCHIEWECK, L TOBISKA

and let nîk be the unit outer normal to Rh which is associated with the part
Tlk or bRi In a similar way as in [9] we can dérive the foUowing upstreara
discretization bh of the tnlmear form b

(3 11) Bh(u,v,w) =

! - 1 k € A, J r t t

with

1 if
(3 12) Xlk(u) =

0 otherwise

Now our discretization of (2 6) reads
Find (uh,ph) G Vh x Qh such that

(3 13) vah(uh,v) + bh(uh,uh,v)- (ph,diwhv)= (f,v) Vt; G Vh

(q,divhu) = 0 VqeQh

Remark 3 1 Contrary to bh of (3 7), m our discretization (3 13),

bh is not a tnlmear form on V\ Actually, the mapping

(u, v, w) -• bh(u, v, w) is lmear in v and w only

4. SOME PROPERTIES OF THE PROPOSED METHOD

In order to establish results concermng existence and convergence of
solutions of (3 13) we dérive some properties of the mapping bh. V\ -> R

First of all let us define the lumpmg operator Lh and the space
Wh

For a given v G Vh, the lumping operator Lh is defined by

(4 1) (Lhv)(x) = v(Bî) VxeRh 1 = 1 , ,N+M

Furthermore, let us define the space

(4 2) Wh={veVh (q,divhv) = 0 Vq

One can easily see that in our case v G V h belongs to Wh if and only if
div/, ^ 1 ^ = 0 VKeTh, i e Wh is the space of discrete-divergence-free
functions in Vh

Now we have the foUowing

M2AN Modélisation mathématique et Analyse numérique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 633

LEMMA 1 : It holds the estimate

(4.3) bh(u,v,v)^0 VueWh VveVh.

Proof: Writing bh for w, v, w e Vh in the form

(4.4) bh(u9 v, w) = bl
k(u, v, w) + b\{u, v, w)

with

(4.5) bl(u,v,w) =

(4.6) u,v,w) = -N£ ^ f u.n^dyv
/ = 1 t e A , •/ r/jfe

we obtain in an analogous way as in [9, Lemma 3]

(4.7) hh(u,v,v) + ±Ph(u,vfv) =

Using the fact that

one can easily verify that b\(u, v, v ) = 0 for u e Wh, v e Vh. Together with

(4.7) this proves (4.3). D

The next statement implies the continuity of bh on V\.

LEMMA 2 : There exists a constant c > 0 independent of h, such that

(4.8) \bh{u, v, w) - bh(u°, v,w)\êC \\u - u \ \\v\\h \\w\ \ h \\w\\h

holds for ail u, u°, v, w e Vh.

Proof: Let us define the set of indicies

(4.9) / = { ( / , * ) : / - 1,...,N+M,ke A;} .

vol. 23, n° 4, 1989



634 F. SCHIEWECK, L. TOBISKA

Then, we can write

(4.10) \bh(u,v9w)-bh(u°,v,w)\* Pik 4ik

with

(4.11)

and

i*

(4.12) qlk= f u^n^

Using the f act, that Dt vp i, j = 1,2 is a constant on Sik U Ski for ail
(/, A:) G ƒ, we can estimate for w, u°, v, w G Vh

\Plk\ ^ w 0,00,

where Cx and C2 are the constants of inverse inequalities which are
independent of h, l and h. This implies

P l k ^

( / ,*)€/

1/2

I \MUsit\
ï,k)el

 f

'10,4,0 *

If we apply the estimate

(4-13) \\z\\OpnëC(p,Cl)\\z\\h VzeVh,

which can be proven for 1 ̂  p < oo in the two-dimensional case along the
unes of Rannacher and Heywood ([6, Proof of (4.36)]), we obtain

(4.14)
( / , * ) £ ƒ

\h '

To estimate the second sum in (4.10), we split the set / of indicies into

/+ = { ( / , * ) E J: | (H.V*) (Plk)\ > | | « - « ° | | 0 i a o > s J

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelluig and Numencal Analysis



AN UPSTREAM TYPE NONCONFORMING ELEMENT 635

and I" = I\I+, where Plk dénotes the midpoint of Tîkt For (l, k) e I+ we
have

| ((«, - M,0) n[k){Plk)\ S ||« - M°||0>OOiStt < | ( « , y *

which implies

sign ((u, «ƒ*)(?«)) = sign ((M,°«,/

and consequently, since u is linear on Tlk,

(4.15) M « ) = M « ° ) for ( / , k ) e / + .

(4.15) yields £ g/ik = 0. For (l,k)el~ we have

Thus, we obtain in an analogous way as for plk the estimate (4.14) also for
V qik, which complètes the proof of (4.8).

(t,k)el- D

To prove our convergence resuit in Section 5, we need for arbitrary
KG (0, 1 ) the inequality

(4-16) I M I O . O ^ C K ^ I M U Vt;eVA

which is a conséquence of (4.13) and the inverse inequality

with K = 2/p.
Now we will estimate the différence between the two different discreti-

zations of the convective term b.

LEMMA 3 : There exists a constant C independent of h, such that the

estimate

(4.17) \bh(u,v,w)-bh(u,v,w)\^CKhl-«\\u\\h\\v\\h\\w\\h

holds for ail u, v, w e Vh and K e (0, 1).

Proof: We décompose bh into

(4.18) bh(u, v, w) = bl(u9 v, w) + 6|(M, t>, w)

vol. 23, n° 4, 1989
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with

(4.19)

and

(4.20)

F. SCHIEWECK, L. TOBISKA

4(u,v,w) Xj^ A («,»,) *V

bKu,v,w) = - £ A ulv1 w,dx.
K J K

Using the décomposition (4.4)-(4.6) of bh we may write

(4.21) bh(u, v,w)- bh{u, v,w) = Y1 + Y2 + Y3

with

(4.22) fa

(4.23)

(4.24)

At first let us estimate Y^ by

= bl
h(u,v,LhW)-bi(u,v,w),

(A «, v, + M, A »7)(w; -

Using (4.16) we obtain

(4.25) lY^c^-'iMUMUML-

To estimate Y2 we start with the first sum Y2\ in

where T; dénotes the edge containing the node Bh §_zjr the jump of z along

F/5 ?ÏZ the unit normal vector on F; and / the index set defined by (4.9). To be

more spécifie, let Kl9 K2 be the two triangles with the common edge

Modélisation mathématique et Analyse numérique
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F, and let nl be directed outward with respect to Klt Then , the jump is
defined by | [ z ] | r = z\K — z\K. Obviously it holds

Jr, ' ' ' Tl

= \ l(ut - L.u^nKv; - Lhv})]T dyw^Bt)

^ m e s ( r , ) V A I M L ^ v h \ v \ , „ „ \\w\ 10,00, a •
m = 1

By means of inverse inequalities we obtain

T/

Thus, using (4.16) we can estimate

Y21S2Ch\\w\\0t<a>a

tfG-r

CK^- 'NUMUMU-

Now, let us consider the second sum in Y2 dénotes by Y22- If we take into
considération that rlk = Tkl, X;jt(«) = 1 - \ W ( M ) and nlk = - nu, we get

Since u, v and w are linear on r;fc, we can estimate

1 ^ 2 2 1 ^ 2 I m e S r ' * l l M l lo ,oo ,S , t
A l l ; l l > o 0 ,S , t *l W l l . co ,S l t

where C1 and C2 are again the constants of inverse inequalities which are
independent of h, l and k. Together with (4.16) and the estimate for
Y2\ we receive

(4-26) \Y2\?kCKh'-«\\u\\h\\v\\h\\w\\h.

vol. 23, n° 4, 1989



638 F SCHIEWECK, L TOBISKA

Fmally, we have to estimate Y3 Usmg the identity

b2
h(u, v, w) = bl(u, L h v, L h w) V u , v9weVh

we get

(4 27) r 3 = b\{u, v-Lhv,w) + bî(u9 Lhv,w- L h w)

It is easy to check that the lumping operator Lh satisfies

(428) \\Lhv\\QœK= \\v\\OœK VveVh, KBU

and

(429) \\v-Lhv\\02KSh\v\12K VveVh, K e Th

Thus, from (4 27), the définition (4 20) of b\ and (4 16) we obtain

(430) | Y 3 | S £ M i 2 J C * M 1 2 , I M | 0 a > J C +

K

+ \ U \ l 2 K I I H l o o o K h \ W \ l 2 K

which complètes together with (4 25), (4 26) the proof of (4 17)

5. EXISTENCE AND CONVERGENCE OF THE DISCRETE SOLUTIONS

In this section we study solvability of the discrete problem (3 13) and
convergence properties of îts solutions to a solution of the continuous
problem (2 6)

It can be shown that our nonconformmg fmite element discretization
fulfills the discrete LBB-condition, i e there is a constant a > 0, indepen-
dent of h, such that

(p, divh v)
(5 1) sup * h ^a | i ^ | | 0 2 f t VpeQh

veVh \\V\\h

Therefore, it is possible to separate the problem of finding a solution
(uh,ph) of (3 13) mto one for determing uh and another one for determing

ph with a known uh [4] The discrete velocity field uh solves the problem
Find uh e Wh such that

(5 2)

M2AN Modélisation mathématique et Analyse numérique
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where Wh dénotes the space of discrete-divergence-free fonctions defined in
(4.2).

THEOREM 1 : Assume that ƒ G (L2(Cl))2. Then there exists at least one

solution (uh9ph) eVhxQh oî (3.13).

Proof: Let P : Wh -• Wh be the mapping defined by

ah(Pv, w) = vah(v, w) + bh(v, v, w) - (ƒ, w)

for ail v, TV e Wh. Then, if A: is sufficiently large, from Lemma 1 we conclude
for ||i?||A = k

ah(Pv,v)^vah(v,v)- (ƒ, u)

where C(2, Q) is the constant from (4.13). In order to show the continuity
of P we apply Lemma 2

\\Pv -Pw\\l = vah(v -w,Pv -Pw) + bh(v,v,Pv - Pw) -

- hh(w, w, Pv - Pw)

\\Pv - Pw\\2
h ^v\\v - w\\h \\Pv - Pw\\h + bh(v, v -w, Pv - Pw)

+ bh(v, w, Pv - Pw ) - bh(w, w, Pv - Pw )

^(v + C(\\v\\h+\\w\\h))\\v-w\\h\\Pv-Pw\\h

and obtain for bounded v and w

\\Pv-Pw\\k*C\\v-w\\h.

Then, by means of [11, II Lemma 1.4] we obtain the existence of at least one
solution uh G Wh of (5.2). The existence of a unique ph e Qh such that the
pair (uh,ph) fulfills (3.13) follows in the usual way from (5.1) [4]. •

In order to study the convergence properties of the solutions (uh,pk) of
(3.13) we introducé the embedding operator Ih: V + Vh^> (L2(H))6 de-
fined on each element K by

(Ihv)(x)= (t>(x),gradt>(x)) Vx G K .

As a conséquence of inequality (4.13) the embedding operator Ih is
continuous uniformly in h, i.e. there is a constant C :> 0 such that

(5.3) \ \ I h v \ \ ^ C \ \ v \ \ h V v e V + Vh.

vol. 23, n" 4, 1989
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THEO REM 2 Let {(uh,ph)} be a séquence of solutions o f the discrete
problem (3 13) where h tends to zero Then there exists a subsequence
{{uh ,Ph)} and an element (u,p) belonging to V x Q such that Ih uh

converges to (u, gradw) in (L2(ü))6, ph converges to p weakly in
L2(O) and the pair (u,p) is a solution of the continuons problem (2 6)
Moreover, if (u,p) belongs to (H2(fl))2 x ff1 (O) the pressure ph converges
to p also strong in L2(ft)

Proof Following the Imes of Temam [11], we only have to modify some
details, which result from replacmg the diseretization bh defined m (3 7) by
our upstream diseretization bh defmed m (3 11) Therefore, we will only
mention the important steps of the proof

Setting vh = uh in (5 2) we obtam from Lemma 1 the a priori estimate

(54) | | M A | | / ! â v - 1 C ( 2 ; n ) | | / | | 0 2 n

By means of the discrete LBB-condition (5 1) we conclude from (3 13) and
(5 4) for all h

such that the séquence {IhUh,ph} is umformly bounded m (L2(O))7

Consequently, we are able to select a subsequence bemg weakly convergent
For simphcity, we will dénote this subsequence agam by {(uh,ph)} The
weak limit (w5 p) of { (uh, ph)} belongs to the space W x O (cf [11 ]) where

W = {v e V . div v = 0 }

In order to show that (u,p) is a solution of the contmuous problem we
introducé the restriction operator rh . V -* Vh and rh W -> Wh, respectively,
which is defmed by

and consider (3 13) for v replaced by rh v with v G (Co°(Xl))2 As m [11] it
holds

for h-+Q Vue

and we have to venfy

(5 6) bh{uh,uh,rhv)^b{u,u,v) for h -, 0 V» e (C0°°(n))2

Modélisation mathématique et Analyse numérique
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AN UPSTREAM TYPE NONCONFORMING ELEMENT 641

Analogously to the proof of Lemma 3.3 in [11, II.3) we can show that

(5.7) bh(uk9uh,rhv)-+b(u,u,v) for h -> 0 Vi> G (Cg>(a)f .

Using Lemma 3 we can estîmate

| 5 * ( K h , «h , rfc t?) - bh(uh, uh, rhv)\ =i C K hl-K\\uh\\
2

h \\rh v \\h .

From (5.4) and the fact that Ih(rhv - v) tends to zero in the norm of
(L°°(n))6 (cf. [11]) we see that || wft||fc and \\rk v \\h, are uniformly bounded.

Thus, (5.7) implies (5.6) and the weak limit (u,p) fulfills

va(u,v) + b(u,u,v)- ( p , d i v i ? ) = (ƒ,1?) Vi; e

(<7, div w) = 0 Vq e Q .

Since Co°(H) is a dense subset of HQ(CI), (u,p) is a solution of the
continuous problem (2.6).

Now we prove the strong convergence oilh(uh - u) m (L2(fl))6 . For this
we consider

Xh = ah(uh - rh u, uh -rhu)= \\uh - rh u\\2
h m 0 .

Since uh fulfills (5.2), we obtain

%h = <*h(uh, uh) - 2 ah(uh, rh u) + ah(rh u, rh u)

= -{(ƒ> uh) - bh(uh, uh, uhj\ - 2 ah(uh9 rh u) + ah(rh u, rh u)

and with lemma 1

(5.8) Xh~ y (ƒ' uh> ~ 2 ah(uh> rh u) + ah(rh u, rh u) .

The right hand side of (5.8) for h -• 0 converges to

- (ƒ, «) - a(u, u) = - b(u, u, u) = 0 ,

which implies ||MA - rh u\\h -• 0 for Zz -• 0. The triangle inequality concludes

the proof of the strong convergence of Ih(uk - u) to zero in (L2(X1))6.
The strong convergence in L2(O) of the pressure pA in the case

(u,p)e (H2(ü))2 xHl(tl) follows from (5.1) in the following way.
Multiplying the équation

- v Aw + ut Dt u + grad/? = ƒ ,
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which now holds in (L2(fl))2, with v e Vh, integrating over K, applying
Green's formula and summing-up over all finite éléments K we get

vah(u,v) +bh(u,u,v)- (p,âivhv) = ( ƒ , v)+l(v)

for ail v e V h where / is defined by

%vds- \ p(v.n)ds).
dn JèK I

Together with (3.13) we have for each v e Vh

(5.9) (ph -p9 div^ v) - vah(uh - M, V) + hh(uhi uk9 v) - bh(uh, uh9 v) +

4- bh(uh, uh, v) - bh{u, u, v) + l(v) .

Using the représentation

h> u h , v ) ~ bh{u, u,v) = bh(uh -u,u,v) + bh(uh, uh - u, v)

and taking into considération that uh is uniformly bounded and bh is a
continuous trilinear form on V + Vh we obtain

\bh(uh9 uh, v) - bh(u, u , Ü ) | ^ C | | u - uh\\h \\v\\h

for some positive constant C independent of h. In [2] it was already shown
that

\\{v)\^Ch\v\h f o r a l l veVh.

Together with lemma 3 and (5.4) it follows from (5.9)

| (p ~Ph, d i v , t ; ) | ^ ( C \\u - uh\\h + C K h1'* + Ch)\\v\\h .

Let ph be the orthogonal projection in L2(H) of ƒ> on g^. Then by means of
(5.1) we have

II „ || J, \rh rh? h )

1 (P-Ph>àwhv)

Thus, we get the estimate

f HP - «||o 2 n(5.10) \\p~ph\\ ^ inf ||/7» -1 1 ' ^ " » " " ! ^ ^ 1 " K
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such that for the convergent subsequence {uh<} the associated séquence
{Ph') converges to the solution p in L2(O). •

Now, we will study the case of sufficiently large v in which the unique
solvability of the problems (2.6) and (3.13) can be guaranteed and give a
resuit concerning the rate of convergence.

THEOREM 3 : Let v be sufficiently large, Then both problems (2.6) and
(3.13) have uniquely déterminée solutions. Moreover, if the solution
(u,p) of (2.6) belongs to (//2(fi))2 x H1^) the error estimate

(5.11) ll^-^llo^n+ll1 '-"*!!^^/!1-1

with an arbitrary K 6 (0,1) is satisfied.

Proof: Let (u±, p1 ) and (w2, p2) be two different solutions of (3.13). From
(5.2) we have for v = ux - u2 e Wh

v a h ( v , v ) = b h ( u 2 , w 2 , v ) - b h ( u l 9 u l 9 v )

= b h ( u 2 , u 2 y v ) - b k ( u l 9 u 2 , v ) - h h ( u l 9 v , v ) .

Applying Lemma 1 and Lemma 2 we can estimate

By means of the a priori estimate (5.4) it follows v = 0 if v2\\ f ||~^ n is
sufficiently large. The relation px = p2 can be easily concluded from the
discrete LBB-condition (5.1). In a simüar way we can also prove uniqueness
of the solution of problem (2.6).

In order to prove the error estimate let us consider w = uh — v G Wh with
an arbitrary v e Wh. Then we have

v\\w\\2
h^vah(uh -v, w) = vah(u- v, w) + vak(uh - u, w)

= v\\u ~ v h Wwh + (/> w) ~ bh(u> u> w) - vah(u, w)

+ bh(uh9 uh, w) - bh{uh, uh9 w) + bh(u, u, w) - bh{uh, uh, w) .

We split the term R = bh(u, u, w) — bh(uh, uh, w) into

R = bh(u, u - uh, w) + bh(u- uk, uh, w)

and take into considération that u and uh are uniformly bounded such that

R^Cv~2\\u-uh\\h \\w\\h.

vol. 23, ns 4, 1989



644 F. SCHIEWECK, L TOBISKA

From the triangle inequality it follows

\\u-uh\\h^v(\\u-v\\h+ \\w\\h)

< o „ „ (f>w)-bh(u9u9w)-vah(u,w)

S 2 v | l " " " +
Mû

h , IV)
+
 Flû +

Now, if v2 is greater than C we have the estimate

| | M - M A | | â C mf | |M_i>| | + sup
weWh

sup

and the error is decomposed into three parts, the approximation error, the
discretization error caused by the nonconforming finite element method and
the error due to the upstream discretization.

The estimâtes of the first and second error are obtained as in [2, 11]. On
the third term we apply Lemma 3 and (5.10) yields the estimation for the
pressure. D
Finally, we shall give a resuit about the algebraic System corresponding to
our discrete problem (3.13). Splitting the algebraic system by means of a
pressure-velocity itération and solving the nonlinear system by a simple
itération technique we get the linear system

(5.12) A(um)um + 1 =F

where um dénotes the ra-th iterate of the vector of velocity components. We
will show that under a certain assumption on the triangulation the matrix
A(u) is an M-matrix. To verify that A = (atJ) is an M-matrix it is sufficient
to show that

(i) atJ ̂  0 for / ^ / and

(ii) 3e ̂  0 such that Ae ̂  0 and for ail i e {!,..., n) with (Ae\ = 0
there exists a chain io = i9 iu...,ip such that (Ae\ :> 0 and

Let the triangulation of O be of weakly acute type, Le. the interior angles of
ail triangles are not greater than ir/2. Moreover, let ^ = (<p,,0),
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N = (O? <P,)j î = 1, ...» # be the basis of Vh satisfying <pt(B}) — 0 for
ƒ and ^t{Bt) = 1. Then the matrix A (M) in (5.12) is given by

O otherwise .

THEO REM 4 : Let the triangulation of CL be of weakly acute type. Then the

matrix A{u) of (5.12) defined by (5.13) is an M-matrix.

Proof: Taking into account the représentation (3.11) with (3.12) we get
the nonpositivity of bh(u, tyr \\st) for / # ; and the nonnegativity for
i = j. The direction of Vcp, on a triangle K corresponds to the outer normal
on the boundary dK in the node Bt of K. Therefore, ah(tyJ9 v|>t) is nonpositive
for / T̂  j and négative only in the case where iy j are neighbour nodes and
the angle between both edges with midpoints Bn B} is smaller than
TT/2. Consequently, the assumption (i) is fulfilled. We set e = (1 , ..., 1)
such that (Ae\ corresponds to the i-th row sum. Obviously, it follows that

(Ae \ ^ 0 for i = l 5 . . . , 2 i V .

If for some / = /0 (Ae\ = 0 we have to construct a chain i0, il9 ..., ip such
that at _ltl <zO9 q = 1, ...,p. For this aim it is sufficient to show that

(5.14)

Let Bt and B} are neighbour nodes, K the triangle containing these nodes
and k the third node of K. Since the triangulation is of weakly acute type we
have

(5.15)

f \
V<p, V<pk dx^zO and S7<pk V<p; dx < 0 1

Therefore, starting with an index i0 not belonging to a node of a boundary
triangle we can find a chain of two or three indices satisfying (5.14) and
Connecting Bt with any of the four neighbour nodes. Continuing this
procedure we corne to a node Bl9i = ip9 of a boundary triangle K. Now we
have

(5.16)
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Every intégral in the above sum is nonpositive In order to prove
(Ae\ > 0 w e have to exclude the case that every intégral in (5 16) is equal to
zero In the following let us consider this case

For the boundary triangle K containmg the node Bt, we dénote by
B} the boundary node and by Bk the third node Because of (5 15)
Bk does not belong to F and (5 14) holds for q = p + 1 and ip + 1 = k

Therefore, let us take the chain which consists of the above chain with
ip = i and ip + x = k (5 15) also implies

<fcc<0

and therefore (Ae)k>0 Consequently, the assumption (n) holds and
A (w ) is an M-matnx D
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