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Fundamental Research 

A Nonlinear Approach to Brain Function: 
Deterministic Chaos and Sleep EEG 

1. Raschke and J. B. Aldenhoff 

Department of Psychiatry, University of Mainz, Mainz, Germany 

Summary: In order to perform a nonlinear dimensional analysis of the sleep electroencephalogram (EEG), we 
applied an algorithm proposed by Grassberger and Procaccia to calculate the correlation dimension D, of different 
sleep stages under Lorazepam medication versus placebo. This correlation dimension characterizes the dynamics 
of the sleep EEG and it estimates the degrees offreedom of the signal under study. We demonstrate that slow-wave 
sleep depicts a much smaller dimensionality than light or rapid eye movement (REM) sleep, and that Lorazepam 
does not alter the EEG's dimensionality except in stage II and REM. Key Words: Deterministic chaos-Dimen­
sionality - Lorazepam. 

The daily experience ofthe electroencephalographer 
dealing with sleep and its abnormalities has led to a 
classification of the spontaneous electrical activity of 
the central nervous system (eNS) during sleep in dif­
ferent stages (1). However, the differentiation between 
different sleep stages, i.e. between light sleep (stage I) 
and rapid eye movement (REM) sleep, cannot be ex­
actly performed. One reason might be that the time 
history of the electroencephalogram (EEG) during a 
certain sleep stage is not predictable over a longer time 
period. Even if a typical EEG pattern is detectable, it 
is impossible to estimate the future behavior of the 
EEG. This means that similar causes in the sense of 
similar EEG states or similar EEG patterns do not 
produce similar effects. This is the reason why some 
authors considered the EEG to be a stochastic process 
(2-5), which, for instance, might be the expression of 
band-pass-filtered signals from hidden noise genera­
tors. In this sense the unpredictability of the sleep EEG 
is a basic feature of its statistical character. 

To the contrary, in recent years it has become clear 
(6-9) that unpredictability does not damage the cau­
sality principle of natural philosophy. Under selected 
conditions, nonlinear dynamical systems that can be 
described by deterministic mathematical models are 
able to generate so-called deterministic chaos. Such 
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chaotic systems show a sensitive dependence on initial 
conditions, which means that different states of a sys­
tem that are arbitrarily close initially will become mac­
roscopically separated after sufficiently long times (10-
14). Regardless of a prescription of the system's dy­
namics in terms of differential equations, the behavior 
of such chaotic systems is not predictable over longer 
time periods (15). In this sense the unpredictability of 
the EEG is a basic phenomenon ofits chaotic character. 

The commonly used method for investigating the 
behavior of dynamical systems is to measure their at­
tractors in phase space and to compute their correlation 
dimension D2• This dimensionality estimates the com­
plexity or the degrees of freedom of the investigated 
signal (16). 

The nonlinear EEG analysis described in this paper 
exceeds the gain ofinformation from conventional sig­
nal analysis. The dimension analysis is a description 
of the dynamical properties ofa system and, as is shown 
in the present paper, time histories with apparently 
similar spectra do not necessarily have the same di­
mensionality. 

The main aim of the present paper is to demonstrate 
that the EEG during different sleep stages is a deter­
ministic process. The highly nonlinear character of the 
EEG should not be confused with noise properties. The 
application of this method to the sleep EEG has shown 
that different sleep stages correspond to significantly 
different correlation dimensions. The more the sleep 
moved toward slow-wave sleep, the lower the corre­
lation dimension D2• 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/15/2/95/2742887 by guest on 21 August 2022



96 J. ROSCHKE AND J. B. ALDENHOFF 

As an example, we will demonstrate how the theo­
retical aspects of deterministic chaos led to new ap­
proaches in pharmacopsychiatry. In normal healthy 
probands the influence of Lorazepam does not altt:r 
the dimensionality of slow-wave sleep, but it does altt:r 
stage II and REM sleep. 

METHODS 

The concept of attractors 

A dynamical system is defined by a set of first-order 
differential equations. It is well known that the non­
linearity of these differential equations is a necessary 
(but not sufficient) condition for the generation of d(~­
terministic chaos (8). 

In most cases it is impossible to specify the solution 
of such differential equations in a closed formula. In 
order to ge! better insight into the properties of dy­
namical systems, investigations of such systems are 
performed in the so-called phase space. Every instan­
taneous state of a system is represented by a single 
point in the phase space. The sequence of such states 
over the time scale defines a curve in the phase space, 
called a trajectory. As time increases, the trajectories 
either penetrate the entire phase space or they converge 
to a lower dimensional subset, called an attractor. 

Different kinds of attractors are known. A closed 
curve, e.g. the phase-space representation of a sinusoid, 
is called a limit cycle. The sum of two sine waves with 
incommensurable frequencies results in a torus in phase 
space. Two arbitrarily close points of a limit cycle will 
continue to stay close as time increases. However, a 
subset of a phase space is called a strange attractor if 
initially arbitrarily close points get macroscopically 
separated after sufficiently large time intervals. In this 
case, similar causes do not produce similar effects. This 
important property is called sensitive dependence on 
initial conditions, which means unpredictability is a 
basic feature of strange attractors. On the contrary, the 
phase-space representation of noise never converges to 
a lower dimensional subset. Noise always penetrates 
the entire phase space. Therefore a stochastic process 
cannot define any attractor. 

One of the most commonly used methods to describe 
and characterize an attractor is to compute its corre­
lation dimension D z (17). The correlation dimension 
is introduced in information theory (18) and is a gen­
eralization of the Hausdorff (or fractal) dimension Do. 
Moreover, it estimates the information dimension DI 
when Do> DI > D z• 

A necessary condition for the computation of di­
mensionality is to construct the phase space. For the 
analysis of experimental data, the proposal of Takens 
(19) is usually followed, which spans the phase space 
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by the time-shift method. This means that an n-di­
mensional phase space was spanned by x(t), x(t + tJ, 
... , x(t + (n - 1 )tJ. In our investigations we always 
used a time lag td, which was the first zero in the cor­
responding autocorrelation function and embedded the 
signals into phase spaces of up to 15 dimensions. For 
details of the theory see Raschke and Basa (20-22) 
and Raschke and Aldenhoff (23). 

In order to estimate the ~orrelation dimension Dz, 
one computes the correlation integral (17) 

(i <#= j) 

E>: Heavyside function 

Here, C(R) is a measure of the probability that two 
arbitrary points Xi, Xj of the phase space will be sepa­
rated by distance R. The main point is that C(R) be­
haves as a power of R for small R. 

C(R) ex RD2 

Therefore plotting log C(R) versus log R allows us to 
calculate D z from the slopes ofthe curves. If the slopes 
of the graphs for increasing embedding dimensions 
converge to a saturation value, this limit is called the 
correlation dimension Dz• Because of the indepen­
dence of the calculated dimensionality from the time 
lag td, one can prove at least that Dz is not altered if 
another td is chosen (22). 

For the analysis of an attractor of which the dimen­
sionality was not previously known, it is necessary to 
calculate C(R) for several embedding dimensions. As­
suming the dimensionality of an attractor is k, then 
the embedding theorem of Witney requires an embed­
ding dimension of 2k + 1 (14, 22, 24). 

Specific properties of D2 

For a better understanding of the interpretation of 
the correlation dimension D z, we will outline some 
features ofDz based on theoretical data. If an attractor 
is a closed curve in phase space (limit cycle), its cor­
relation dimension is D z = 1.00. A sine wave x(t) = A· 
sin(21l"flt) is the simplest example of a limit cycle. 
Moreover, the sum of two sine waves with commen­
surable frequencies (i.e. fl = 2 Hz, fz = 3 Hz) defines 
a limit cycle too (Fig. la). To the contrary, the sum of 
two sine waves with incommensurable frequencies (fl 
= 1.414 Hz, fz = 1.732 Hz) results in a torus (Fig. lb) 
with a dimensionality of Dz = 2.00. 

These examples demonstrate the advantage of the 
nonlinear dimension analysis versus conventional 
spectral analysis. Whereas the power spectrum of the 
sum of two sine waves (incommensurable frequencies 
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FIG. 1. a. The sum of two sine waves (f\ = 2 Hz, f2 = 3 Hz) results 
in a closed curve in phase space, called a limit cycle. b. The sum of 
two sine waves with incommensurable frequencies (f\ = 1.414 Hz, 
f2 = 1.732 Hz) results in a torus in phase space. 

or not) remains in two different peaks in the frequency 
domain, the evaluation of the correlation dimension 
shows the differences. The calculation of D2 from a 
time series consisting of a certain frequency and its 
harmonics gives a value of D2 = 1.00. If the signal 
consists of two or three incommensurable frequencies, 
the correlation dimension is D2 = 2.00 or D2 = 3.00, 
respectively (24). 

As mentioned above, the phase-space representation 
of a stochastic signal does not result in a convergence 
of the trajectory to an attractor. This means that the 
dimensionality of white noise is infinite. All strange 
attractors encountered up to now have a fractal di­
mension, which means that their dimensionality is a 
noninteger. Strange attractors can be identified with 
the properties of deterministic chaos. Figure 2 shows 
two strange attractors: the famous Rossler attractor, 
and the two-dimensional phase-space representation 
of an attractor of a human's sleep stage IV. 

The main advantage of dimension analysis is the 
investigation of time series with apparently noiselike 
spectra. If the phase-space representation of such sig­
nals converges to an attractor, its dimensionality is a 
finite number. Otherwise, the investigated time series 

a) 

b) 
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FIG. 2. a. An example of a strange attractor (Rossler attractor); 
modified after Abraham and Shaw (Dynamics-Geometry of Be­
havior, Santa Cruz, CA: Aerial Press, 1983). b. The two-dimensional 
phase-space representation of a human's sleep stage IV. 

has stochastic properties and cannot be considered as 
a signal from a deterministic system. 

An important question is whether the information 
one gains from the estimation of dimensionality is con­
tained in the power spectra. In other words, is the 
dimensionality a parameter that increases knowledge 
about a system's dynamics? To answer this question 
we used data from a former investigation (24). We 
compared two time series, XOEA and XHI> the EEG of 
each measured with chronically implanted electrodes 
from the auditory cortex (GEA) and the hippocampus 
(HI) of a cat's brain during slow-wave sleep (21,24). 
The dimensionality of the cortex was D2 = 5.63, and 
that of the hippocampus was D2 = 4.58. 

Following the proposal of Schroeder (25), we com­
puted an autoregressive filter AH1(t), which estimated 
the spectrum of the signal XH1. Therefore the convo­
lution Y GEA = AHI(t)*XoEA converted the time series 
XOEA into Y OEA, having a spectrum resembling that of 
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TABLE 1. Correlation dimensions (D) from lead position 
Pz and Czfrom 12 healthy subjects without medication 

-
P, C, 

II" III IV REM II III IV REM 
-

A 6.10 4.90 4.70 6.00 6.00 5.00 4.70 5.90 
B 6.50 4.80 4.50 7.00 6.40 4.80 4.50 7.00 
C 6.10 5.30 4.20 6.10 5.90 5.30 4.10 6.00 
D 6.00 4.80 4.00 5.90 5.90 4.90 4.00 5.80 
E 5.60 4.30 4.70 6.30 5.50 4.20 4.70 6.20 
F 5.80 4.40 4.10 6.00 5.70 4.30 4.00 5.90 
G 5.70 4.80 4.40 6.10 5.80 4.90 4.40 6.20 
H 5.20 4.50 4.10 5.90 5.10 4.40 4.00 5.70 
I 5.20 4.30 4.00 5.60 6.00 4.60 4.20 6.50 
J 6.20 4.70 4.00 7.20 6.50 4.80 4.00 6.60 
K 5.70 4.60 4.20 6.00 5.70 4.60 4.20 6.00 
L 5.90 4.80 4.40 6.20 5.90 4.80 4.40 6.20 

Mean 
value 5.83 4.68 4.28 6.19 5.87 4.72 4.27 6.17 

SD 0.39 0.29 0.26 0.46 0.37 0.31 0.27 0.37 

" Sleep stages II-IV and REM. 

XHI and vice versa (24). In other words, XHI angY OEA 

as well as XOEA and Y HI had comparable power spectra. 
The main point was that regardless of the similar power 
spectra, the dimensionality ofY OEA (D2 = 5.15) differed 
from that of XHI and also the dimensionality of Y HI 

(D2 = 5.10) differed from that of XOEA ' In other words, 
time series with comparable power spectra did not 
yield to attractors with the same dimensionality. 
Therefore measurement of the dimensionality is an 
additional tool for analyzing the dynamics of brain 
waves. 

Experimental setup 

We investigated 12 healthy male subjects, aged be­
tween 20 and 31 years (mean 24.6 ± 1.7 years). Sub­
jects were volunteer recruits from the university stu­
dent population and the general public. All were in 
self-reported good health with regular sleep-wake pat­
terns. There was no evidence of hypnotic drug use or 
above-average alcohol or caffeine consumption. All 
were free of a past history or current symptoms of 
psychopathology as well as of any medical condition 
known to influence sleep. 

We performed two experimental sessions: First, we 
recorded the sleep EEG under drug-free conditions 
(placebo), and second, we applied an oral dose of 2.5 
mg Lorazepam at 10:30 p.m. The registration of the 
sleep EEG was started at 11 :00 p.m. and was finished 
at 7:00 a.m. the next day. Surface electrodes were placed 
on the scalp (P., C., C3 and C4) and mastoid to record 
EEG activity, at the outer canthi to the left and right 
eye to record eye movements and on the chin to record 
submental electro myographic activity. Interelectrode 
impedances were all below 5 kohms. 

For visual analysis according to Rechtschaffen and 

Sleep, Vol. 15, No.2, 1992 

Kales, the sleep EEG was recorded using a Schwarzer 
E 12000 EEG machine. Additionally, the EEG data 
from Pz and Cz were digitized by a 12-bit analog-digital 
converter, sampled with a frequency of fs = 100 Hz 
(50-Hz low-pass filter, 48 dB/oct.) and stored on the 
disk of a Hewlett Packard computer (A 900). 

According to Rechtschaffen and Kales, the sleep EEG 
was scored by two independent judges. They deter-
mined four artifact-free time periods each ofn = 16,384 
data points (nearly 2:40 minutes) corresponding to sleep 
stages II, III, IV and REM. Within these time periods 
the sleep stages did not change. The choice of the ar-
tifact-free time intervals was arbitrary. The represen-
tative collections of slow-wave sleep and sleep stage II 
were from the first half, and the REM periods were 
from the second half of the all-night sleep EEG. 

RESULTS 

Normal probands without medication 

The evaluation of the correlation dimension D2 
computed for all pro bands and from lead position Pz 

and Cz under drug-free conditions was shown in Table 
1. For both electrode positions the mean dimension­
ality was highest during REM stage and lowest during 
stage IV. Significances of the calculated differences be­
tween the mean values were performed by applying 
the Student's t test. For the differences between all sleep 
stages, except the comparison of stage II and REM at 
lead position C., a value of p < 0.05 was obtained. 
The difference between stage II and stage REM at Cz 

was not statistically significant (p < 0.1). The com­
parison of the correlation dimensions between the two 
different lead positions resulted in nonsignificant dif­
ferences. It should be mentioned that in some cases 
(nearly 15%) for the choice of the representative time 
intervals no clear convergence toward a saturation val­
ue and therefore toward a valid dimensionality could 
be observed. But in all cases in which an attractor 
exists, its correlation dimension was stable within small 
boundaries. 

Table 1 clearly shows that the correlation dimension 
D2 was highest during REM sleep and lowest during 
stage IV sleep. The differences between light (stage II) 
and slow-wave sleep (stage IV) was more than 1.5 units 
at both lead positions. The most impressive reduction 
of D2 was observed at the transition from stage II to 
stage III, i.e. when slow-wave sleep arose. This tran­
sition was characterized by a decrease in the correlation 
dimension D2 of 1.15 units at Cz and Pz• Between stages 
III and IV the differences were 0.45 units at Cz and 
0.40 units at P., but nevertheless they were significant. 
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Normal probands with Lorazepam medication 

The calculations of the correlation dimension D2 
from both electrode positions (P" CJ and for all pro­
bands were summarized in Table 2, which also shows 
the mean values and the standard deviations (SD). 
Because of the marked sleep-inducing effect ofLoraze­
pam, the probands did not show a sufficiently long time 
series of sleep stage I during the registration period 
from 11 :00 p.m. to 7:00 a.m. Therefore we were not 
able to compute the dimensionality of stage I sleep 
under Lorazepam medication. 

Again, under the influence of Lorazepam, DREM > 
Dn > DIll > DIv, and during all sleep stages there were 
no significant differences between the electrode posi­
tions Pz and Cz' Under the influence of Lorazepam a 
highly significant difference (p < 0.001) could be cal­
culated between the dimensionalities of all sleep stages. 
Even the difference between stage II and REM at elec­
trode position Cz (which was not sufficiently significant 
under drug-free conditions) was significant (p < 0.001). 
Again, the highest decrease of the dimensionality was 
observed at the transition from stage II to stage III. 

The comparison of slow-wave sleep (stages III and 
IV) under drug-free conditions and under Lorazepam 
medication did not show any significant difference in 
dimensionality at both lead positions. However, there 
was a significant difference (p < 0.01) between the 
dimensionality of sleep stage II at Pz as well as at Cz' 

Under the influence of Lorazepam the correlation di­
mension D2 was nearly half a unit smaller than under 
placebo conditions. For REM sleep, a significant dif­
ference (p < 0.05) in the dimensionality between pla­
cebo/verum could be calculated only at electrode po­
sition Cz' The dimensionality of REM sleep was lower 
(0.29 units) under the influence ofLorazepam. At lead 
position Pz this difference was not sufficiently signifi­
cant (p < 0.10). Again, a convergence toward an at­
tractor was not observed for the choice of the time 
epochs corresponding to defined sleep stages in 'all cases. 
Nevertheless, under the influence ofLorazepam a clear 
convergence toward a stable dimensionality could be 
observed in nearly 90% of all stages. 

DISCUSSION 

A few attempts to study the dimensionality of the 
EEG during wakefulness or sleep have been reported 
before. Babloyantz et al. (10), Rapp et al. (16,26,27) 
and Babloyantz (11) had already published some data 
about the chaotic dynamics of the brain's electrical 
activity. Our computations of the correlation dimen­
sion D2 during sleep in humans confirm the exemplary 
results ofBabloyantz et al. (10), who described for sleep 
stage IVa dimensionality of D2 = 4.37 and for sleep 

TABLE 2. Correlation dimensions (D) and corresponding 
mean values from lead positions Pz and Cz under Lorazepam 

medication (2.5 mg) 

P, C, 

IIa III IV REM II III IV REM 

A 5.40 4.80 4.50 6.00 5.30 4.80 4.30 5.90 
B 5.40 4.90 4.50 6.00 5.30 4.90 4.60 5.90 
C 6.00 5.40 4.30 6.20 5.80 5.30 4.60 6.10 
D 5.40 4.60 4.30 6.10 5.50 4.80 4.30 6.10 
E 5.00 4.50 4.20 5.60 5.20 4.40 4.20 5.90 
F 5.60 4.60 4.40 6.40 5.60 4.60 4.40 6.30 
G 5.20 5.00 4.60 5.50 5.20 5.00 4.50 5.60 
H 5.40 4.80 4.50 5.60 5.40 4.80 4.60 5.60 
I 5.40 4.80 4.20 5.80 5.30 4.60 4.00 5.60 
J 5.50 5.20 4.10 6.20 5.70 5.20 4.00 6.00 
K 5.40 4.60 4.10 5.80 5.10 4.80 4.20 5.60 
L 5.60 5.00 4.10 6.00 5.20 4.80 4.50 6.00 

Mean 
value 5.44 4.85 4.32 5.93 5.38 4.83 4.35 5.88 

SD 0.24 0.27 0.18 0.28 0.22 0.25 0.22 0.24 

a Sleep stages II-IV and REM. 

stage II a correlation dimension of D2 = 5.03. Graf 
and Elbert (28) investigated the waking EEG of a healthy 
subject and found a dimensionality of nearly 12 for 
the eyes-open condition. For the alpha-rhythm under 
eyes-closed conditions they computed a dimension­
ality of about 10. Meyer-Kress and HolzfuB (29) re­
ported a fractal dimension of 8.7 for the waking EEG, 
which decreased to 5.1 after the subject kept his eyes 
closed and relaxed for a while. 

Our computations indicate that in normal volun­
teers the dimensionality of the sleep EEG was much 
smaller than during wakefulness (28,29). Moreover, 
the dimensionality decreased if sleep became deeper. 
Under the influence of Lorazepam (2.5 mg oral appli­
cation), the dimensionality during sleep stage II was 
reduced by nearly haIfa unit (p < 0.01). During REM 
sleep (at electrode position Cz), the dimensionality re­
duction was also significant (p < 0.05). During slow­
wave sleep, the correlation dimension D2 did not show 
any significant changes under Lorazepam medication. 
Taken together, these data pointed to the view that the 
EEG's dimensionality is a basic measure of the com­
plexity of information processing by the brain. Com­
plexity might be highest under intensive cognitive or 
emotional activity and medium in a relaxed state, i.e. 
during alpha activity under eyes-closed conditions. 
During sleep, the complexity decreased with increasing 
deepness of sleep from light to slow-wave sleep. The 
relatively high dimensionality of REM sleep might be 
explained by the increased information processing of 
the brain due to dreaming. The reduction of the REM 
dimensionality under the influence ofLorazepam is in 
accordance with the view that Lorazepam reduces 
dreaming. Moreover, Lorazepam not only decreases 
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the percentage of REM sleep but also alters the quality 
of REM sleep to lower complexity. 

The question arises as to how specific the single num­
ber criterion D2 characterizes the different sleep stages. 
The choice of the time periods, each a representative 
collection of a certain sleep stage, was due to the dis­
tribution ofthe sleep cycles during the night. The slow­
wave sleep episodes, as well as those of sleep stage II, 
were acquired from the first half, whereas the acqui­
sition of the REM episodes were from the second half 
of the night. In order to estimate the intraindividual 
consistency of the correlation dimension, we computt:d 
D2 from different time periods of the first and the sec­
ond half of the night, each an unambiguous collection 
of slow-wave sleep, sleep stage II and REM sleep data. 
We found out that in some cases no clear convergence 
of the slopes of the curves of log C(R) versus log R to 
a saturation value could be observed, which means 
that in some cases the EEG of a certain sleep stage did 
not show enough stable attractor property. Therefore, 
no valid correlation dimension for these time intervals 
could be computed. But in all cases in which the EEG 
unambiguously converged to an attractor, the dimen­
sionality of this attractor was very stable within small 
boundaries «5%). Consequently, if a clear attractor 
exists for a certain sleep stage, its dimensionality is a 
valid measure for the complexity of the EEG signal 
under study. 

We considered as the main finding of this investi­
gation that the EEG measured at different sleep stages 
did not show properties of stochastic signals. Usually 
the slow-wave sleep activity is called a state of hyper­
synchrony, whereas this synchrony cannot be observed 
during sleep stage II, and it is also impaired during 
REM sleep. This view is supported by the fact that the 
dimensionality during slow-wave sleep was minimal 
and that less synchronized stages correspond with high­
er dimensionality. 

The evaluation of the dimensionality for the fLrst 
time allows one to estimate a degree of synchrony from 
a single recording. According to the method described 
in this paper, a correlation or coherency analysis (al­
ways needing two different lead positions minimally) 
is no longer required. Moreover, the correlation di­
mension is a measure of synchrony and complexity 
and the degrees of freedom of a signal. It is not yet 
clear what the physiological correlate of the different 
degrees of freedom might be. In analogy to Basar (30-
32) the higher dimensional dynamical properties of the 
CNS during sleep stages II and REM can be considt:red 
a result of weakly coupled oscillations of various neu­
ronal networks with independent frequencies. Vice 
versa, the lower dimensional slow-wave sleep might 
be an expression of strongly coupled oscillations or the 
partial inactivation of previously active neuronal net-
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works. In this sense the high synchrony (or low di­
mensionality) during slow-wave sleep might be a self­
organizing effect that switches uncoordinated neuronal 
activity to coupled oscillations (31,32). 

The computation of the correlation dimension or 
the evaluation of the degrees of freedom also estimates 
the lower boundary of the number ofindependent vari­
ables that are necessary to modulate the dynamics of 
the investigated system. In this sense, it is necessary 
that for any automatically performed analysis of the 
sleep EEG a set of five to eight independent variables 
should be investigated. Whereas slow-wave sleep should 
be characterized sufficiently by four or five variables 
(i.e. the alpha-, beta-, theta-activity or so), REM sleep 
or sleep stage II investigations require an extension of 
up to six or seven independent variables (i.e. the ad­
ditional activity of higher frequency components). Any 
lower dimensional system would not be good enough 
to approximate the brain's electrical activity during 
sleep. 

Further studies should answer the question of how 
the dimensionality and dynamics of the EEG may be 
changed under sleep disturbances, such as in depres­
sive or psychotic disorder. Also the question of how 
pharmaceuticals with different psychotropic effects in­
fluence the dynamical properties of the CNS is an im­
portant one. Even considering the enormous compu­
tational expense, the evaluation of the correlation 
dimension seems to be a promising tool to gain further 
insight into brain function and the regulation of sleep. 
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