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Abstract— In this paper a nonlinear Bayesian filtering frame-
work is proposed for the filtering of single channel noisy ECG
recordings. The necessary dynamic models of the ECG are based
on a modified nonlinear dynamic model, previously suggested for
the generation of a highly realistic synthetic ECG. A modified
version of this model is used in several Bayesian filters, including
the Extended Kalman Filter, Extended Kalman Smoother, and
Unscented Kalman Filter. An automatic parameter selection
method is also introduced, to facilitate the adaptation of the
model parameters to a vast variety of ECGs. This approach is
evaluated on several normal ECGs, by artificially adding white
and colored Gaussian noises to visually inspected clean ECG
recordings, and studying the SNR and morphology of the filter
outputs. The results of the study demonstrate superior results
compared with conventional ECG denoising approaches such as
band-pass filtering, adaptive filtering, and wavelet denoising, over
a wide range of ECG SNRs. The method is also successfully
evaluated on real non-stationary muscle artifact. This method
may therefore serve as an effective framework for the model-
based filtering of noisy ECG recordings.

Index Terms— ECG denoising, Kalman filtering, Model-based
filtering, Nonlinear Bayesian filtering, Adaptive filtering

I. INTRODUCTION

THE extraction of high resolution cardiac signals from
a noisy electrocardiogram (ECG) remains an important

problem for the biomedical engineering community. Despite
of the rich literature in this field, there are still many clinical
applications that lack reliable signal processing tools to extract
the weak ECG components contaminated with background
noise and permit the measurement of subtle features in the
ECG. The numerous non-cardiac ECG contaminants, such
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as electromyographic (EMG) noise, overlap with the car-
diac components in the frequency domain, particularly in
the 0.01Hz to 100Hz range. Band-pass filtering is therefore
inadequate to suppress such contaminants [1], [2].

Ensemble Averaging (EA) is another common approach for
the extraction of small cardiac components from the noise
contaminated ECG. However, as EA requires the averaging
of many beats, the subtle but important inter-beat variations
in the cardiac cycle are lost in the averaging procedure [3].
As an improvement over EA, classical Adaptive Filter (AF)
architectures have also been used for the noise cancellation
of ECGs containing baseline wander, power line interference,
EMG noise, and motion artifacts [4], [5].

For stationary signals, the Wiener Filter (WF) is the optimal
linear filtering technique in the Minimum Mean Square Error
(MMSE) sense, applied either in a causal sense in the time-
domain, or as the non-causal WF applied in the frequency
domain. However, the WF is not expected to (and does not)
give good results for a noisy ECG, due to the non-stationary
nature of the cardiac signal. In some related works, filtering
approaches have been proposed based on time-frequency [6],
[3], and time-scale [7], [8] WFs. The intuition behind the
use of the time-frequency or wavelet transforms in these
applications is to apply the WF in two domains, to facilitate
the tracking of ECG non-stationarities.

Wavelet Denoising (WD) is now a common practice for
denoising of signals having multi-resolution characteristics
such as the cardiac signal in the ECG. Donoho and Johnstone
[9] proposed a soft thresholding method for the so-called
shrinkage of the noise components in the wavelet domain.
Their approach together with some ad hoc variants of it,
have since been used for many applications, including high-
resolution ECG denoising [7], [10], [11]. In these cases, the
model of the ECG is essentially based on the frequency content
of the ECG and to some degree, the localization of the ECG
peaks in time.

Statistical techniques such as Principal Component Analysis
(PCA) [12], Independent Component Analysis (ICA) [13],
[14], and Neural Networks (NNs) [15] have also been used to
extract a statistical-based model of the signal and noise, allow-
ing the removal of in-band noise by discarding the dimensions
corresponding to noise. Although these are powerful in-band
noise filtering schemes, the model is fairly arbitrary and,
unless the basis functions are trained on a global set of beat-
types, can be extremely sensitive to small changes in either
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the signal or the noise. Nonlinear projective filtering [16], is
another similar method of forming an ad hoc statistical model
of the ECG and although potentially extremely powerful, is
extremely computationally intensive and highly sensitive to
outliers and changes in data dimensionality through changes in
background noise. These methods can be generally considered
as members of the AF family, in which some model of the
cardiac signal is constructed (either explicitly or implicitly),
and used as a reference signal to constrain the filter to
improve the signal-noise separation performance. In this paper,
we demonstrate that by using a realistic model to describe
the quasi-periodic behavior of the ECG, the idea of model-
based filtering may be further extended to a general Bayesian
filtering framework for online ECG denoising.

The framework presented in this paper is based on a
dynamic model, previously developed for the generation of
synthetic PQRST complexes with their relationship to the
beat-to-beat RR-interval timing [17], [18]. Considering the
simplicity and flexibility of this model it is reasonable to
assume that it can describe the dynamics of a broad class
of normal and abnormal ECGs. Moreover, as shown in [19],
[20], the applications of this model are not limited to ECGs
and may be extended to other quasi-periodic signals. In recent
works [21], [22] the authors employed this model to develop
an Extended Kalman Filter (EKF) for noisy ECG filtering. In
this paper, this synthetic ECG model is further modified and
used in conjunction with several nonlinear Bayesian filtering
approaches such as the EKF, Extended Kalman Smoother
(EKS), and Unscented Kalman Filter (UKF). Furthermore,
the model parameter selection is automated in order to adapt
the method to different ECG channels. In order to evaluate
the proposed method, different portions of white and colored
Gaussian noises have been added to visually inspected clean
ECGs recorded from various ECG lead configurations with
differing morphologies. The Signal-to-Noise Ratios (SNRs)
of the filter outputs have then been compared with several
conventional ECG denoising schemes. An example of the fil-
tering performance, in presence of real non-stationary muscle
artifact (MA) is also presented. The results demonstrate that
the proposed filters can accurately track the ECG signal in very
low SNR conditions, where the cardiac signal is almost lost in
background noise. This method is believed to serve as a novel
framework for the model-based extraction of high-resolution
ECG signals from noisy measurements. In particular, since
the presented method provides an accurate separation of
nonlinear and non-stationary signal and in-band noise, it is
hoped that this method will be suitable for applications such
as the extraction of ECG late potentials from high-resolution
ECGs [23], or the noninvasive extraction of fetal ECG from
the signals recorded from an array of electrodes placed on
the maternal abdomen [24], where due to the low SNR of
these signals, conventional filtering approaches do not give
satisfactory results.

The paper is organized as follows. In sections II and
III, the required theoretical background and the previously
developed synthetic ECG generator are described. The details
of the proposed tracking and filtering methods are presented
in section IV. In section V some implementation issues and a

description of standard ECG denoising methods that have been
used as a benchmark for the proposed methods are presented.
The results of the different filtering methods are presented and
discussed in section VI, and the final section is devoted to
some concluding remarks concerning the presented approach.

II. REVIEW OF THE BAYESIAN FILTERING THEORY

A classical problem in estimation theory is the estimation
of the hidden states, that are observable through a set of
measurements, of a system with an underlying dynamic model
. The well-known Kalman filter (KF) is one such method and
under certain general constraints, it can be proved to be the
optimal filter in the MMSE sense [25]. The conventional KF
assumes a linear model for the system dynamics and observa-
tion equations. In practice however, most systems are nonlinear
in nature and in order to extend the idea of conventional
KF to such systems, several variants of the original KF have
been developed. In this section, the theoretical foundations of
some of these extensions are briefly reviewed to facilitate the
presentation of the proposed methods.

A. The Extended Kalman Filter

The Extended Kalman Filter (EKF) is an extension of the
standard KF to nonlinear systems. Consider a discrete-time
nonlinear system with the unobserved underlying state vector
xk and observation vector yk at time instant k. A dynamic
model of this system may be represented as follows:

{
xk+1 = f(xk, wk, k)
yk = g(xk, vk, k) (1)

where f(·) is the state evolution function and g(·) represents
the relationship between the state vector and the observations.
The process and measurement noise vectors are wk and
vk respectively, with associated covariance matrices Qk =
E{wkwT

k } and Rk = E{vkvT
k }. The initial estimate of the

state vector is also assumed to be known and is given by:
x0 = E{x0}, with P0 = E{(x0 − x0)(x0 − x0)T }.

In order to use the KF formalism for this system, it is
necessary to derive a linear approximation of (1) near a
desired reference point (x̂k, ŵk, v̂k) [26], [27]. This leads to
the following linear approximate model:
{

xk+1 ≈ f(x̂k, ŵk, k) + Ak(xk − x̂k) + Fk(wk − ŵk)
yk ≈ g(x̂k, v̂k, k) + Ck(xk − x̂k) + Gk(vk − v̂k) (2)

where

Ak = ∂f(x, ŵk, k)
∂x

∣∣∣
x=x̂k

Fk = ∂f(x̂k, w, k)
∂w

∣∣∣
w=ŵk

Ck = ∂g(x, v̂k, k)
∂x

∣∣∣
x=x̂k

Gk = ∂g(x̂k, v, k)
∂v

∣∣∣
v=v̂k

(3)

Moreover, to simplify the matrix notations, the Fk and Gk ma-
trices are usually absorbed into the noise covariance matrices
as follows:

FkQkFT
k → Qk , GkRkGT

k → Rk
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With these notations, the EKF algorithm may be summarized
as follows:

x̂−k+1 = f(x̂+
k , w, k)

∣∣∣
w=wk

, rk = yk − g(x̂−k , v, k)
∣∣∣
v=vk

Kk = P−
k CT

k [CkP−
k CT

k + Rk]−1, x̂+
k = x̂−k + Kkrk

P−
k+1 = AkP+

k AT
k + Qk, P+

k = P−
k − KkCkP−

k

(4)

where by definition rk is the innovation signal, wk = E{wk},
vk = E{vk}, x̂−k = Ê{xk|yk−1, ..., y1} is the a priori estimate
of the state vector in the kth stage using the observations y1 to
yk−1, and x̂+

k = Ê{xk|yk, ..., y1} is the a posteriori estimate
of this state vector after using the kth observation yk. P−

k and
P+

k are defined in the same manner to be the a priori and
a posteriori estimates of the state vector covariance matrices
before and after using the kth observation, respectively.

As it can be seen in (4), the key idea of the EKF is to
linearize the nonlinear system model in the vicinity of the
previous estimated point, and to recursively calculate the filter
gain Kk, and the state covariance matrices P−

k and P+
k from

the linearized equations, while the KF time propagation is
performed via the original nonlinear equation [26].

B. The Extended Kalman Smoother

As with the Kalman Smoother, the Extended Kalman
Smoother (EKS) uses the information of future observations
to give better estimates of the current state. Due to this
non-causal nature, the EKS is expected to have a better
performance compared with the EKF. The EKS algorithm
basically consists of a forward EKF stage followed by a back-
ward recursive smoothing stage. Depending on the smoothing
strategy, smoothing algorithms are usually classified into fixed
lag or fixed interval smoothers [28]. In this paper the fixed
interval EKS is used, since the filtering procedure is carried
out offline on the entirety of each ECG signal. For real-
time applications of the proposed EKS methods, the fixed lag
smoother is usually more appropriate.

C. The Unscented Kalman Filter

For highly nonlinear systems, the linear estimate of the
nonlinear model does not provide a good approximation of the
model, and hence the EKF will not track the desired signal
around sharp turning points (such as for the ECG). In recent
years there has been great interest towards the extensions of the
KF to highly nonlinear systems [29]. The Unscented Kalman
Filter (UKF) is a filter based on the Unscented Transform
(UT), a method for the estimation of the first and second
order statistics of the outputs of highly nonlinear systems with
Gaussian inputs [26]. In fact, for the UKF the linearization
of the system model is no longer necessary since the prior
estimate of the state covariance matrix, which is required for
the Kalman gain calculations in (4), is directly estimated using
the UT. The theory of the UKF and its implementation issues
have already been discussed in the literature and the reader
is referred to [26] for a detailed mathematical description.
Note that the UKF is numerically sensitive and the covariance
matrices estimated by the UT may become semi-definite and
therefore much effort has been made to achieve numerically

TABLE I

PARAMETERS OF THE SYNTHETIC ECG MODEL IN (5)

Index(i) P Q R S T
θi(rads.) −π/3 −π/12 0 π/12 π/2
ai 1.2 −5.0 30 −7.5 0.75
bi 0.25 0.1 0.1 0.1 0.4

stable versions of this algorithm. The UKF algorithm used
in this paper is based on the ReBEL Matlab R© library, previ-
ously developed for nonlinear Bayesian filtering [30] and is
optimized to prevent the estimated covariance matrices from
becoming semi-definite.

III. A SYNTHETIC ECG GENERATOR

The dynamic equations used as the state model for the
Bayesian filter variants in this paper are modifications of the
synthetic ECG generator proposed by McSharry et al. [17].
This model has a variable number of free parameters that make
it adaptable to many normal and abnormal ECGs. The dynamic
model consists of a set of nonlinear dynamic state equations
in the Cartesian coordinates:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = ρx − ωy
ẏ = ρy + ωx

ż = −
∑

i∈{P,Q,R,S,T}
aiΔθiexp(−Δθ2

i

2b2
i

) − (z − z0)
(5)

where x, y, and z are the state variables, ρ = 1−
√

x2 + y2,
Δθi = (θ − θi)mod(2π), θ = atan2(y, x) is the four
quadrant arctangent of the elements of x and y, with −π ≤
atan2(y, x) ≤ π, and ω is the angular velocity of the trajectory
as it moves around the limit cycle in the x− y plane. The ai,
bi, and θi terms in (5) correspond to the amplitude, width,
and center parameters of the Gaussian terms of this equation.
Some typical values of these parameters taken from [17] are
listed in Table I. In this model, the baseline wander of the
ECG is modeled with the parameter z0 that is assumed to be
a relatively low amplitude sinusoidal component coupled with
the respiratory frequency. As it is seen in (5), each of the P, Q,
R, S, and T waves of the ECG waveform are modeled with a
Gaussian function and are located at specific angular positions
θi. In fact, the three dimensional trajectory generated by (5),
consists of a circular limit cycle in the x − y plane that is
pushed up and down as it approaches each of the θi. The z
coordinate of this three dimensional trajectory, when plotted
versus time gives the synthetic ECG. By introducing some
random variations into the parameters of Table I, it is possible
to generate quasi-periodic signals that appear to be realistic
ECG. Clifford et al. [31] have recently developed methods
for the estimation of the values of the model parameters
for realistic ECGs based on nonlinear optimization of the
parameters of (5) for a given ECG dataset. A rather similar
approach is later used for the initial estimation of the proposed
KF model parameters.

IV. METHODS

The KF theory and the previously developed dynamical
ECG model were reviewed in preceding sections. With this
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general overview, in this paper it is intended to use the
synthetic dynamical ECG model within a KF framework. In
order to do so, the dynamic equations of (5) need to be
modified for the problem of interest.

A. Modification of the Dynamic ECG Model

The dynamic equations proposed by McSharry et al. [17]
are in Cartesian coordinates. As previously reported in [22],
as a first modification, these equations can be transferred into
polar coordinates. Moreover assuming the z state variable in
(5) to be in millivolts, bi’s and θi’s in radians, and time in
seconds, it is clear that the ai’s are in mV/(rads.× s). So in
order to simplify the dimensions and later relate the model
parameters with real ECG recordings, the ai terms in (5) will
be replaced with:

ai =
αiω

b2
i

i ∈ {P, Q, R, S, T},

where the αi are the peak amplitudes of the Gaussian functions
used for modeling each of the ECG components, in millivolts.
This definition may be verified from (5), by neglecting the
baseline wander term (z − z0) and integrating the ż equation
with respect to t. With these changes, the new form of the
dynamic equations in polar coordinates is as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ṙ = r(1 − r)
θ̇ = ω

ż = −
∑

i∈{P,Q,R,S,T}

αiω

b2
i

Δθiexp(−Δθ2
i

2b2
i

) − (z − z0)
(6)

where r and θ are respectively the radial and angular state
variables in polar coordinates. These new set of equations
have some benefits compared with the original equations
proposed in [17]. First of all, the polar form is much simpler
and its interpretation is straightforward. Accordingly, the first
equation in (6) represents the radial behavior of the generated
trajectory, and converges to the limit cycle of r = 1 for
any initial value of r ≥ 1. However, the second and third
equations of (6) are independent from r, making the first
differential equation redundant. Therefore, this first equation
may be excluded as it does not affect the synthetic ECG (the z
state variable). Another benefit of this representation is that the
phase parameter θ, is an explicit state-variable that indicates
the angular location of the P, Q, R, S and T waves (Table I).
This point is further used in the implementation of the filter.
For the problem of interest, (6) may be further simplified by
discarding the baseline wander term (z− z0). In this case, the
simplified dynamic model of (6) in its discrete form, with the
assumption of a small sampling period of δ is as follows:⎧⎨

⎩
θk+1 = (θk + ωδ)mod(2π)

zk+1 = −
∑

i

δ
αiω

b2
i

Δθiexp(−Δθ2
i

2b2
i

) + zk + η (7)

where Δθi = (θk − θi)mod(2π), η is a random additive noise
that models the inaccuracies of the dynamic model (including
the baseline wander), and the summation of i is taken over
the number of Gaussian functions used for modeling the shape
of the desired ECG channel. In fact, due to the flexibility of

Gaussian mixtures, it is believed that by using a sufficient
number of Gaussian functions, they can be fitted to signals
recorded from different ECG leads. However, in order to
illustrate the general filtering framework, in this paper we only
use five Gaussians to model the ECG channels containing the
P, Q, R, S, and T waves.

Here forth, θk and zk are assumed as the state variables,
and ω, αi, θi, bi and η are assumed as i.i.d Gaussian random
variables considered to be process noises. Following the no-
tation of (1), the system state and process noise vectors are
defined as follows:

xk = [θk, zk]T ,

wk = [αP , ...αT , bP , ..., bT , θP , ..., θT , ω, η]T ,
(8)

and the process noise covariance matrix is given as
Qk = E{wkwT

k }.

B. Linearization of the Nonlinear Dynamic ECG Model

In order to set up an EKF model based on the nonlinear
synthetic model of (7), it is necessary to have a linearized
version of the model. Consequently, the state-equation of (7)
requires linearization using (2) and (3). By defining:{

θk+1 = F1(θk, ω, k)
zk+1 = F2(θk, zk, ω, αi, θi, bi, η, k), (9)

the following equations represent the linearized model with
respect to the state variables θk and zk:

∂F1

∂zk
= 0

∂F1

∂θk
=

∂F2

∂zk
= 1

∂F2

∂θk
= −

∑
i∈{P,Q,R,S,T}

δ
αiω

b2
i

[1 − Δθ2
i

b2
i

]exp(−Δθ2
i

2b2
i

)
(10)

Similarly, the linearization of (9) with respect to the process
noise components yields:

∂F1

∂ω
= δ

∂F2

∂η
= 1 i ∈ {P, Q, R, S, T}

∂F1

∂αi
=

∂F1

∂bi
=

∂F1

∂θi
=

∂F1

∂η
= 0

∂F2

∂αi
= −δ

ωΔθi

b2
i

exp(−Δθ2
i

2b2
i

)

∂F2

∂bi
= 2δ

αiωΔθi

b3
i

[1 − Δθ2
i

2b2
i

]exp(−Δθ2
i

2b2
i

)

∂F2

∂θi
= δ

αiω

b2
i

[1 − Δθ2
i

b2
i

]exp(−Δθ2
i

2b2
i

)

∂F2

∂ω
= −

∑
i

δ
αiΔθi

b2
i

exp(−Δθ2
i

2b2
i

)

(11)

C. Observation Equations

The noisy ECG recordings are assumed to be observations
for the KF. The relationship between the states and obser-
vations of the KF depends on the location of the electrodes
and the origin of the measurement noise. For example, motion
artifacts, environmental noise or bioelectrical artifacts such as
EMG or electrogastric noise, may be assumed as the mea-
surement noises. While the measurement noise can generally
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contaminate the ECG in a nonlinear form, the results of this
paper are based on the assumption of additive Gaussian noise.

In addition to the noisy ECG observations, the phase θ may
also be added as a second observation. In fact, by studying
the values of Table I, it is noticed that the R-peak is always
assumed to be located at θ = 0 and the ECG contents lying
between two consecutive R-peaks are assumed to have a phase
between 0 and 2π (or −π and π). So by simply detecting the
R-peaks an additional observation is achieved. While the R-
wave detection is a rather simple and routine procedure, one
may benefit from more sophisticated and robust approaches
for very low SNR applications [32]. This additional phase
information will also help to synchronize the dynamical KF
trajectories with the reference noisy signals, without the need
for manual synchronization. This RR-interval phase warping
technique may be assumed as a generalization of the external
reference, previously used for the synchronization of AFs for
event-related signals [33], [5].

Hence the phase observations φk and the noisy ECG mea-
surements sk may be related to the state vector as follows:[

φk

sk

]
=

[
1 0
0 1

]
.

[
θk

zk

]
+

[
uk

vk

]
(12)

where Rk = E{[uk, vk]T [uk, vk]} is the observation noise
covariance matrix.

In the context of estimation theory, the variance of the
observation noise in (12) represents the degree of reliability
of a single observation. In other words, when a rather precise
measurement of the states of a system is valid the diagonal
entries of Rk are small, and the KF gain is adapted so as to
rely on that specific measurement. While for the epochs where
the measurements are too noisy or there are no measurements
available, the Rk entries are large and the KF tends to follow
its internal dynamics rather than tracking the observations [21].
Recall that for the phase state variable, θk has a periodic value
that starts from θ = 0 at the R-peak and ends at θ = 2π with
the next R-peak. Although the only valid phase observation is
obtained from the R-peak locations, it is possible to linearly
assign a phase value between 0 and 2π to the intermediate
samples, as illustrated in Fig. 1. The later presented results are
all based on this linear phase assignment. However, to indicate
the increased uncertainty in the phases assigned to the inter-
mediate samples, the first diagonal entry of Rk corresponding
to the time varying variance of the measurement phase noise,
may be increased. Another alternative and rather sophisticated,
approach for the estimation of the intermediate phase values
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Fig. 1. An illustration of the phase assignment approach

is to directly detect the location of the P, Q, S, and T waves
from the original signal. However, the previous approach is
preferred since R-peak detection is far more reliable in high
noise scenarios.

D. Estimation of the Model Parameters

Prior to the implementation of the filter, it is necessary
to select the values of the process and measurement noise
covariance matrices. Generally, by using m Gaussian kernels
in (7), the process noise vector defined in (8) has 3m + 2
entries (here 17), leading to a (3m + 2) × (3m + 2) process
noise covariance matrix of Qk. But if the noise sources are
assumed to be uncorrelated with each other, a reasonable
approximation adopted here, then the matrix is simplified to
be diagonal. The measurement noise covariance matrix Rk is
similarly considered to be diagonal.

In order to automate the parameter selection procedure for
any given ECG, the parameters should be estimated from the
signal itself. For this, as described in the previous subsection,
any noisy ECG may be transformed to a three dimensional
representation by plotting the noisy ECG versus the periodic
phases that are assigned to each sample in polar coordinates
on the unit circle (r = 1). A typical phase-wrapped ECG with
additive noise may be seen in Fig. 2. It is now possible to
estimate the dynamic model parameters for the given ECG.
For this, the mean and variance of the phase-wrapped ECG
is calculated for all phases between 0 and 2π. This gives the
average of the ECG waveform. A typical signal produced by
this approach is depicted in Fig. 3. The error bar in this figure
corresponds with the standard deviation (SD) of different ECG
cycles around the mean ECG. Next, the problem is to find the
optimal parameters of (7) that can best fit the mean ECG.
In this stage, many optimization methods may be used. For
example as suggested in [31], by using a nonlinear least-
squares approach, the best estimate of these parameters in the
MMSE sense can be found. A practical means of solving this
nonlinear least-squares problem is the lsqnonlin function of
Matlab R© that was used to estimate the initial parameters for
the results presented later in this paper.

The next step is to find an estimate for the covariance values
of Qk. This may be done by using the error values as depicted
in Fig. 3. In fact, in this step we are attempting to calculate
the magnitude of the deviation of the parameters of the five
Gaussian functions in (5) around the estimated mean, that
best model the acceptable deviations of the ECG around the
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mean ECG (ECG(θ)). This is again a nonlinear least-squares
problem that is solved by finding the optimal parameters that
generate the best fit of the mean ECG within the upper and
lower ranges of ECG(θ)+σECG(θ) and ECG(θ)−σECG(θ).

It should be noted that the parameter estimation procedure
detailed above is an offline approach that estimates the optimal
parameter values for any dataset. It is also possible to develop
an online extension of this algorithm that estimates the model
and noise parameters from the most recent cycles of the ECG.
However, for short ECG recordings we have found that the
parameters of the model remain relatively constant and this
online process is unnecessary for such signals. Furthermore,
as it will be later noted, by monitoring the innovation signal
of the KF, it is possible to fine-tune the estimated parameters
throughout the filtering process, without the need for their re-
estimation. Therefore, for any new dataset, it is possible to
start with approximate values for the parameters of the model,
which have been calculated from similar data, and to modify
these values throughout the filtering process.

The angular frequency ω may be set to ω = 2π/T ; where T
is the RR-interval period in each ECG cycle. For short signals
with minor RR-interval deviations, a simpler approximation
is to use a global ω using the average RR-interval of the
whole signal. It should be noted however, that ω can also
be considered to vary on an intra-beat basis too, since the PR-
and QT-intervals are known to change with varying autonomic
tone, heart rate and to some extent, with each changing RR-
interval. The results presented in this paper are based on
the more simple approximation above, using a global angular
frequency.

The variance of the process noise η should also be es-
timated. Noting that η is a parameter that represents the
imprecision of the dynamic model, neglecting the other phys-
iological sources that influence the ECG, a simple estimate
for this parameter would be a zero mean Gaussian random
variable with an appropriate variance. An intuitive value for
this variance may be found from the deviations of the inactive
segment of the ECG, between the end of the T-wave and the
beginning of the next P-wave, which correspond to the ending
segments of the ECG error-bar of Fig. 3, or the isoelectric
segment between the end of the P-wave and the Q point, since
no late potentials or baseline wander should manifest during
this period.

From (12) we can observe that uk is the phase measure-
ment noise. As mentioned before, the phase for each beat is
determined from the R-peaks of the signal. A possible noise
source for uk is the sampling error that occurs when the actual
R-peak is located between two sample times. Another noise
source arises from the additive noise spikes that can cause a
misdetection of the R-peak location. The first of these may
be easily modeled by assuming that the R-peak is uniformly
distributed between two consecutive samples. By considering
that each ECG cycle is equivalent to 2π in the phase domain,
uk would be uniformly distributed in the range of ±ωδ/2,
where ω is the angular frequency and δ is the sampling period.
With this assumption we have: E{u2

k} = (ωδ)2/12. Although
there have been rather robust R-peak detectors developed to
overcome the misdetection of the R-peaks [32], a precise study

of this issue requires the amplitude noise to be related to
the phase error (or the so called phase jitter), a practice that
has been well-studied in other contexts [34]. In this study,
for the sake of simplicity, it is assumed that the R-peak
detector is reliable and the only phase error is due to the
imprecision of the sampling time. Moreover, as mentioned
in the previous subsection, for the intermediate phases laying
between consecutive peaks the variance of the phase noise can
be increased to indicate the imprecision of the phase values.

There are also several ways to estimate the variance of
the measurement noise, vk. One method is to estimate the
noise power from the deviations of the whole signal around
the phase-wrapped ECG, or from the portions of the ECG
between two successive T and P waves. A quantitative study
of the accuracy of these estimates is presented later. There
are also online approaches for noise power estimation, which
have been previously suggested for similar applications [3],
and apparently the selection of the method depends on the
origin of the expected noise.

E. Stability and Convergence Issues

The stability and convergence issues of the KF and its
extensions have been well-discussed in the literature. In order
to ensure numerical stability of the KF equations, and to
prevent the covariance matrices from becoming semi-definite,
the Joseph stabilized form [35] of (4) are used for the a
posteriori covariance estimation, to guarantee positive-definite
estimates of the covariance matrix.

In practice due to the Gaussian assumption on the noise
sources and the initial state vector values, the state estimate
entries of x̂+

k should lie within the envelope of the square roots
of their corresponding diagonal entries in P+

k for the majority
of the time. Therefore, by monitoring the variance of the filter
estimate, it is possible to detect the filter divergence. Moreover
it is shown that it is possible to stabilize the KF online, by
introducing a forgetting factor in the original filter equations
[28].

Another approach known as sequential measurement incor-
poration [35], uses different observations one-by-one to aid the
stability of the KF. This technique requires the observation
noise covariance matrix to be diagonal. However, for non-
diagonal observation noise covariance matrices, decorrelation
methods have been developed to diagonalize this matrix [35].

It is also practically convenient to monitor the covariance
matrix of the innovation signal throughout the filtering proce-
dure and to compare it with the innovation covariance matrices
estimated by the KF [36], [35]. This provides a means of
monitoring the fidelity of the filter and updating the values of
Qk and Rk. Specifically, with a diagonal (or diagonalized)
noise covariance matrix of Rk, the following term can be
formed for the ith ECG measurement:

γi =
1
N

i∑
k=i−N+1

(rs
k)2

hk
(13)

where rs
k is the second entry of the zero-mean innovation

vector of rk defined in (4), corresponding with the kth ECG
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measurement, N is the length of the averaging window, and
hk is the KF estimated variance of rs

k given by:

hk = E{(rs
k)2} = cT

k P−
k ck + σ2

vk
(14)

where ck is the second row of the Ck matrix defined in (3),
and σ2

vk
= E{v2

k} is the second diagonal entry of Rk. An
identical term can be defined for the phase observation φk.

In fact, γi is an average of the variances of the N recent
ECG innovations, normalized by their KF estimated variances
hk. Therefore, as long as the KF is performing correctly,
γi ≈ 1. Values of γi much greater than unity indicate that the
innovation signal variance is being underestimated by the KF,
while values close to zero indicate that the innovation signal
variance is being overestimated. Therefore, by monitoring γi

it is possible to adaptively modify the KF noise parameters
(such as Qk and Rk), to ensure the filter stability and to
achieve a better filtering performance. For example, by using
the M most recent samples of the innovation signal, σ2

vk
can

be adaptively modified as follows:

σ2
vk

= λσ2
vk−1

+ (1 − λ)
1
M

k−1∑
j=k−M

(rs
j )

2 (15)

where 0 < λ < 1 is the adaptation coefficient 1. In [37], a
similar means of online modification of the Rk and Qk entries
have been presented.

For the UKF, the algorithm presented in [26] has three
parameters, α̃, β̃, and κ̃. These control the stability of the filter
and enable the algorithm to be fine-tuned for systems with
different degrees of nonlinearity and non-Gaussian inputs. The
parameter α̃ is an indication of the spread of the state variables
around their mean and is selected to be a small positive value
in the range of 10−4 ≤ α̃ ≤ 1. The parameter β̃ is used to
incorporate prior knowledge about the distribution of the state
vector, with β̃ = 2 being optimal for Gaussian distributions
[26]. The parameter κ̃ is a secondary ad hoc scaling parameter
that is selected in accordance with the size of the state vector
and the higher order statistics of the noise distributions [38],
with κ̃ = 0 being the optimal selection for a state vector of size
two. A mathematical study of the effect of these parameters
on the UKF accuracy compared with the EKF, can be found
in [38], [39].

F. Practical Filtering Schema

Before presenting the experiments and results, the scope
of the proposed filtering scheme needs to be further clari-
fied. Following the discussions of this section, by using the
Bayesian framework we are attempting to utilize a priori
information about the underlying dynamics of ECG signals to
extract the ECG components from background noise. Hence,
compared with conventional filtering schemes that perform
rather ‘blindly’, Bayesian filters are naturally expected to give
superior results as long as we provide them with valid a

1For M = 1 (single-step update), (15) reduces to the autoregressive model
suggested in [37], and for M > 1 (15) represents a moving average filter
with the λ parameter changing the slope of the filter’s response. For ECG
signals having sharp changes, the moving average model was found to be
more robust to the peak changes.

priori information concerning the signal and noise dynamics.
This point becomes important when considering that abnormal
ECGs can have high inter-beat variations in their wave timings
or morphology, meaning that the underlying dynamics of the
signals are not valid in pathological beats.

In the presented approach, due to the phase wrapping of
the RR-interval to 2π, normal inter-beat variations of the RR-
interval (between 10% to 20%), or consistent RR-interval
abnormalities such as Bradycardia or Tachycardia do not
considerably affect the filter performance. However, for abnor-
malities that only appear in some of the ECG cycles, the phase
error of the model can lead to large errors in the Gaussian
function locations. A similar case can occur when the R-peak
is misdetected. In particular, for morphological abnormalities
that appear in some of the ECG cycles, such as the Premature
Ventricular Contraction (PVC) [40], the filtering performance
is not expected to be satisfactory for low input SNRs, since
neither the model nor the measurements are reliable for the
filter. For such occasional morphologic changes, even temporal
adaptation of the filter parameters is not helpful, as the filter
does not have sufficient time to adapt itself. However the
benefit of the Gaussian mixture representation is that the effect
of each Gaussian term vanishes very quickly (in less than the
ECG period), meaning that the errors are not propagated to the
following ECG cycles2. Moreover by monitoring the state esti-
mates’ covariance matrices and the variations of the innovation
signals, it is possible to detect such unexpected abnormalities.
Of course, it should be considered that the accurate denoising
of abnormal ECGs with high morphologic changes remains an
open problem even for conventional filtering methods.

Finally we note that the later presented results have been
implemented offline. However the recursive KF equations are
originally designed for online applications and even for the
EKS, considering the quasi-periodic nature of the ECG, fixed
lag smoothers with only one or two cycles of ECG lag can be
used.

V. EXPERIMENTS

A. The Dataset

The MIT-BIH Normal Sinus Rhythm Database [41], [42],
was used to study the performance of the proposed methods.
This database was recorded at a sampling rate of 128Hz from
18 subjects with no significant arrhythmias. From this database
190 low-noise segments of 30 seconds without considerable
artifacts were visually selected for the implementation of the
proposed filters. These segments were taken from different
subjects, recorded from the standard VI , VII , and VIII ECG
leads. The heart rate of these ECG segments varied from
55 BPM to 90 BMP (74.1±12.0 BMP on average), with
RR-interval deviations between 5% to 25% (16.7±6.2% on
average).

Moreover, to show the filtering performance in the presence
of non-stationary noise, real muscle artifact (MA) was taken
from the MIT-BIH Noise Stress Test Database [43], [44]. The

2A formal justification of this statement requires mathematical proof of
stability and convergence of the EKF, EKS, and UKF for the proposed model,
and is beyond the scope of the current paper.
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MA originally had a sampling rate of 360Hz and therefore
they were anti-alias resampled to 128Hz in order to match
the sampling rate of the ECG. Note that the resampling did
not considerably change the shape of the MA noise, since
the frequency content of the MA noise was concentrated in
frequencies below 64Hz.

B. Noise Generation

Mathematically, white noise is defined to have a flat spectral
density function over all frequencies. However, real noise
sources have non-flat spectral densities that decrease in power
at higher frequencies, making the spectrum colored and the
noise samples correlated in time. There are different ways of
generating colored noise [45], and realistic ECG artifacts [46].
For the current study, we will model the noise color by a single
parameter representing the slope of a spectral density function
that decreases monotonically with frequency:

S(f) ∝ 1
fβ

, (16)

where f is the frequency and β is a measure of noise color.
White noise (β = 0), pink noise (β = 1) or flicker noise,
and brown noise (β = 2) or the random walk process, are
three of the most commonly referenced noises. The realization
of colored noises with spectral densities described by (16),
generally require nonlinear frequency domain filtering of white
noise 3. For random processes, the expected value of the
squared magnitudes of their frequency transforms, or namely
the periodogram, is known to be an estimate of the spectral
density function of the original samples [47]. Therefore, in
order to generate colored noise following (16), samples of
white noise can be generated and transferred into the frequency
domain using the Discrete Fourier Transform (DFT). By
altering the frequency components of the DFT according to
(16), and transferring the reshaped DFT back to the time-
domain, typical samples of colored noise are realized. Note
that this approach of frequency domain filtering causes tran-
sient behavior in the generated noise time series that should
be discarded from the samples.

C. Implementation

Having derived the state equations (7), the observation
equations (12), the linearized state equations of the ECG
dynamic model (10), (11), and the model parameters, the
implementation of the EKF, EKS and the UKF are now
possible. The procedure for calculating the parameters of the
model and the noise covariance matrix entries were explained
in section IV. Using the explained methods, the mean ECG
waveform was extracted for each ECG segment and the
parameters of the five Gaussian kernels were calculated using
the nonlinear least-squares method for each ECG segment.
Due to the variety of the ECG leads and the wide range of
studied SNR, the covariance matrices were calculated using
a simple approach using the peak values of the Gaussian
functions. The parameter selection approach is summarized

3Except for special cases such as β = 2 that can also be achieved through
linear time-domain filtering of white noise.

TABLE II

PARAMETERS OF THE PROCESS AND OBSERVATION NOISES

θi(rads.) Gaussian kernel center ±0.05π
αi(mV ) Gaussian kernel peak ±10% of the peak amplitude
bi(rads) Gaussian kernel width ±0.05π
η(mV ) 1% of maximum ECG peak
ω(rads./sec) Mean beat-to-beat angular frequency (ω̄) ± SD
uk(rads.) 0.00 ± (ω̄δ)/

√
12

vk(rads.) Ranges over different SNRs

TABLE III

WD PARAMETER COMBINATIONS TESTED OVER THE DATABASE

Parameter Values
Mother wavelet Daubechies 1...8, Coiflets 1...5, Symlets 1...8
Shrinkage rule SURE, Heuristic SURE, Universal, Minimax
Thresholding strategy Hard, Soft
Rescaling approach No scaling, Single level, Multiple level
Decomposition level 1...10

in Table II. These parameters can be further customized for
specific ECG leads and special ranges of the input SNR.

In IV-E, the control parameters of the UKF algorithm were
introduced. Throughout the simulations, these parameters were
set to β̃ = 2 and κ̃ = 0, and are the optimal selections for
a system having two state variables with a Gaussian input
noise. The parameter α̃ = 1 was also empirically derived as
a compromise between performance and stability in different
SNRs for the studied database.

D. Benchmark Methods

In order to have a comparison between the performance
of the proposed methods and conventional ECG denoising
schemes, wavelet denoising (WD), adaptive filtering (AF),
and conventional finite impulse response (FIR) filtering were
also tested on the database. Implementations of these standard
methods are now described.

Conventional WD schemes are characterized by different
parameters that allow the algorithms to be customized for
different mixtures of signal and noise sources. The type of the
mother wavelet, shrinkage rule, hard- versus soft-thresholding,
noise level rescaling approach, and number of decomposition
levels are among the different parameters of common WD
algorithms [48]. There are of course, some general rules
concerning the selection of these parameters. For example,
the mother wavelet is usually selected from families that
somehow resemble the shape of the desired signal, or the
rescaling approach and shrinkage rules are selected according
to the nature (white versus colored) and variance of the noise.
However, the literature on the applications of WD for ECG is
rather broad and diverse, making it difficult to judge what may
be the best combination of these parameters. Consequently,
a rather exhaustive search was carried out on the different
combinations of the above mentioned parameters to find the
best WD scheme for the database being studied. The different
parameters that were tested on this database are listed in
Table III. Among the different tested combinations, the Stein’s
Unbiased Risk Estimate (SURE) shrinkage rule, together with
a single level rescaling and a soft thresholding strategy always
gave superior results. Among the tested mother wavelets,
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Coiflets2, Coiflets3, Symlets4, and Symlets5 gave superior
results. The best decomposition level ranged from 5 to 8, and
showed little significant difference within this range. These
results were achieved by the comparison of the SNR curves for
input SNR ranging from 35dB to -5dB and averaged over 100
Monte Carlo runs with different random noise input vectors.
The following reported results are based on the Coiflets3
mother wavelet with 6 levels of decomposition.

The adaptive filtering approach suggested in [5], was the
next filtering approach implemented on the dataset. The
original results presented in [5] have been reported on a
synthetic ECG, formed by taking a single QRS complex
from an ECG and concatenating the same waveform several
times to generate a deterministic ECG with no timing or
morphology variation from beat to beat. An impulse signal,
time-synchronized with the R-wave, was also used as the
reference channel to enable single channel filtering of the
ECG. Although their reported results are rather impressing
for this simulated ECG, the method is not expected to give
identical results on real ECGs. This is mainly due to the non-
stationary behavior of the ECG that causes the ECG shape
and RR-duration to change from beat-to-beat. However this
AF scheme was also implemented on the dataset as another
benchmark. In the original work [5], the number of the AF
weights (L) is selected to be equal to the number of samples
of the deterministic QRS complexes. For operating on real
ECGs with variable RR-intervals we set L to the maximum
sample period between the RR-waves of the input ECG. A
convergence rate of μ = 0.1, led to rapid adaptation and stable
filter outputs for all the SNR range of this study (-5dB – 30dB).

The last filtering approach applied to the dataset was a
typical FIR filter, consisting of two cascaded highpass and
lowpass filters, with an overall pass-band of 0.4Hz–40Hz, a
pass-band ripple of 1dB, and a stop-band attenuation of about
60dB. The main frequency components of typical ECGs lie
within this frequency range [49], and the selection of a wider
or narrower bandwidth would be a compromise between the
attenuation of in-band ECG and noise components.

VI. RESULTS AND DISCUSSIONS

In order to investigate the performance of the different
methods, artificial white and colored Gaussian noise with
different variances were generated and added to the ECG
segments, and the noisy signals were presented to the proposed
filters. To ensure the consistency of the results, the whole
procedure was repeated over the 190 ECG segments; each
time using a different set of random noise at the input. The
filter output SNR calculation was averaged over the whole 190
results. The SNRs were generally calculated over the second
half of the filtered segments, to ensure that the transient effects
of the filters would not influence the SNR calculations.

In Fig. 4, typical results of the FIR, AF, WD, EKF,
EKS, and the UKF are presented for an input SNR of 6dB.
Visually comparing these results, it can be seen that the
proposed methods have admirably tracked the original signal
in a rather low input SNR scenario. The EKS demonstrates
the smoothest result, while the UKF outperforms the EKF,
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Fig. 4. Typical filtering results for an input signal of 6dB: (a) Original, (b)
Noisy, (c) EKF, (d) UKF, (e) EKS, (f) WD, (g) AF, (h) FIR.

particularly around the sharp turning points of the signal. In
fact, the main difference between the EKF and UKF results
are in the QRS complex of the ECG, where the EKF performs
slightly less well, since it tends to follow the noisy signal
rather than the system dynamics. The reason for this may be
seen by observing equations (2) to (4). According to (3), at
low sampling rates and in the rapidly changing regions of the
ECG, the approximated matrix Ak has large entries due to the
differentiation, that in turn causes an increase in the values
of the P−

k+1 matrix. This means that the KF tends to rely
less on the dynamic model. This assumption was validated by
limiting the maximum and minimum values of the derivatives
calculated from (3). This change led to results that demonstrate
increased flexibility around the QRS complex of the ECG and
is reflective of the fact that derivative-free filters such as the
UKF are more robust to severe nonlinearities of the input time
series. This also suggests that the EKF and EKS can provide
a better performance for signals having higher sampling rates.

Among the conventional filtering approaches, the WD out-
performs the AF and the FIR; but contains some large ripples
that do not correspond to the true ECG.

For a quantitative comparison, the mean and SD of the
SNR improvements4 versus different input SNRs, achieved
over 190 ECG segments are plotted in Fig. 5. The results of the

4The SNR improvement is defined as the output SNR of the filter (in
decibels) minus the input SNR (in decibels). Negative SNR improvements
apparently indicate a degradation of the input SNR caused by the filtering
procedure.
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Fig. 5. The mean (top) and Standard Deviation (bottom) of the filter output
SNR improvements versus different input SNRs. In these curves EKF, UKF,
and EKS correspond to the results without σ2

vk
adaptation, and EKF2, UKF2,

and EKS2 refer to the ones with σ2
vk

adaptation. Refer to text for further
details.

SNR improvements calculated over the ST-segment, which is
extremely sensitive to noise and of great clinical significance,
can also be seen in Fig. 6. In the presented results of Figs.
5 and 6, two approaches have been used for the EKF, UKF,
and the EKS; the first without the online adaptation of σ2

vk
,

and the second with adaptation. For the first case σ2
vk

was
fixed to the a priori known variance of the additive noise, and
for the second case, this initial value was adaptively modified
by the filter. For the latter, the adaptation window length was
selected to be M = 13 and is approximately equivalent to a
100ms window for the sampling rate of 128Hz. This window
length is wider than the normal QRS complex, and therefore
should be sufficient to prevent sharp variations in σ2

vk
. The

adaptation coefficient in (15) was set to λ = 0.6, a value
that was empirically found to provide a compromise between
adaptation time and stability of σ2

vk
. Figs. 5 and 6 illustrate

how the results achieved for a constant σ2
vk

(i.e. without its
online adaptation), are almost linearly related to the input
SNR, and are generally better than the adaptively changing σ2

vk

results. In fact for input SNRs below 18dB, the EKF, UKF,
and the EKS degrade the input SNR when σ2

vk
is adapted;

but for SNRs below approximately 10dB, the results with and
without adaptation are asymptotically the same. In either case
the EKS demonstrates the best average performance, and the
UKF performs marginally better than the EKF. Among the
conventional filtering methods the WD outperforms both the
FIR filter and the AF, both of which are inferior to the other
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Fig. 6. The mean (top) and Standard Deviation (bottom) of the filter output
SNR improvements over the ST-segment of the ECG, versus different input
SNRs. In these curves EKF, UKF, and EKS correspond to the results without
σ2

vk
adaptation, and EKF2, UKF2, and EKS2 refer to the ones with σ2

vk
adaptation. Refer to text for further details.

techniques. Furthermore, for input SNRs above 18dB WD
outperforms the proposed methods with σ2

vk
adaptation, but

still underperforms the constant σ2
vk

results.
The reason for the asymptotic behavior of the results with

and without σ2
vk

adaptation can be explained by revisiting
(14), where we see that the variance of the innovation signal
estimated by the KF consists of two parts; the uncertainty
of the model parameters (the first term), and the uncertainty
of the observations (σ2

vk
). In high input SNR scenarios, the

first term dominates the second. Therefore, when adaptively
changing σ2

vk
in high input SNRs, we are in fact miscounting

the model uncertainties as measurement errors, leading to the
overestimation of the measurement noise. Conversely, in low
SNR scenarios σ2

vk
dominates the first term, and the online

adaptation is performed correctly. In different applications
with specific ranges of input SNR, this information can help
to make online corrections to the estimated noise parameters.
These results also suggest that for stationary noise processes,
it is preferable to keep the filter noise parameters constant, or
alternatively, increase the innovation variance averaging length
of M .

From the SD plots in Figs. 5 and 6, it is seen that WD
has the least deviation over the different ECG segments, and
among the proposed methods the UKF has the least deviation;
meaning that the UKF’s results are more robust to dataset
variations.

In IV-D it was noted that the initial values of the mea-
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adaptation,
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adaptation. Both curves merge for input SNRs below 10dB.

surement noise variance may be estimated from the SD of
the whole phased-wrapped ECG, or just using the SD of the
isoelectric segment of the ECGs between two consecutive
T and P waves. To show the accuracy of these estimates,
the SNRs estimated from both methods were compared with
the true SNR of the signal in presence of additive white
noise. The mean and SD of these estimates versus the true
input SNR, calculated over the whole database are depicted
in Fig. 7 . As can be seen from this figure, both methods
have underestimated the true SNR (especially in high input
SNRs); but the SNR estimated from the isoelectric segment
is very close to the true values for input SNRs below 20dB.
In practice, as we have to estimate the measurement noise
variance from the noisy signals, this information may be used
as a correction curve for finding accurate estimates of the noise
variance.

The result of the noise color study is depicted in Fig. 8 for
the SNR improvement of the EKS as a function of the input
SNR and the input noise color β. This result was achieved
using the average of the 190 ECG segments, both with
and without the online adaptation of the measurement noise
variance σ2

vk
. As can be seen in Fig. 8, the EKS performance

decreases almost linearly as the noise color ranges from white
(β = 0) to pink (β = 1), while the slope of decrease is larger
for lower input SNRs. As with the previous results, it is seen
that the constant σ2

vk
results (top curve) outperforms the results

with σ2
vk

adaptation (bottom curve), and both curves merge in
input SNRs below approximately 10dB.

The study of the noise color effect was not extended beyond

pink noise, since as the noise becomes more colored in
spectrum (β increases), the time-domain samples of the noise
will have longer-term correlations. This means that for a valid
statistical study of the noise effect longer ECG signals are
required. Moreover, colored noise as defined in (16) is not
generally guaranteed to be a Wide Sense Stationary (WSS)
process, meaning that the colored noise samples do not have
the same variance5. When adding such noise to the ECG, each
sample receives a different amount of noise; making the overall
SNR criteria rather meaningless.

It should be further noted that although the monotonic shape
of the SNR surfaces of Fig. 8 proves the consistent behavior of
the filtering approaches in different noise colors, the Bayesian
framework is originally based on the assumption of white
noise sources. In fact, for colored noise with a known spectral
behavior, the systematic approach is to use parametric spectral
estimation methods to model the colored noise as the output
of a system driven by white noise. Subsequently, the state-
space model of this system can be augmented with the original
system model. In this way, the dynamics of the noise sources
are also considered in the filtering procedure.

A more practical example is now given, using real non-
stationary MA. For this study normalized values of real MAs,
as explained in section V, were added to the ECG signals.
Due to the non-stationarity of the MAs, the variance of the
measurement noise varies in time; so using a constant Rk

for the whole signal is no longer an optimal choice. Here
we can update the Rk matrix by monitoring the variance of
the filters’ innovation signals using (13) and (15). For this
study, the monitoring and adaptation window lengths were
respectively selected to be N = 26 and M = 13, values that
are approximately equivalent to 200ms and 100ms windows
respectively for a sampling rate of 128Hz. The adaptation
coefficient in (15), was again set to λ = 0.6. The parameter
σ2

vk
was initially set to a value close to the variance of

the beginning segments of the non-stationary noise, and the
algorithm was allowed to modify this value according to the
variance of the different noisy segments. The results of this
study for different input SNRs, are presented in Table IV and
compared with the case where σ2

vk
is not changed. As it can

be seen, the variance adaptation generally improves the filter
performance. The noisy input signals and the results of the
EKS with and without σ2

vk
adaptation are depicted in Fig. 9

for an input SNR of 6.0dB. The calculated γi terms with and
without the variance adaptation are also depicted in the last
two pannels. As noticed in this figure, when the measurement
noise variance is kept constant, as the noise power increases
at t=3s, γi increases, indicating that the measurement noise is
being underestimated. By allowing the measurement noise to
be adaptively updated, γi remains around unity. It should be
noted that in practice, σ2

vk
should not be manipulated based

on very short windows of innovation signal estimates, and as
long as γi is in the range of 0.5–2.0, the modification of σ2

vk

is not required.

5Specifically for the random walk process (β = 2), the variance of the
noise samples increases linearly with time [47].
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TABLE IV

SNR RESULTS WITH REAL MUSCLE ARTIFACTS

SNR(dB) without σ2
vk

adaptation with σ2
vk

adaptation
Input 6.0 12.0 18.0 6.0 12.0 18.0
EKF 10.0 14.1 18.8 14.5 17.8 20.1
UKF 9.5 13.8 18.7 13.8 16.5 18.2
EKS 12.0 15.5 19.5 15.8 18.5 20.1
WD 6.9 12.9 18.9 – – –
FIR 5.9 9.7 11.7 – – –
AF 5.0 5.4 5.5 – – –
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Fig. 9. Muscle artifact removal: (a) Noisy ECG with SNR=6dB (b) EKS
result without measurement noise variance adaptation (c) EKS result using
measurement noise variance adaptation (d) γi without adaptation (e) γi with
adaptation.

VII. CONCLUSIONS

In this paper, a mathematical framework was proposed
for the model-based Bayesian filtering of single channel
noisy ECG recordings. Within this framework several sub-
optimal filtering schemes were developed and the results were
compared with conventional filtering methods. The results
demonstrate that the proposed approach can serve as a novel
framework for achieving high-resolution ECG, which is the
state of the art in applications such as the detection of late
potential ECG signals [23], or the noninvasive extraction of
fetal cardiac signals from abdominal sensors [24].

The filtering schemes were based on a modified version
of a previously proposed dynamic ECG model. However, the
generality and modularity of the proposed methods allow for
the improvement of the selected dynamic model. As it was
seen, the architecture of the Bayesian filtering methods is such
that the filters can work with a rather coarse dynamic model

as long as the covariance matrices of the system noise vectors
are well estimated. Nevertheless, it is also possible to improve
the results by using more than five Gaussian functions to be
able to model a broader range of normal and abnormal ECGs.
Moreover, the derivative-free characteristics of the UKF also
removes the need for an analytical form of the system dynamic
model and the statistics of the signals are directly estimated
from a finite number of samples, rather than the linearized
models required in the EKF or the EKS. This suggests that
other morphological models of the ECG can be used instead of
mathematical dynamic models. In other words, the nonlinear
dynamical model of the ECG may be replaced with any
synthetic ECG generator that is capable of generating normal
or abnormal ECGs.

The presented results were based on the assumption of
additive Gaussian noise sources. With recent developments in
Bayesian filtering approaches such as the Particle Filter (PF),
other noise distributions may also be considered [29].

Another extension of the proposed method would be to use
the recently developed 3-dimensional models of the vector-
cardiogram (VCG) [46], to develop a multi-channel extension
of the hereby proposed methods. In fact, every ECG channel
could be assumed as the projection of the VCG in the direction
of the recording electrodes. Hence, multiple recordings from
different electrodes could be used as additional observations
for the filtering procedure and therefore further improve the
performance of the filters.

As discussed in section IV-F, in future works the problems
related with abnormal ECGs should also be addressed in the
filtering models. The extension of these methods to many
of the common ECG abnormalities is rather straightforward,
since the model parameters may be simply recalculated and
used in the filter model. However, for some heart defects such
as the PVC, where the abnormal wave only appears in certain
cycles of the ECG, some revisions are necessary in the filtering
process to be able to simultaneously filter the normal and
abnormal segments of the ECG. An intuitive approach to this
problem would be to pre-calculate the filter model parameters
for different abnormalities and switch between these values by
predicting the existence of an abnormal beat, using a standard
ECG classifier or directly using the derived parameters of the
model to make a classification itself, as suggested in [31].

Another related issue is the study of the appropriateness of
the filtering procedure. In fact, while the Bayesian filtering
framework can serve as a powerful tool for the removal of
noise from the ECG, one should always be aware of the over-
filtering of the signals that can lead to the removal of clinically
important information from the ECG. However, results of this
study suggest that by selecting a flexible dynamic model for
the ECG and an adaptive update of the model parameters, it
should be possible to prevent such issues. In future works,
problems concerning the convergence-time, stability, estima-
tion bias, and preciseness of the filter results can also be
studied within a mathematical framework and by using the
Cramer Rao lower estimation error bounds [25].

While the results of this paper were achieved with artificially
generated noise, without any specific assumption on the noise
origin, the generality of the approach allows the model to
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be customized for specific applications. In fact, as it was
mentioned in previous sections, for situations where the nature
of the contaminating noises are more well known, the noise
model may be selected according to the particular situation.
For example, any spectral information about the noise sources,
such as the baseline wander caused by the respiratory system,
may be transferred into state-space form by using conventional
spectral factorization methods, and be augmented with the
dynamic model of the system.

Although not addressed in this paper, the proposed methods
could also be linked with blind source separation (BSS)
techniques. Even though the idea behind conventional BSS
techniques are somewhat different to KFs, it has been shown
in previous works that it is possible to combine state-space
models with BSS, to simultaneously benefit from the dynam-
ical filtering abilities of KFs and the spatial filtering abilities
of BSS [50]. In other words, the proposed framework together
with recent BSS developments may be used to construct a joint
spatio-temporal dynamic filter for noisy ECG recordings. This
framework will possibly be of interest in applications such as
fetal ECG extraction, where conventional filtering schemes and
BSS have (separately) failed to extract the complete fetal ECG
waveform due to the spatial, temporal, and spectral overlap of
the fetal ECG with contaminating noises (such as the maternal
ECG). Specifically, if an efficient 3-dimensional extension of
the proposed methods is constructed, it may be further possible
to identify the maternal ECG signal that is projected onto
the abdominal electrodes, and to remove it from the fetal
recordings.
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