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Group-level variance estimates of zero often arise when fitting multilevel or hierarchical linear mod-
els, especially when the number of groups is small. For situations where zero variances are implausible
a priori, we propose a maximum penalized likelihood approach to avoid such boundary estimates. This
approach is equivalent to estimating variance parameters by their posterior mode, given a weakly informa-
tive prior distribution. By choosing the penalty from the log-gamma family with shape parameter greater
than 1, we ensure that the estimated variance will be positive. We suggest a default log-gamma(2,λ)
penalty with λ → 0, which ensures that the maximum penalized likelihood estimate is approximately one
standard error from zero when the maximum likelihood estimate is zero, thus remaining consistent with
the data while being nondegenerate. We also show that the maximum penalized likelihood estimator with
this default penalty is a good approximation to the posterior median obtained under a noninformative
prior.

Our default method provides better estimates of model parameters and standard errors than the max-
imum likelihood or the restricted maximum likelihood estimators. The log-gamma family can also be used
to convey substantive prior information. In either case—pure penalization or prior information—our rec-
ommended procedure gives nondegenerate estimates and in the limit coincides with maximum likelihood
as the number of groups increases.

Key words: Bayes modal estimation, hierarchical linear model, mixed model, multilevel model, penalized
likelihood, variance estimation, weakly informative prior.

1. Introduction

Linear mixed models (e.g., Harville, 1977; Laird & Ware, 1982), also known as hierarchi-
cal or multilevel linear models, are widely used for longitudinal data, cross-sectional data on
subjects nested in neighborhoods or institutions (hospitals, schools, firms), cluster-randomized
trials, multisite trials, and meta-analysis. The models include random intercepts and sometimes
random coefficients that vary among groups and that we will refer to as varying intercepts and
coefficients. We consider the situation where some unexplained group-level variability is known
to exist a priori. Maximum likelihood (ML) is a useful way to estimate the variance parameters.
But when the number of groups is small, estimates of the group-level variance can be noisy and
can often be zero.
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Zero group-level variance estimates can cause several problems. Zero variance can go
against prior knowledge of researchers and results in underestimation of uncertainty in fixed
coefficient estimates. Inferences for groups are often of interest to researchers, but when the
group-level variance is estimated as zero, the resulting predictions of the group-level errors will
all be zero, so one fails to find unexplained differences between groups. In addition, uncertainty
in predictions for new and existing groups is also understated. In Section 2.1, we further discuss
problems caused by the boundary estimate.

In this paper, we develop a nondegenerate estimator by maximizing the log-likelihood plus
a penalty function, or equivalently by assigning a prior distribution to the unknown variance
parameters and finding the posterior mode. It is possible to do this without requiring strong prior
knowledge. But our functional form is general enough that it can also be applied when real prior
information is available.

Penalized likelihood or Bayes modal estimation has been used to obtain more stable esti-
mates in item response theory (Swaminathan & Gifford, 1985; Mislevy, 1986; Tsutakawa & Lin,
1986) and to avoid boundary estimates (or logit parameters tending to ±∞) in log-linear mod-
els (Galindo-Garre, Vermunt, & Bergsma, 2004), logistic regression (Gelman, Jakulin, Pittau,
& Su, 2008), and latent class analysis (Maris, 1999; Galindo-Garre & Vermunt,2006). Such an
approach has also been used to obtain nondegenerate covariance matrices in finite mixtures of
normal densities (Ciuperca, Ridolfi, & Idier, 2003; Vermunt & Magidson, 2005) and in multivari-
ate regression (Warton, 2008). Our penalized likelihood approach to avoid boundary estimates
for variance parameters in multilevel models turns out to be similar to, but more general than,
the independently developed adjustment for density maximization approach by Morris and Tang
(2011). They apply the idea to the Fay and Herriot (1979) model for small-area estimation us-
ing area-level (group-level) data and focus on the problem of predicting area-level means (see
also Li & Lahiri, 2010). In contrast, we consider unit-level data and focus on estimation of the
model parameters and standard errors of regression coefficients. By adjusting two parameters of
the log-gamma penalty, our method can take into account prior knowledge about the group-level
variance.

We recommend a class of log-gamma penalties (or gamma priors) that in our default setting
(the log-gamma(2,λ) penalty with λ → 0) produce maximum penalized likelihood (MPL) esti-
mates (or Bayes modal estimates) approximately one standard error away from zero when the
maximum likelihood estimate is at zero. We consider these priors to be weakly informative in
the sense that they supply some direction but still allow inference to be driven by the data. The
penalty has little influence when the number of groups is large or when the data are informative
about the variance, and the asymptotic mean squared error of the proposed estimator is the same
as that of the maximum likelihood estimator. The default penalization can also be interpreted as
equivalent to specifying a noninformative prior for the group-level standard deviation and apply-
ing a log transformation to this parameter to symmetrize the posterior distribution. We compare
the bias and mean squared error of our estimator to maximum likelihood and restricted maximum
likelihood in simulations across a wide range of conditions. Our method performs well and also
provides better estimates of standard errors of regression coefficients.

Compared with full Bayes or posterior mean (or median) estimation, our approach does
not require simulation and is computationally as efficient as maximum likelihood estimation, in
fact potentially more efficient as it avoids the slow convergence that can occur if the maximum
likelihood estimate is on the boundary. No additional convergence checking is required and there
is no need to specify priors for all model parameters.

We have implemented penalized likelihood estimation in Stata and R with only minor mod-
ifications of existing software for maximum likelihood estimation of linear mixed models. Given
user-specified or default choices of the parameters of the penalty function, the programs auto-
matically find the maximum penalized likelihood estimate of the variance parameter and provide
inferences for the coefficients conditional on that estimate.
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In Section 2, we discuss our motivation for avoiding boundary estimates for group-level vari-
ance parameters. In Section 3, we introduce our maximum penalized likelihood approach and our
recommended default penalty function or weakly informative prior distribution. Section 4 shows
theoretical properties of the resulting estimator. In Section 5, we apply the proposed method to
a dataset, and in Section 6 we perform simulations to compare performance of our method with
maximum likelihood and restricted maximum likelihood in a range of situations. We end with a
discussion in Section 7.

2. Motivation for Avoiding Boundary Estimates

2.1. Problems with Boundary Estimates

When a variance parameter is estimated as zero, there is typically a large amount of un-
certainty about this variance. One possibility is to declare in such situations that not enough
information is available to estimate a multilevel model. However, the available alternatives can
be unappealing since, as noted in the introduction, discarding a variance component or setting
the variance to zero understates the uncertainty. In particular, standard errors for coefficients of
covariates that vary between groups will be too low as we will see in Section 2.2. The other
extreme is to fit a regression with indicators for groups (a fixed-effects model), but this will over-
correct for group effects (it is mathematically equivalent to a mixed-effects model with variance
set to infinity), and also does not allow predictions for new groups.

Degenerate variance estimates lead to complete shrinkage of predictions for new and ex-
isting groups and yield estimated prediction standard errors that understate uncertainty. This
problem has been pointed out by Li and Lahiri (2010) and Morris and Tang (2011) in small area
estimation.

Here is an example. Using multilevel modeling of data on US voters’ choice of candidates,
Gelman, Shor, Bafumi, and Park (2007) found that richer voters tended to support Republican
candidates but with a slope that varied depending on some state-level covariates. For some mod-
els fit to some elections, the estimated variance of the residuals for the state-level slopes was
zero. In the resulting inferences, the slopes were perfectly predicted by the state-level covari-
ates. There is no reason to believe this—the perfect prediction is merely an artifact of a variance
estimate that happened to be zero—and it is awkward to graph or attempt to directly interpret
these results, showing an estimated perfect fit that we do not and should not believe. A related
difficulty arises when comparing instances of a model that is repeatedly fit to similar data from
different surveys or different years, yielding zero variance estimates some of the time, as found
by Bell (1999) when estimating annual poverty rates of school-aged children for the US states
using data from the Current Population Survey.

If zero variance is not a null hypothesis of interest, a boundary estimate, and the correspond-
ing zero likelihood ratio test statistic, should not necessarily lead us to accept the null hypothesis
and to proceed as if the true variance is zero. This point is particularly important when zero
variance leads to the smallest possible standard errors for parameters of interest as in random-
effects meta-analysis where the practice of using tests of homogeneity as a basis for choosing
between fixed and random-effects meta-analysis has been criticized (e.g., Hardy & Thompson,
1998; Borenstein, Hedges, Higgins, & Rothstein, 2009; Curcio & Verde, 2011; Draper, 1995,
pp. 52–53). Inclusion of varying intercepts can be viewed as a continuous model expansion
(Draper, 1995) to allow for the possibility that there may be unexplained differences between
groups (see also Gelman & Meng, 1996).

An argument against avoiding boundary estimates is that negative variance parameters
should be permitted if the model is viewed as a marginal model for the responses given the
covariates, in which case only the sum of the group-level and within-group variance must be
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positive (Verbeke & Molenberghs, 2000, pp. 52–53). However, we take a hierarchical perspec-
tive, where the intercepts vary due to omitted group-level variables and, therefore, the group-level
variance must be nonnegative.

2.2. Example: Meta-analysis

Two important examples where the number of groups is often small and the estimate of the
group-level variance affects the standard errors for the coefficients of interest are meta-analyses
and cluster-randomized trials. Here, we briefly consider a meta-analysis example that we return
to in Section 5 where we also analyze data from a cluster-randomized trial.

A classic example where the maximum likelihood estimate of the group-level variance is
zero is a meta-analysis of randomized experiments of coaching for the Scholastic Aptitude Test
(SAT) conducted in eight schools (Alderman & Powers, 1980; Rubin, 1981; Gelman, Carlin,
Stern, & Rubin, 2004). The data consist of an estimated treatment effect and associated standard
error for each school, obtained by separate analyses of the data of each school.

Meta-analysis with varying intercepts (DerSimonian & Laird, 1986), typically called
random-effects meta-analysis, allows for heterogeneity among studies due to differences in pop-
ulations, interventions, and measures of outcomes. The model for the effect size yi of study i can
be written as

yi = µ + θi + εi , θi ∼ N
(
0,σ 2

θ

)
, εi ∼ N

(
0, s2

i

)
, (1)

and allows the effect µ+ θi of study i to deviate from the overall effect size µ by a study-specific
amount θi . The estimated effect yi for study i differs from µ + θi by an estimation error εi with
standard deviation set equal to the estimated standard error for study i.

The ML estimate of σθ is 0, which implies that the treatment effect µ is the same for all
schools, and that the studies conducted in the different schools are “functionally equivalent”
(Borenstein et al., 2009, p. 83) in terms of populations, interventions, and measures of outcomes.
Because studies conducted by different researchers in different settings are usually known a
priori to be heterogeneous, there has been much criticism of the practice of testing the null
hypothesis of homogeneity and proceeding as if the variance is zero when the null hypothesis
is not rejected (e.g., Borenstein et al., 2009; Draper, 1995; Hardy & Thompson, 1998; Overton,
1998; Viechtbauer, 2005). For instance, Higgins, Thompson, and Spiegelhalter (2009, p. 149)
argue that “such a null hypothesis is usually untenable.” Here, we propose not to proceed as if
the variance is zero when its point estimate is zero, if the data are consistent with larger values
of the variance (see also Curcio & Verde, 2011).

The range of values of σθ that is supported by the data can be assessed by considering the
estimated standard error of the estimate of σθ and by plotting the profile log likelihood of σθ

(maximized over µ). For the 8-schools data, the estimated standard error of 6.32 is substantial
and the profile log-likelihood (the left plot in Figure 1) is quite flat, showing that large values
of σθ (e.g., σθ = 6.30) are supported.

Inference for σθ is important because it affects both the point estimate µ̂ of the overall effect
size and its estimated standard error, ŝe(µ̂) = [∑i (s

2
i + σ̂ 2

θ )−1]−1/2, which increases with σ̂θ .
For example, the estimated standard error is 4.1 for σ̂θ = 0, compared with 5.5 for σ̂θ = 10 (the
corresponding estimates of µ are 7.7 and 8.1, respectively).

To compare study-specific effects, we can predict θi using the empirical Bayes predictor,
θ̃i = (1 − B̂i)yi + B̂i µ̂ where B̂i = s2

i /(σ̂ 2
θ + s2

i ) (e.g., Raudenbush & Bryk, 1985). When σθ is
estimated as zero, all the studies have the same predicted value µ̂. The right panel of Figure 1
shows that predictions change rapidly with increasing σ̂θ . The widths of the empirical Bayes
prediction intervals also increase with increasing σ̂θ , so that the uncertainty of the predictions is
understated whenever σθ is underestimated.
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FIGURE 1.
Profile log-likelihood as a function of σθ (left) and σ 2

θ (middle) and empirical Bayes predictions (right) for 8-schools
data. The dashed curve on the left is the quadratic approximation at the mode, based on the estimated standard error. The
vertical dashed line is the MPL estimate for a log-gamma(2,0) penalty on σθ (left) or σ 2

θ (middle). The vertical dotted
line on the right panel indicates one standard error of σ̂ML

θ .

FIGURE 2.
For a simple varying-intercept model with σθ = 0.5 and J = 10 groups: (a) Sampling distribution of the maximum like-
lihood estimates σ̂θ , based on 1,000 simulations of data from the model. (b) Log-likelihood functions for 100 simulated
datasets. When the maximum is at 0, curves are shown in black and otherwise in gray. The maximum likelihood estimates
are extremely variable and the likelihood function is not very informative about σθ .

2.3. Simulation: Boundary Problems for a Simple Model

To demonstrate that boundary estimates occur frequently with a small number of groups and
that large values of the variance also tend to be supported in such situations, we simulate data
from a varying-intercept model with J = 10 groups. To keep things simple, we do not include
covariates, treat the mean and within-group variance as known, and set the group size to n = 1:

yj ∼ N(θj ,1), θj ∼ N
(
0,σ 2

θ

)
, for j = 1, . . . , J.

From this model, with σθ = 0.5, we create 1,000 simulated datasets and estimate σθ by
maximum likelihood by solving for σ̂θ in the equation 1 + σ̂ 2

θ = 1
J

∑J
j=1 y2

j , with the bound-

ary constraint that σ̂θ = 0 if 1
J

∑J
j=1 y2

j < 1. In this simple example, it is easy to derive the

probability of obtaining a boundary estimate as Pr(χ2(J ) < J

1+σ 2
θ

) = 0.37.

Figure 2(a) shows the empirical sampling distribution of the maximum likelihood estimates
of σθ . As expected, in more than a third of the simulations, the likelihood is maximized at σ̂θ = 0.
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The noise is so much larger than the signal here that it is impossible to do much more than bound
the group-level variance; the data do not allow an accurate estimate.

Figure 2(b) displays 100 draws of the likelihood function, which shows in a different way
that the maximum is likely to be on the boundary, with there being quite a bit of uncertainty. We
want a point estimator that is positive while being consistent with the data. Setting σθ to zero
would be a mistake, and it would also be wrong to say that the likelihood offers no information
at all. In particular, it bounds σθ on the high end. A fair point summary would be somewhere
in the range supported by the likelihood, with a standard error high enough to acknowledge the
uncertainty in the inference.

3. Maximum Penalized Likelihood Estimation of σθ

3.1. A Brief Review of Maximum Likelihood and Restricted Maximum Likelihood

We consider the model

yij = xT
ijβ + θj + εij , i = 1, . . . , nj , j = 1, . . . , J,

J∑

j=1

nj = N, (2)

where yij is the response variable and xij is a p-dimensional vector of covariates for unit i

in group j ; β is a p-dimensional vector of coefficients that do not vary between groups; θj ∼
N(0,σ 2

θ ) is a group-level error; and εij ∼ N(0,σ 2
ε ) is a residual for each observation. We further

assume that θj and εij are independent.
The parameters (β,σθ ,σε) are commonly estimated by maximum likelihood. Another op-

tion is restricted or residualized maximum likelihood (REML, Patterson & Thompson, 1971),
which is equivalent to specifying uniform priors for the regression coefficients β and finding the
marginal posterior mode, integrated over θj and β (Harville, 1974). Unlike the ML estimator,
the REML estimator of σ 2

θ is unbiased in balanced designs (constant group-size) if it is allowed
to be negative.

Discussion of small-sample inference for mixed models has largely focused on the covari-
ance matrix of β̂ (e.g., Kenward & Roger, 1997). Longford (2000) points out that this covariance
matrix is often poorly estimated because variance components are estimated inaccurately. The
sandwich estimator (Huber, 1967; White, 1990) is asymptotically consistent even if the distribu-
tional assumptions are violated. However, as Drum and McCullagh (1993) note, it can perform
poorly when the sample size is small. Crainiceanu, Ruppert, and Vogelsang (2003) derive a gen-
eral expression for the probability that the (local) maximum of the marginal (or restricted) like-
lihood is at the boundary for linear mixed models, and Crainiceanu and Ruppert (2004) discuss
the finite-sample distribution of the likelihood ratio statistic for testing null hypotheses regarding
the group-level variance.

3.2. Maximum Penalized Likelihood Estimation

In the present article, we are particularly concerned with the group-level standard deviation,
and we specify a penalty for σθ . The penalized log-likelihood function can be written as

log lp(σθ ,β,σε;y) = log l(σθ ,β,σε;y) + logp(σθ ), (3)

where the first term of the right-hand side is the log-likelihood and logp(σθ ) is an additive
penalty term. We find the maximum penalized likelihood (MPL) estimator that maximizes (3).

The exponential of the penalty term can be regarded as a Bayesian prior density for σθ .
Assuming a uniform prior, p(β,σε) = 1, for β and σε , the penalized log-likelihood is (up to an
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additive constant) the marginal log-posterior density with varying intercepts (θj ) integrated out.
Therefore, the MPL estimates can be viewed as posterior modal estimates. By integrating the
posterior over θj , we avoid the incidental parameter problem (Neyman & Scott, 1948; O’Hagan,
1976; Mislevy, 1986).

Unlike posterior mean estimation, maximum penalized likelihood (or posterior modal) es-
timation does not involve simulation and is computationally as efficient as maximum likelihood
estimation. By modifying existing maximum likelihood estimation procedures, gllamm (Rabe-
Hesketh, Skrondal, & Pickles, 2005, Rabe-Hesketh & Skrondal, 2012) in Stata and lmer (Bates
& Maechler, 2010) in R, we have developed software to find the maximum of the penalized
likelihood. The modified gllamm is available from www.gllamm.org and blmer, the modified
lmer function, can be found in the blme package available from the Comprehensive R Archive
Network. In both programs, the user has the option to specify a penalty that is added to the
log-likelihood during optimization.

3.3. Log-Gamma Penalty Function

We propose the logarithm of a gamma density as a penalty function of σθ , which is equiva-
lent to assigning a gamma (not inverse-gamma) prior on σθ ,

p(σθ ) = λα

Γ (α)
σα−1

θ e−λσθ , α > 0, λ > 0 (4)

with mean α/λ and variance α/λ2, where α is the shape parameter and λ is the rate parameter
(the reciprocal of the scale).

As a default choice of the parameters, we suggest α = 2 and λ → 0. Since the gamma
density with α = 2 is 0 at the origin, the MPL estimate of σθ is always positive even when the
maximum of the likelihood is at 0. In addition, with λ → 0, the gamma density function has
a positive constant derivative at zero, which allows the likelihood to dominate if it is strongly
curved near zero. The positive constant derivative implies that the prior is linear at zero so that
there is no dead zone near zero. The top-left panel of Figure 3 shows that the gamma(2,0.1)
density increases linearly from zero with a gentle slope. The shape will be even flatter with a
smaller rate parameter.

Other values than zero can also be used for λ when a researcher has prior knowledge about
the group-level variance. For example, we can set 1/λ to the prior estimate of σθ since 1/λ is the
mode of gamma(2,λ). Choosing λ → 0 as a default has the advantage that it does not depend on
the scale of the response variable.

Various reasonable-seeming choices of priors are not useful for avoiding boundary estimates
using the MPL approach. The exponential and half-Cauchy families, for example, do not decline
to zero at the boundary, so they do not rule out posterior mode estimates of zero. Such priors
can be excellent weakly informative priors for full Bayesian or posterior mean inference (see
Gelman, 2006), but do not work if the goal is to get a nondegenerate posterior mode estimate.

The lognormal and inverse-gamma densities are 0 at the boundary but all their derivatives
are zero at the origin, essentially ruling out small estimates of σθ no matter what the data
suggest. This can be seen in Figure 3 where both the inverse-gamma(2,5) (bottom-left) and
lognormal(1,0.5) (top-right) have a cutoff below which the prior will dominate. The shape of
the inverse-gamma changes dramatically depending on the choice of hyperparameters, as seen
by comparing the inverse-gamma(2,5) with the inverse-gamma(0.01,0.01) (bottom-right). An
inverse-gamma prior with small hyperparameters is often used as a noninformative prior for
variances in multilevel models because it is flat apart from the spike near zero; but posterior
mean inferences can be sensitive to the choice of hyperparameters (Gelman, 2006), unless the
likelihood is concentrated away from zero (Browne & Draper, 2006). The posterior will have its
mode close to the mode of the prior as long as the likelihood has moderate curvature, so that
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FIGURE 3.
Inverse-gamma, log-normal, and gamma priors. Both log-normal(1,0.5) (top-right) and inverse-gamma(2,5) (bot-
tom-left) have a cutoff below which the prior will dominate. Inverse-gamma(0.01,0.01) (bottom-right) has a sharp peak
at 0.01. Therefore, these priors will dominate the likelihood when the likelihood has a gentle curvature. In contrast,
gamma(2,0.1) (top-left) increases slowly and linearly from zero.

the inverse-gamma prior with small hyperparameters becomes informative for posterior mode
inference. Thus, the log-normal and inverse-gamma can only be used when there is real prior
information to guide the choices of their two parameters; they cannot be a default choice of the
sort we are seeking here.

4. Theoretical Properties

4.1. Difference Between Maximum Likelihood and Maximum Penalized Likelihood

To examine the effect of α and λ on the MPL estimator analytically, we treat (β,σε) as
nuisance parameters and assume that the profile log-likelihood of σθ can be approximated by a
quadratic function in σθ around the ML estimator, σ̂ML

θ ,

logL(σθ ) ≈ − (σθ − σ̂ ML
θ )2

2 · ŝe(σ̂ ML
θ )2

+ c1. (5)

Here, ŝe(σ̂ ML
θ ) represents the estimated asymptotic standard error of σθ (based on the observed

information). This quadratic approximation of the profile log-likelihood function of σθ is reason-
able because the first derivative of the profile log-likelihood (with respect to σθ , not σ 2

θ ) at the
ML estimate σ̂ML

θ is zero even when σ̂ ML
θ is zero.

For example, consider a balanced varying-intercept model without covariates by setting
xT

ijβ = µ and ni = n in model (2). For convenience, we assume that σε is known as σ0. Then the
profile log-likelihood of σθ is given by

logLσθ (σθ ) = −J

2
log

(
σ 2

0 + nσ 2
θ

)
− 1

2

(
SST

σ 2
0

− nσ 2
θ

σ 2
0 (σ 2

0 + nσ 2
θ )

SSB
)

where SST = ∑
j

∑
i (yij − ȳ··)2 and SSB = n

∑
j (ȳ·j − ȳ··)2.
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Taking the derivative of logLσθ with respect to σθ , we have

∂ logLσθ

∂σθ
=

(
− nJ

2(σ 2
0 + nσ 2

θ )
+ n · SSB

2(σ 2
0 + nσ 2

θ )2

)
· 2σθ . (6)

When we have a boundary estimate of σθ , the log-likelihood function of σ 2
θ usually has its maxi-

mum in the negative region, and so ∂ logLσθ /∂(σ 2
θ ) (the part in the parentheses on the right-hand

side in (6)) is negative at σ 2
θ = 0. In this case, the quadratic approximation of logLσθ in σ 2

θ at
the boundary will not be appropriate because the linear term still exists. Even in this case, (6)
will be zero because of the factor 2σθ . Therefore, in the Taylor expansion of logLσθ in σθ at 0,
the linear term vanishes, the leading term becomes the quadratic (with negative coefficient when
σ̂ML

θ = 0) and the higher order terms are negligible around σθ = 0. In Sections 5 and 6, we will
confirm that the quadratic approximation fits well in two applications and in simulations.

Using this quadratic approximation of the profile log-likelihood in σθ , we derive a number
of properties of the log-gamma(α,λ) penalty of σθ . (Derivations are in Appendix A.) In what
follows, we discuss the behavior of the MPL estimator of σθ for two cases: given under Property 1
for σ̂ML

θ = 0 and Property 2 for σ̂ ML
θ > 0.

Property 1. When σ̂ML
θ = 0, for fixed α > 1 and ŝe(σ̂ ML

θ ), the largest possible MPL estimate is
attained when λ → 0 with the value

σ̂θ = ŝe
(
σ̂ ML

θ

)√
α − 1. (7)

When α = 2, we obtain σ̂θ = ŝe(σ̂ ML
θ ). That is, when the ML estimate is on the boundary,

the log-gamma(2,λ) penalty shifts the MPL estimate away from zero but not more than one
estimated standard error.

One standard error can be regarded as a statistically insignificant distance from the ML
estimate. If the quadratic approximation in (5) holds and σ̂ ML

θ is zero, the likelihood-ratio test
(LRT) statistic for H0 : σθ = ŝe(σ̂ ML

θ ) is 2(logL(0) − logL(ŝe(σ̂ML
θ ))) = 1. Testing H0 : σθ = 0

is not a standard problem because the null value is on the boundary of the parameter space
and this problem has been investigated by several authors (Self & Liang, 1987; Stram & Lee,
1994). The asymptotic distribution (as J approaches infinity) of the test statistic is 0.5χ2

0 +0.5χ2
1

with 99th percentile 5.41. In finite samples, the mass at zero is larger and the 99th percentile is
smaller, but even with J = 5, the 99th percentile is as large as 3.48, in a model without covariates
and large cluster size (Crainiceanu & Ruppert, 2004). For testing H0 : σθ = ŝe(σ̂ ML

θ ) (> 0),
the percentile will be larger because there is less point mass at zero (Crainiceanu et al., 2003).
Therefore, an LRT statistic of 1 can be considered small.

Property 2. When σ̂ML
θ > 0, for fixed α > 1 and ŝe(σ̂ ML

θ ), the largest possible MPL estimate is
attained when λ → 0 with the value

σ̂θ = σ̂ ML
θ

2
+ σ̂ ML

θ

2

√
1 + 4(α − 1)ŝe

(
σ̂ ML

θ

)2
/
(
σ̂ ML

θ

)2
> σ̂ ML

θ .

In addition, ∂σ̂θ/∂ ŝe(σ̂ ML
θ ) decreases with σ̂ML

θ .

Similar to the case of σ̂ ML
θ = 0, σ̂θ is greater than σ̂ ML

θ and is an increasing function of
ŝe(σ̂ ML

θ ). The gradient ∂σ̂θ/∂ ŝe(σ̂ ML
θ ) has maximum

√
α − 1 for σ̂ ML

θ = 0 that coincides with
(7) and decreases as σ̂ML

θ increases. This implies that the log-gamma(α,λ) penalty does not shift
the MPL estimate as much when σ̂ML

θ > 0 as it does when σ̂ ML
θ = 0 when λ is close to zero.

Therefore, it has less influence on the estimate when the ML estimate is plausible than when the
ML estimate is on the boundary.
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We have discussed the log-gamma penalty on the group-level standard deviation (σθ ) since
the profile log-likelihood as a function of σθ has a better quadratic approximation, and thus helps
us to investigate the properties in Section 4.1. However, one might still be interested in penalties
on the variance, σ 2

θ .

Property 3. In the limit as λ → 0, a log-gamma(α,λ) penalty on σ 2
θ is equivalent to a log-

gamma(2α − 1,λ) penalty on σθ .

Therefore, the properties of the log-gamma penalty in this paper hold for the log-gamma
penalty on σ 2

θ with α adjusted appropriately.

4.2. Asymptotic Properties

Although this paper is concerned with the problem of boundary estimates which occur when
J is small, it is important to investigate the asymptotic properties of the proposed estimator as
J → ∞ and compare them with the asymptotic properties of the ML estimator.

Consider a balanced varying-intercept model with xT
ijβ = µ and ni = n. For sim-

plicity, we assume that µ and σ 2
ε are known. Then the ML estimator of σθ is σ̂ ML

θ =
{max( 1

J

∑J
j=1(ȳ·j − ȳ··)2 − 1

nσ 2
ε ,0)}1/2.

When the log-gamma(α,λ) penalty is applied to σθ , the MPL estimator, say σ̂ MPL
θ , is a

root of a fifth order polynomial (see Appendix B). Therefore, we do not have a simple formula
for σ̂ MPL

θ , but we can investigate its asymptotic properties using expansions of the penalized
log-likelihood (or the log-posterior) function.

The asymptotic distribution of the ML estimator in linear mixed models is shown in Miller
(1977). To examine the asymptotic properties of an estimator for σθ , it is sufficient to assume
only J → ∞ regardless of n. As J → ∞, σ̂ML

θ is consistent and
√

J (σ̂ ML
θ − σ 0

θ ) follows
N(0, I (σ 0

θ )−1) where I (σ 0
θ ) is the information matrix and σ 0

θ is the true value of σθ .
Fu and Gleser (1975) show that the posterior mode is consistent and has the same limiting

distribution as the ML estimator under some regularity conditions that are satisfied for our model.
That is, as J → ∞,

√
J
(
σ̂ MPL

θ − σ 0
θ

)
→ N

(
0, I

(
σ 0

θ

)−1)
.

Based on this result, we compare the higher order bias of the ML estimator and the MPL estima-
tor in the following theorem.

Theorem 4. At the order of J−1, the ML estimator and the MPL estimator have the following
bias equations, respectively,

E
(
σ̂ ML

θ

)
−σ 0

θ = − 1

4(σ 0
θ )3J

(
σ 2

ε

n
+

(
σ 0

θ

)2
)2

+ o
(
J−1)

E
(
σ̂MPL

θ

)
−σ 0

θ =
(

α + λσ 0
θ − 1

2
− 1

4

)
1

(σ 0
θ )3J

(
σ 2

ε

n
+

(
σ 0

θ

)2
)2

+ o
(
J−1).

In addition, with the default penalty (α = 2 and λ → 0), the two estimators have the same mag-
nitude of bias but the bias is negative for σ̂ ML

θ and positive for σ̂ MPL
θ .

Proof: An outline of the proof is in Appendix B and Dorie (2013). !

The MPL estimator of σθ with the default penalty is not only asymptotically unbiased and
as efficient as the ML estimator, but also has the same magnitude of bias at the higher order as
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seen in Theorem 4. In addition, the MPL estimator tends to be less biased for small J as will be
shown using simulations in Section 6.

4.3. Bayesian Point Estimation and Transformation of σθ

From a Bayesian point of view, when the posterior density of σθ is asymmetric, a transfor-
mation of σθ can make the density more symmetric so that the posterior mode will be located
near the posterior mean or median which have good asymptotic properties. The ML estimator is
invariant under transformations, but the posterior modal estimator is not because of the change
in prior density when transforming σθ . Thus, the transformation affects the posterior mode.

Property 5. The posterior with a gamma(2,λ) prior on σθ and with λ → 0 is the same (as a
function of σθ ) as the posterior of log(σθ ) with a (improper) uniform prior p(σθ ) = 1. If the log
transformation symmetrizes the posterior density, the posterior mode of σθ with a gamma(2,λ)
prior is equal to the posterior median of σθ with a uniform prior.

This implies that the posterior mode ̂log(σθ ) of log(σθ ) with a uniform prior on σθ is the
same as log(σ̂θ ) where σ̂θ is the posterior mode with a gamma(2, λ) prior on σθ .

With a uniform prior on σθ , the profile posterior density of σθ is just the profile likelihood
of σθ , which is often right-skewed or even has its mode at σθ = 0 (where the boundary estimation
problem occurs). In this case, the log transformation of σθ can make the shape of the posterior
more symmetric, so that the posterior mode of log(σθ ) is close to the posterior median of log(σθ ).
Since the log transformation is strictly increasing, the posterior median of log(σθ ) is the same
as log(σ̃θ ) where σ̃θ is the median of the original posterior of σθ with the uniform prior on σθ .
Because the posterior of logσθ with the uniform prior on σθ has the same functional form as the
posterior of σθ with the gamma(2,λ) prior on σθ , they are maximized at the same σθ , which is
also close to σ̃θ .

This relationship between the log transformation and the gamma prior can be extended
to general power transformations. Consider the Box–Cox transformations (1964), gγ (σθ ) =
(σ

γ
θ − 1)/γ if γ '= 0 and gγ (σθ ) = log(σθ ) if γ = 0.

Property 6. With λ → 0, maximizing the posterior of gγ (σθ ) with a gamma(α,λ) prior on σθ

is equivalent to maximizing the posterior of σθ with a gamma(α + 1 − γ ,λ) prior on σθ . If gγ

symmetrizes the posterior density, the posterior mode of σθ with a gamma(α + 1 − γ ,λ) prior
on σθ is the same as the posterior median of σθ .

It follows that the shape parameter α can be chosen to attain a more symmetric posterior
density so that the posterior mode is close to the posterior median with the uniform prior.

4.4. Connection to REML

Patterson and Thompson (1971) describe the REML log-likelihood, say log LR , in terms of
the original log-likelihood, L, and an additive penalty term,

logLR = logL − 1
2

log
{
det

(
XT V −1X

)}
, (8)

where V is the N × N covariance matrix of the vector of all responses y, and X is the design
matrix with rows xT

ij . In the varying-intercept model in (2), V is a block-diagonal matrix with
nj × nj blocks, Vj , j = 1, . . . , J , where Vj contains σ 2

θ + σ 2
ε on the diagonal and σ 2

θ on the
off-diagonals. Recalling that the penalized log-likelihood in (3) is the sum of the log-likelihood
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and the log-gamma density, the second term in (8), denoted by logpR(σ 2
θ ), is analogous to the

log of the gamma density function.
In order to compare the REML and log-gamma penalties, we consider a special case of

model (2) with balanced group size n, q level-1 covariates, and r level-2 covariates. The level-1
covariates, written as columns z1, . . . ,zq of the design matrix, consist of the same elements for
each group and satisfy 1T zu = 0, zT

u zu′ = 1 if u = u′, and 0 otherwise for u = 1, . . . , q . The
level-2 covariates are assumed to be dummy variables for the first r(< J − q − 2) groups. Then
the REML penalty becomes

logpR

(
σ 2

θ

)
= r + 1

2
log

(
σ 2

θ + σ 2
ε

n

)
+ c1, (9)

where c1 is a constant. The proof is provided in Appendix C.
Recall that when λ → 0, the log-gamma(α,λ) penalty on σ 2

θ (equivalently log-gamma(2α −
1,λ) on σθ ) can be written as

logp
(
σ 2

θ

)
= (α − 1) logσ 2

θ + c2. (10)

Ignoring the constant terms that have no influence on the MPL estimate, we see that the log-
gamma( r+3

2 ,λ) on σ 2
θ (equivalently log-gamma(r + 2,λ) on σθ ) approximately matches the

REML penalty, particularly when the group-size n is large and λ is close to zero.
The difference between these two penalty terms is clear when σθ is close to zero. At σθ = 0,

the log-gamma penalty term in (10) is −∞ for α > 1, whereas the REML penalty in (9) ap-
proaches −∞ only if σε → 0 or n → ∞. This explains why REML can produce boundary
estimates. Further, it implies that the log-gamma penalty assigns more penalty on σθ close to
zero than REML for small n and large σε .

The REML penalty expression in (9) is derived for covariates with specific properties as
described above. However, we found that the relationship between the REML and log-gamma
penalties illustrated in this section holds more generally (see Appendix D).

4.5. Connection to Adjustment for Density Maximization

Adjustment for density maximization (ADM; Morris, 2006; Li & Lahiri, 2010; Morris &
Tang, 2011) has been proposed for obtaining strictly positive group-level variance estimates in
the context of small area estimation. The Fay–Herriot model (1979) considered in these papers
is equivalent to random-effects meta-regression, the model in (1) but with covariates. The focus
is on prediction of θi and, therefore, on estimation of the shrinkage factor Bi = s2

i /(s2
i + σ 2

θ )

because the conditional means and variances of θi are linear in Bi , not in σ 2
θ . With a prior π(σ 2

θ ),
Morris and Tang (2011) approximate the posterior of Bi by a beta distribution and adjust the
posterior by multiplying by Bi(1−Bi). The mode of the adjusted posterior density approximates
the posterior mean of Bi and the posterior variance can also be approximated using the second
derivative of the adjusted density at the maximum. This procedure leads to the maximization of
the adjusted (profile) likelihood of σ 2

θ , La(σ
2
θ ) = σ 2

θ π(σ 2
θ )L(σ 2

θ ).
Based on the restriction of π(σ 2

θ ) to scale-invariant improper priors π(σ 2
θ ) = (σ 2

θ )c−1, this
method is equivalent to MPL estimation with a log-gamma(α,λ) penalty on σθ with λ → 0 and
α = 2c+1. Therefore, MPL also shares the properties of ADM for meta-regression and the Fay–
Herriot model (when the within-group variances are treated as known), such as predictions of θi

being minimax for mean squared-error loss when the within-group variances are equal and c ≤ 1
(Morris & Tang, 2011).

Morris and Tang’s proposal π(σ 2
θ ) = 1 corresponds to MPL with a log-gamma(2,λ) penalty

on σ 2
θ , equivalently a log-gamma(3,λ) on σθ with λ → 0. With constant variances s2

i = s2, MPL
therefore produces the James–Stein shrinkage constant as does ADM. Morris and Tang (2011)
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TABLE 1.
ML and MPL estimates for the meta-analysis, where the penalty is log-gamma(α,0) on σθ . The MPL estimates are
approximately at ŝe(σ̂ML

θ )
√

1 − α.

Method µ σθ Log-lik

est se seR est se

ML 7.69 4.07 3.33 0.00 6.32 −29.67
MPL: log-gamma(2,0) on σθ 7.92 4.72 3.39 6.30 4.61 −30.18
MPL: log-gamma(3,0) on σθ 8.10 5.38 3.43 9.42 5.34 −30.76

seR : robust standard error (sandwich estimator).

also mentioned the case c = 1/2, which is equivalent to our default penalization. However, they
support the flat prior, showing that the corresponding posterior mode approximates the posterior
mean and variance of Bi well in simulation studies.

Different from the focus on prediction of θi , we are interested in estimating the model pa-
rameters and the standard errors in the setting of linear mixed effect models. The MPL method
with a log-gamma penalty covers the ADM but is more flexible by allowing different choices for
the shape and rate parameter based on prior knowledge.

5. Examples

5.1. Meta-analysis

In this section, we apply MPL estimation with the log-gamma penalty function to the 8
schools data introduced in Section 2.2.

In this and the following sections, we use the expression “log-gamma(α,0)” though gamma
is defined only for λ > 0. Log-gamma(α,0) refers to the function (α − 1) logσθ , which is the
same as log-gamma(α,λ) up to a constant when λ → 0. Using a penalty function with a very
small value of λ, for example log-gamma(2,10−4), gives very close results to log-gamma(2,0)
for the examples and simulations in the following sections. For the model in (1), we consider
two different penalties: log-gamma(2,0) and log-gamma(3,0) on σθ . MPL estimates with these
penalties and ML estimates are given in Table 1. The ML estimate of σθ is zero as mentioned in
Section 2.2, and the estimated standard error of σ̂ML

θ is 6.32 (which corresponds to ŝe(σ̂ ML
θ ) in

Section 4.1).
The MPL estimates σ̂MPL

θ are 6.30 and 9.42 for α = 2 and α = 3, respectively. These are
close to the values ŝe(σ̂ ML

θ )
√

α − 1 with ŝe(σ̂ ML
θ ) = 6.32, which we expect with σ̂ ML

θ = 0 if the
profile log-likelihood is approximately quadratic in σθ , as it appears to be in the left panel of
Figure 1. In both cases, the log-likelihood at the MPL estimate is only a little bit lower than the
maximum log-likelihood.

Table 1 also reports model-based and robust (based on the sandwich estimator) standard
error estimates for µ̂. We see that the model-based standard error increases with σ̂θ as mentioned
in Section 2.2, whereas the robust standard error change very little.

Figure 1 shows the profile log-likelihood (maximized with respect to µ) of σθ (left) and σ 2
θ

(middle). On the left we see that the profile log-likelihood has its maximum at zero where the
gradient is zero as discussed in Section 4.1. Further, the profile log-likelihood is quite flat. We
see in the middle panel of Figure 1 that the profile log-likelihood has a negative gradient at zero
as a function of σ 2

θ so that the quadratic approximation for σ 2
θ is poor at the maximum likelihood

estimate of zero. In contrast, the profile log likelihood as a function of σθ is well-approximated
by a quadratic at the mode (dashed curve in left figure).
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TABLE 2.
Parameter estimates of the varying-intercept model for the cluster-randomized trial data. ML gives σ̂θ = 0 but MPL with
log-gamma(2,0) gives 0.26, which is close to the standard error of the ML estimate. The log-likelihood is reduced by
only 0.4. The standard errors of the fixed coefficient estimates are larger for MPL as expected.

ML MPL

est se est se

Intercept 19.51 0.86 19.35 0.88
Meat 0.50 0.40 0.53 0.46
Milk −0.60 0.39 −0.60 0.45
Calorie −0.28 0.39 −0.21 0.46
Age at time 0 0.02 0.11 0.03 0.11

σ̂θ 0.00 0.31 0.26 0.18
σ̂ε 3.07 0.10 3.07 0.10
Log-likelihood −1260.2 −1260.6

5.2. Cluster-Randomized Trial

Whaley, Sigman, Neumann, Bwibo, Guthrie, Weiss, Alber, and Murphy (2003) present a
cluster-randomized trial from rural Kenya that was designed to explore the impact of three dif-
ferent diets on the cognitive development of school children. Twelve schools were randomized
to provide meals with different dietary supplements: Meat, Milk, Energy, or No meal. Cognitive
assessments (Raven’s score) were made at 5 time-points, and we analyze the last observation
made after 21 months of treatment for a total of 496 children. The data were provided by Weiss
(2005). Three school-level dummy variables for the three dietary treatments and one child-level
covariate (age at the beginning of treatment) are included in the varying-intercept model, written
as

yij = β0 + β1x1j + β2x2j + β3x3j + β4x4ij + θj + εij , j = 1, . . . ,12, i = 1, . . . , nj

(11)

where θj ∼ N(0,σ 2
θ ) and εij ∼ N(0,σ 2

ε ).
Table 2 presents ML and MPL estimates with a log-gamma(2,0) penalty for the model in

(11). The ML estimate of the school-level standard deviation is on the boundary, whereas the
MPL estimate is 0.26, close to 0.31, the estimated standard error of the ML estimate. The log-
likelihood decreases negligibly, by only 0.4, at the MPL estimate. Figure 4 shows that the profile
log-likelihood of σθ is approximately quadratic in σθ near the mode. As expected, the estimated
standard errors of the treatment effect estimates are larger for MPL than for ML because the
treatments vary between groups.

6. Simulation Study: Balanced Varying-Intercept Model

We consider a varying-intercept model,

yij = β0 + θj + β1x1ij + β2x2ij + εij , i = 1, . . . , n, j = 1, . . . , J, (12)

with J = 3,5,10,30 groups and n = 5,30 observations per group. Three groups represent an
extreme situation that is unlikely to occur often in practice, and 30 is the largest number of groups
considered because the penalty term is not likely to have much influence for more than 30 groups.
Five units per group is small and occurs, for instance, in longitudinal data, whereas 30 units per
group is quite large and fairly common in cross-sectional settings. This model includes two
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FIGURE 4.
Profile log-likelihood curve of σθ and its quadratic approximation at the maximum for the cluster-randomized trial data.
The dash-dotted line indicates the MPL estimate, 0.264.

covariates: x1ij = i varies within groups only (its mean is constant across groups), and x2ij = j

varies between groups only. The coefficients β0, β1, β2 are fixed parameters, θj ∼ N(0,σ 2
θ ) is a

varying intercept for each group, and εij ∼ N(0,σ 2
ε ) is an error for each observation.

For each combination of J and n, we generated 1,000 datasets with true parameter values
β0 = 0, β1 = β2 = 1, σε = 1, and σθ = 0,1/

√
3, or 1, which correspond to intra-class correlations

ρ = 0,0.25, and 0.5, respectively. Although our method is based on the assumption that σθ > 0,
we include the condition σθ = 0 as the worst-case scenario. We obtain MPL estimates with log-
gamma(2,0) and log-gamma(3,0) penalties on σθ . The REML penalty corresponds to α = 3
since the model contains one group-level covariate. We compare MPL estimates with ML and
REML estimates.

Boundary Estimates Here, we report the proportion of estimates of σθ that are on the
boundary (less than 10−5) when the true σθ is not zero (1/

√
3 and 1). For σθ = 1√

3
, 47 % of

ML estimates and 45 % of REML estimates are zero for J = 3 and n = 5. As J or n increases,
the proportion decreases, but for J = 5 and n = 30, the proportion of estimates on the boundary
is still 5 % for ML and 4 % for REML.

When σθ = 1, the same pattern occurs but estimates are on the boundary less often for a given
condition. For J = 3 and n = 5, ML produces 34 % of estimates on the boundary compared with
32 % for REML. When J increases to 5 and n to 30, 1 % of ML estimates and 0.7 % of REML
estimates are on the boundary. When J = 30, ML and REML yield no boundary estimates for
either value of σθ .

In contrast to the ML and REML estimates, the MPL estimates are never on the boundary
in any of the simulation conditions. At the same time, the likelihood at the MPL estimates does
not differ considerably from the maximum. The likelihood ratio test statistic −2[logL(̂σMPL

θ ) −
logL(̂σ ML

θ )] for testing the restriction σθ = σ̂ MPL
θ was calculated for each replicate. When J > 3,

the largest test statistic among all the replicates and simulation conditions is 2.60. Even for J = 3,
the largest test statistic is 3.45. As discussed in Section 3.2, these values are not large.

Quadratic Approximation We now assess how well some of the relationships hold that
were derived in Section 4.1 by assuming that the profile log-likelihood is quadratic. Figure 5
shows that the MPL estimates calculated by the quadratic approximation of the profile log-
likelihood (see Properties 1 and 2) agree well with the MPL estimates with a log-gamma(2,0)
penalty on σθ for J = 3 (left) and J = 30 (right) when ρ = 0.25 and n = 30.
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FIGURE 5.
MPL estimates with a log-gamma(2,0) penalty on σθ for J = 3 (left) and J = 30 (right), ρ = 0.25 and n = 30 for the
first 100 replicates, compared with the MPL estimates based on the quadratic approximation of the profile log-likelihood
(see Properties 1 and 2). Agreement is good, suggesting that the quadratic approximation is good. Dots on the left graph
that fall off the line are due to a few samples that have uncommonly large estimated standard errors.

FIGURE 6.
Bias of σθ , RMSE for σθ , and coverage of confidence intervals for β2 for group size n = 5, standard deviation
σθ = 0, 1√

3
, and 1 (columns) and number of groups J = 3,5,10,30 (x-axis). Different estimators are represented by

different line patterns. When σθ > 0, all the methods outperform ML and the bias of the MPL estimator is as low as
REML depending on α. Also, when σθ > 0, the RMSE of the MPL estimator with both values of α is smaller than for
REML and ML and coverage is best for the MPL estimator with α = 3.

Figure 6 summarizes the estimated bias and the root mean squared error (RMSE) of σθ , and
the coverage of 95 % confidence intervals for β2 for the four methods for n = 5, J = 3, 5, 10,
30, and σθ = 0, 1√

3
, 1 and Figure 7 gives the results for n = 30.
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FIGURE 7.
Bias, RMSE of σθ and coverage of CI for β2 for group size n = 30, standard deviation σθ = 0, 1√

3
, and 1 (columns)

and number of groups J = 3,5,10,30 (x-axis). Different estimators are represented by different line patterns. When
σθ > 0, all the methods outperform ML and the bias of the MPL estimator is as low as REML depending on α. Also,
when σθ > 0, the RMSE of the MPL estimator with both values of α is smaller than for REML and ML and coverage is
best for the MPL estimator with α = 3.

Estimates of σθ The first rows of Figures 6 and 7 show that the bias for σθ decreases as
J increases and σθ decreases. Thus, the differences between methods are most obvious with
small J , and particularly when σθ > 0.

For σθ > 0, both REML and ML tend to underestimate σθ . MPL estimates with a log-
gamma(2,0) penalty also tend to be downward biased for σθ but not as much as the ML es-
timates. On the other hand, the MPL estimator with log-gamma(3,0) produces the largest esti-
mates among the four estimators so it often overestimates σθ . For σθ = 1, the MPL estimator
with log-gamma(3,0) has the smallest bias for all J . When σθ = 0, as expected, the MPL esti-
mators assign more penalty on the values close to the boundary than REML, so the bias is larger
than for REML and ML.

The overall pattern is the same for n = 5 and n = 30, but for n = 30 the MPL with log-
gamma(3,0) is closer to REML for σθ > 0 than for n = 5. This confirms that the log-gamma
penalty on σθ with α = 3 is similar to the REML penalty when the model contains one group-
level covariate, particularly with large n, as discussed in Section 4.4.

The root mean squared errors (RMSE) of both MPL estimators are consistently smaller
than for ML and REML when σθ is not zero (see middle rows of Figures 6 and 7). For σθ =

1√
3

and σθ = 1, REML has similar or smaller bias than MPL with a log-gamma(2,0) penalty,
but its RMSE is appreciably larger for small J because the REML estimator has the largest
variance among the four estimators. The MPL estimator tends to have smaller RMSE with a log-
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gamma(2,0) penalty than with a log-gamma(3,0) penalty but the difference decreases as n, J ,
and σθ increase.

Coverage of Confidence Intervals for β2 The standard error estimates of the estimated
coefficient of the group-level covariate (β̂2) are greatly influenced by σ̂θ . The squared asymptotic
standard error of β̂2 from the Hessian matrix is Var(β̂2) ≈ (nσ 2

θ + σ 2
ε )/nJ s2

X2
where sX2 is the

standard deviation of the group-level covariate X2 (Snijders & Bosker, 1993). When the true
variance is not zero but σ̂θ is on the boundary, the standard error of β̂2 will be underestimated
and the confidence intervals will be too narrow.

The bottom rows of Figures 6 and 7 show the proportions of 95 % confidence intervals
that cover the true value of β2. The gray solid line shows the nominal coverage (0.95). For all
values of σθ , ML gives confidence intervals with lower than nominal coverage. For σθ = 0, all
the methods except ML tend to have higher than nominal coverage.

When σθ > 0, most of the methods have lower than nominal coverage, but the MPL esti-
mator with α = 3 has the best coverage, particularly for σθ = 1√

3
and n = 5. Although the MPL

estimator with α = 3 tends to have large positive bias for σθ , it turns out to give better cov-
erage. Recalling that log-gamma(3,0) is close to the REML penalty (discussed in Section 4.4)
for large n, the coverage for the MPL estimator with α = 3 is closer to REML for n = 30 than
for n = 5. However, REML still shows significantly lower coverage than the MPL estimator,
particularly for small J .

We also considered the average ratio of the widths of the MPL versus REML confidence
intervals when a log-gamma(3,0) penalty is used for MPL. The largest increase in the widths
of the confidence intervals occurs in the extreme situation when σθ = 0 and J is small, with an
average increase of 60 % for J = 3 and 30 % for J = 5 when n = 5.

However, we are interested in the situation where zero variance is considered unreasonable
a priori; and for a moderate standard deviation σθ = 1√

3
, the MPL confidence intervals are on

average 20 % wider for J = 5, 8 % wider for J = 10, and 2 % wider for J = 30 when n = 5. In
these situations, MPL improves the coverage while it increases the width of confidence intervals
by a moderate amount.

In summary, the MPL estimator with a log-gamma penalty is successful at avoiding bound-
ary solutions; and, at the same time, the likelihood does not change substantially most of the
time. Furthermore, the MPL method performs as well as or better than ML or REML: if σθ is not
zero, the RMSE for σθ is uniformly lower for the MPL estimator with both penalties than for the
REML and ML estimators. When there are very few groups (J = 3 and J = 5), the MPL estima-
tors have greater bias than REML even when σθ is not 0. With such a small number of groups,
it would be preferable to use an informative prior that incorporates prior knowledge. However,
the default priors have smaller RMSE than REML, even for these extreme cases. Comparing the
MPL estimator with α = 2 and α = 3, α = 2 appears better in terms of bias and RMSE, whereas
α = 3 produces better coverage. Although there is no obvious winner, both penalties successfully
avoid boundary estimates.

We also performed a simulation study for unbalanced variance component models without
any covariates, following Swallow and Monahan (1984). For two different unbalanced patterns
with σθ = 0, 1√

3
,1, we compared ML and REML estimates with MPL estimates with a log-

gamma(2,0) penalty, which corresponds to the REML penalty when there is no group-level
covariate. (Results are in Appendix E.)

Similar to the balanced case, when σθ is not zero, ML and REML tend to underestimate σθ

and the RMSE tends to be larger than for the MPL estimates. The advantage of the log-gamma
penalty in terms of the RMSE is more obvious for σθ = 1. The standard errors of the fixed
intercept estimate are also underestimated by ML and REML when σθ is not zero while the MPL
estimators perform better in this regard.
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7. Discussion

In this paper, we considered linear varying-intercept models and suggested specifying a log-
gamma penalty for the group-level standard deviation to avoid boundary estimates. We showed
that our procedure guarantees nonzero estimates of the group-level variance, while maintaining
statistical properties as good as or better than maximum likelihood and restricted maximum
likelihood when the true group-level variance is not too close to zero. The penalty (or prior) is
only weakly informative in the sense that the log-likelihood at the maximum penalized likelihood
estimates tends to be not much lower than the maximum.

We have shown that the strategy of accepting the maximum likelihood estimate results in
undercoverage of confidence intervals for regression coefficients of group-level covariates. In
datasets where boundary estimates occur, a large range of values of the group-level standard
deviation is often supported by the data, and our method provides one such value. Our approach
is, hence, somewhere between purely data-based maximum likelihood estimation and setting the
variance to a constant instead of estimating it, as suggested by Longford (2000) for the purpose
of obtaining better standard errors and by Greenland (2000) when the variance is not identified.

We proposed log-gamma(α,λ) with α = 2 and λ → 0 as our default choice for the penalty
function, but sometimes weak prior information is available about a variance parameter. When
α = 2, the gamma density has its mode at 1/λ, and so one can use the gamma(α,λ) prior with 1/λ

set to the prior estimate of σθ . If strong prior information is available, then both parameters of the
gamma density can be set to encode this. If α is given a value higher than 2, the gamma function
assigns greater penalty on the boundary, but this is acceptable if it represents real information
about σθ .

Our idea can also be applied to models with varying intercepts and slopes where the problem
is to regularize the covariance matrix, say Σ , away from its boundary, |Σ | = 0. In this case, the
log-gamma penalty can be naturally extended to the log-Wishart penalty on Σ , which is equiv-
alent to the sum of log-gamma penalties on the eigenvalues of Σ1/2. Therefore, the log-Wishart
penalty with a certain choice of parameters will shift the MPL estimate of each eigenvalue away
from 0, or equivalently move the MPL estimate of Σ away from singularity. At the same time, it
moves the eigenvalues approximately at most one standard error away from the ML estimates as
did the log-gamma(2,0) in the univariate case.

Other applications of our approach include generalized linear mixed models, models with
more hierarchical levels, and latent variable models of all sorts—basically, any models in which
there are variance parameters that could be estimated as zero.

Another generalization arises when there are many variance parameters—either from a large
group-level covariance matrix, several different levels of variation in a multilevel model, or both.
In any of these settings, it can make sense to stabilize the estimated variance parameters by mod-
eling them together, adding another level of the hierarchy to allow partial pooling of estimated
variances.

Finally, from a computational as well as an inferential perspective, a natural interpretation of
a posterior mode is as a starting point for full Bayes inference, in which priors are specified for
all parameters in the model and Metropolis or Gibbs jumping is used to capture uncertainty in
the coefficients and the variance parameters (Dorie, Liu, & Gelman, 2013). For reasons discussed
above, it can make sense to switch to a different class of priors when moving to full Bayes: once
modal estimation is abandoned, there is no general reason to work with priors that go to zero at
the boundary.
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Appendix A. Derivation of Properties in Section 4

Here, we derive Properties 1 and 2.

Properties 1 and 2: With the quadratic approximation of the profile log-likelihood in Section 3.2
using Equation (5), the MPL estimator is given by

σ̂θ = −λ · ŝe(σ̂ ML
θ )2

2
+ σ̂ ML

θ

2
+ 1

2

√(
λ · ŝe

(
σ̂ ML

θ

)2 − σ̂ ML
θ

)2 + 4(α − 1)ŝe
(
σ̂ML

θ

)2
. (A.1)

With a simple calculation, we can show that ∂σ̂θ/∂λ ≤ 0. Therefore, as λ → 0 for fixed α
and ŝe(σ̂ ML

θ ), the MPL estimate increases monotonically to the maximum. When σ̂ML
θ = 0, the

maximum is ŝe(σ̂ML
θ )

√
α − 1. When σ̂ ML

θ > 0, (A.1) is reduced into

σ̂θ = σ̂ ML
θ

2
+ σ̂ ML

θ

2

√
1 + 4(α − 1)ŝe

(
σ̂ ML

θ

)2/(
σ̂ ML

θ

)2
> σ̂ ML

θ .

In addition, ∂σ̂θ/∂ ŝe(σ̂ ML
θ ) becomes

∂σ̂θ

∂ ŝe(σ̂ ML
θ )

= α − 1
√

α − 1 + (σ̂ ML
θ )2/{4ŝe(σ̂ ML

θ )2}
,

which decreases as σ̂ML
θ increases.

Property 3: If we assign the log-gamma(α,λ) penalty on σ 2
θ instead of σθ , the penalty becomes

logp(σ 2
θ ) = 2(α − 1) logσθ − λσ 2

θ . In the limit λ → 0, the term 2(α − 1) logσθ is the same as
the corresponding term of the log-gamma(2α − 1,λ) penalty on σθ .

Property 6: Let t = gγ (σθ ). Then the Jacobian is ∂g−1
γ (t) = (γ t + 1)1/γ−1, which is σ

1−γ
θ

when written as a function of σθ . Therefore, the prior p(gγ (σθ )) of gγ (σθ ) is proportional to
σ

α−γ
θ e−λσθ , which is proportional to gamma(α − γ + 1,λ).

Appendix B. Proof of Theorem 4

Proof: Let SnJ = (
∑

j (ȳ·j − µ)2)/n2J and TnJ = SnJ − (σ 0
ε )2/n − σ 2

θ . Then SnJ follows
(σ 2

ε /n+ (σ 0
θ )2)χ2

J /J , TnJ = Op(J−1/2), E(TnJ ) = 0 and Var(TnJ ) = 2(σ 2
ε + (σ 0

θ )2)2/J . Using
these terms, we can expand σ̂ML

θ as

σ̂ ML
θ =

√
TnJ +

(
σ 0

θ

)2 = σ 0
θ + 1

2σ 0
θ

TnJ − 1

8(σ 0
θ )3

T 2
nJ + Op

(
J−3/2).

Therefore, we have

E
(
σ̂ML

θ

)
= σ 0

θ − 1

4(σ 0
θ )3J

(
σ 2

ε

n
+

(
σ 0

θ

)2
)2

+ o
(
J−1).
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For the asymptotic bias of σ̂ MPL
θ , here we describe the outline of the proof. Details are in

Dorie (2013). We will work with an estimating equation ψnJ (σθ ), given by

ψnJ (σθ ) = σ 5
θ + σ 4

θ

(
J

λ
− α − 1

λ

)
+ 2σ 3

θ

σ 2
ε

n
+ σ 2

θ

(
J

λ

σ 2
ε

n
− J

λ
SnJ − 2

α − 1
λ

σ 2
ε

n

)

+ σθ
σ 4

ε

n2 − α − 1
λ

σ 4
ε

n2 ,

and σ̂ MPL
θ will be a root of ψnJ (σθ ) = 0. The expression above Theorem 4 gives σ̂ MPL

θ − σ 0
θ =

Op(J−1/2). Therefore, the Taylor expansion of ψnJ around σ 0
θ is given by

ψnJ

(
σ̂ MPL

θ

)
= ψnJ

(
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θ

)
+ ψ ′

nJ

(
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)(
σ̂ MPL
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)
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2
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θ

)(
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θ − σ 0
θ

)2 + op

(
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As the left-hand side of the approximation is 0, we can complete the square to obtain:

σ̂MPL
θ − σ 0

θ =
−ψ ′

nJ (σ 0
θ ) ±

√
ψ ′

nJ (σ 0
θ )2 − 2ψnJ (σ 0

θ )ψ ′′
nJ (σ 0

θ ) − 2ψ ′′
nJ (σ 0

θ )op(J−1)

ψ ′′
nJ (σθ )

.

Note that each of ψ , ψ ′ and ψ ′′ are of Op(J ), so that when we pass in 1/J under the root we
make each term Op(1),

σ̂ MPL
θ − σ 0

θ =
− 1

J ψ ′
nJ (σ 0

θ ) ±
√

1
J 2 ψ ′

nJ (σ 0
θ )2 − 1
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1
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.

The difference
√

J (σ̂ MPL
θ − σ 0

θ ) will blow up unless we take the positive root so that the leading
terms cancel. Using the expansions of ψ , ψ ′ and ψ ′′ and the expansion of the square root, we
can reduce the numerator to

a1TnJ + a2J
−1 + a3T

2
nJ + op

(
J−1) (B.1)

with some constants a1, a2, and a3.
Similarly, Taylor expansion of the reciprocal of the denominator is written as

b1 + b2TnJ + op

(
J−1/2) (B.2)

with constants b1 and b2. Multiplication of (B.1) by (B.2) gives the bias up to the order of J−1

and it follows that
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Since σ̂MPL
θ is uniformly integrable, the expectation of the above is

E
(
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Appendix C. Proof of Equation (9)

The model in (2) can be written as y = Xβ + ε, where X is a covariate matrix, ε follows
N(0,V ), V is a block-diagonal matrix with n × n blocks Vj , and each Vj contains σ 2

θ + σ 2
ε on

the diagonal and σ 2
θ on the off-diagonals. As noted in Section 4.4, the REML log-likelihood can

be written as the log-likelihood with an additive penalty term, − log{det(XT V −1X)}/2.
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FIGURE 8.
REML log-penalty function compared with log-gamma((r + 1)/2 + 1,0) penalty. The shapes of the curves agree quite
well, except when σ 2

θ is close to 0 where the log-gamma penalty tends to 0.

The inverse of V is also block-diagonal of the same structure as V but with {σ 2
ε +

(nj − 1)σ 2
θ }/σ 2

ε (σ 2
ε + njσ

2
θ ) in the diagonals and −σ 2

θ /σ 2
ε (σ 2

ε + njσ
2
θ ) in the off-diagonals.

Let the columns of X consist of a vector of ones, q level-1 covariates (z1, . . . ,zq ) and r

level-2 covariates (w1, . . . ,wr ). When we assume that w1, . . . ,wr are dummy variables for the
first r groups and zT

i zi = 1 and zT
i zj = 0 for all i '= j and the data are balanced, XT V −1X can

be simplified to a block-diagonal with

1

σ 2
ε (σ 2

ε + njσ
2
θ )

[
Jnjσ

2
ε nσ 2

ε 11×r

njσ
2
ε 1r×1 njσ

2
ε Ir

]

and J
σ 2

ε
Iq×q .

Therefore it follows that
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=
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J
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and
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2

log
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2
log

(
σ 2

θ + σ 2
ε

n

)
+ constant.

Appendix D. REML and Log-Gamma Penalty in General Cases (Referred in Section 4.4)

Figure 8 compares the REML penalty function in (9), the log of the gamma density with
corresponding α = (r + 1)/2 + 1, and the REML penalty function in the second term of (8) for
a dataset with n = 30, J = 5, q = 1, r = 0, 1, or 2, which does not have the form assumed when
deriving (9). For evaluating the REML penalty term in (8), the columns of the covariate matrix X

consist of a vector of ones, a level-1 covariate z1 with z1ij = i and two level-2 covariates w1 and
w2, where w1j = j for all j = 1, . . . , J and w2 is the same as w1 except that the values for the
last group are 0 instead of J . Comparing Figures 8(a) and (c), the penalties differ by a constant
which does not affect the mode, so formula (9) appears to hold more generally.

For Figures 8(a) and (b), the constant terms were ignored to make the figures easier to
compare. The REML penalty functions with r = 0, 1, and 2 look very similar to the gamma
penalty on σ 2

θ with α = 2, 3, and 4, respectively, except where σ 2
θ is close to zero. At σ 2

θ = 0,
the log-gamma penalty is −∞ for α > 1, whereas the REML penalty approaches −∞ only if
σε → 0 or n → ∞. This explains why REML can produce boundary estimates. Further, it implies
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FIGURE 9.
Bias and RMSE of σ̂θ , and bias of the standard error of µ̂. + is MPL, + is REM and ◦ is ML.

that the log-gamma penalty assigns more penalty on σ 2
θ close to zero than REML for small n and

large σε . Otherwise, REML can approximately be viewed as a special case of our method with a
log-gamma penalty.

Appendix E. Simulation of Unbalanced Variance Component Model

Swallow and Monahan (1984) compared several variance estimation methods for the one-
way model, given by

yij = µ + θj + εij , i = 1, . . . , nj , j = 1, . . . , J (E.1)

where θj ∼ N(0,σ 2
θ ) and εij ∼ N(0,σ 2

ε ). They considered unbalanced data with eight different
patterns of group sizes (n1, . . . , nJ ), and compared the bias and RMSE of estimators of σ θ using
simulated datasets.

In this appendix, we picked two of the patterns Swallow and Monahan (1984) considered,
(n1, . . . , nJ ) = (1,5,9) and (1,1,1,1,13,13) with σε = 1, and compared ML and REML with
the performance of the MPL estimates with log-gamma(2,0) penalty on σθ , which approximates
the REML penalty for this model.

As for the balanced case in Section 6, both ML and REML tend to underestimate σθ for
σθ > 0. (See the left column of Figure 9.) On the other hand, MPL tends to overestimate σθ

but the magnitude of the bias decreases as σθ increases. For σθ = 1, the MPL estimator has the
smallest bias for both patterns of group sizes. The RMSE is smallest for the MPL estimator when
σθ > 0 as shown in the middle column of Figure 9.

The last column in Figure 9 shows the estimated bias of the standard error of µ̂. When σθ

is zero, there is almost no difference in the bias between the ML and REML estimators. As σθ

increases, the bias for the MPL estimator becomes increasingly smaller than the bias for the other
estimators.
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