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Abstract—We explore the applicability of our recently developed 

Nonlinear Compound Gaussian (NCG) [1] distribution to 

modeling the statistics of sea clutter data. We first, for 

completeness, give a self-contained description of our NCG 

distribution; both its theoretical properties and the algorithmic 

details for parameter estimation. We then demonstrate the 

performance of NCG in modeling the range statistics of sea-

clutter data [12]. The results clearly demonstrate the superiority 

of NCG in modeling sea-clutter phenomena over the compound 

Gaussian (CG) distribution. We conclude with a brief discussion 

of a phenomenological interpretation of these results together 

with directions for future research. 

I. INTRODUCTION 

Statistical inferences performed in maritime environments 
entail, in part, the processing of information containing 
stochastic signatures generated from various physical 
processes associated with ocean dynamics when sensed by 
radar systems. We broadly lump together such maritime 
stochastic phenomena, as measured by a radar, by the term 
‘sea clutter’. Examples of typical inference operations made 
by radar systems include the detection and imaging of targets 
immersed in sea-clutter. 

A systematic treatment of such inference processes 
conducted in maritime environments within a probabilistic 
framework requires a quantitative description of the stochastic 
regularities associated with pertinent aspects of sea clutter. A 
typical example of such a statistical quantity of interest in 
radar applications is the distribution of sea clutter associated 
with a given range of interest. 

Historically the Gaussian distribution was first used as a 
crude measure for modeling sea-clutter data. However it 
became increasingly evident with the advent of high-
resolution radar that the statistics of sea clutter data deviate 
significantly from normality [2]. The seminal work of Ward 
et. al. [2-4] showed that an elegant way to better capture the 
heavy-tailed structure of sea-clutter data is by the so-called K-
distribution. The K-distribution is a type of compound 
Gaussian distribution (CG) [5] wherein the I and Q channels 
of the radar received signal follow a jointly Gaussian random 
process modulated by a Gamma distribution (it follows, 
therefore, that the amplitude structure of the combined I-Q 
data follows a locally Rayleigh distribution whose mean is 
modulated by a Gamma distributed). The speckle component 
is usually interpreted to be due primarily to scattering by the 

capillary waves; while the modulating mean (also called the 
‘texture’) is assumed to be from the ocean gravity waves. 

Many researchers have investigated optimal strategies of 
exploiting this prior knowledge in the service of various radar 
applications such as detection and imaging [6-7] and 
significant performance improvement due to such approaches 
have been reported. 

On the other hand there are increasingly many applications 
and regimes of operation where the CG distribution fails to 
satisfactorily model clutter phenomena such as in spiky sea 
clutter data obtained in high grazing angles [8-9] etc. 
Moreover different applications have different modeling 
requirements which the CG distribution is not able uniformly 
accommodate due to inherent limitations in its modeling 
capabilities. For example, in target detection applications it is 
of greater interest to model the tail portion of the distribution 
accurately due to the fact that the sea spikes, which are the 
primary source of interference, is primarily associated with 
this region; whereas in target imaging applications modeling 
the entire clutter density is of interest. 

We introduce a novel generalization of the CG model 
called NCG [1] (nonlinear compound Gaussian) distribution 
which allows us to extend the capabilities of the CG model to 
better accommodate the variabilities in modeling requirements 
such as above. We give a self-contained description of this 
model together with its theoretical properties (in Section 2) 
and algorithmic details of its parameter estimation (in Section 
3). Thereafter we present simulation results, in Section 4, 
demonstrating the superiority of the NCG model in modeling 
sea-clutter phenomena over the traditional CG model. We 
conclude in Section 5 with a brief discussion of some 
phenomenological interpretations of the NCG model together 
with directions for future research. 

II. NONILINEAR COMPOUND GAUSSIAN MODEL 

Consider a random variable ܺ that can be decomposed into 
the following product form (pointwise product of 2 vectors): 

                           ܺ ൌ ܵ ·  (1)                                    ܤ

The probability density function of X is thus given by: 

      ௑ܲሺݔሻ ൌ ׬  ௑ܲሺܤ|ݔ ൌ ሻߚ ஻ܲሺߚሻ ·  (2)                   ߚ݀

           ൌ ׬  ଵ௓ ௌܲሺߚ/ݔሻ · ஻ܲሺߚሻ ·  (3)           ߚ݀
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where Z is a normalizing constant for ௌܲሺߚ/ݔሻ. 

In the special case where ܵ ~ ܰሺߤ, Σሻ is a Gaussian 
random vector with mean ߤ and covariance matrix Σ, and ܤ is 
a non-Gaussian random vector consisting of i.i.d. components, 
X in (1) is said to CG distributed random variable: 

௑ܲሺݔሻ ൌ ׬ ଵ√ଶగ|ஊ෩| ݌ݔ݁ ቀെሺሺݔ െ ݔሻுΣ෨ିଵሺሺߚ/ሻߤ െ                                                                     ߤሻ/ߚሻ൯ ஻ܲሺߚሻ ·  (4)   ߚ݀

The NCG model replaces the conditional density ௑ܲሺܤ|ݔ ൌ  ሻ in (2) by a generalized distribution of theߚ
following form: 

            ௑ܲሺܤ|ݔ ൌ ሻߚ ൌ ଵ௓ ݃ሺܺሻ ∏ ௜ሻ௜ݔ௜ሺ݌           (5) 

where, ܺ ൌ ሾݔଵ, … , ௜݌ ௗሿ. The probability densitiesݔ  
generalize Gaussian random variables in a manner specified 

below, while the multiplicative term ݃ሺܺሻ captures the 

higher- order statistical interactions between the components 

of X. 

We first describe the construction of the NCG distribution 

in terms of a novel non-linear system model in section II-A. 

Thereafter in section II-B we present some theoretical 

properties of the NCG model. 

A. Structure of the NCG Distribution 

Let ݔ ൌ ሾݔଵ, ,ଶݔ … , ௗሿ்ݔ א Թௗ be an observed random 
vector distributed according to the NCG model (5). We now 
demonstrate how (5) can be synthesized via the generative 
model shown in Figure 1. The system F in Figure 1 consists of 
a core non-linearity ߮ preceded by a linear system ݕ ൌ ݏܣ ൅ Γ, where ݕ ൌ ሾݕଵ, ,ଶݕ … , ௗሿ்ݕ א Թௗ and ݏ ൌ ሾݏଵ, ,ଶݏ … , ௗሿ்ݏ א Թௗ is a Gaussian random vector 
consisting of i.i.d. components ݏ௜~ܰሺ0,1ሻ whose density is 
denoted by ݍሺݏ௜ሻ. Vectors Γ ൌ ሾΓଵ, Γଶ, … , Γௗሿ் and ߪ ൌሾߪଵ, ,ଶߪ … ,  ௗሿ் respectively determine the mean and variancesߪ
for the various Gaussian channels. Matrix ܥ ൌ ሾCଵ, Cଶ, … , CୢሿT ൌ Aିଵ is assumed to be invertible and 
thus determines the interaction between the various Gaussian 

sources. Vector ߚ ൌ ሾߚଵ, ,ଶߚ … , ௗሿ்ߚ א Թௗ is an instantiation 
of random variable ܤ of the NCG model corresponding to (1). 
The constants ߛଵ and ߛଶ play an important role in determining 
the properties of the non-linear transformation ߮, as we show 
in the next section. All the operations in system F, other than 
the action of matrix A, are pointwise in the components of the 
vector. 

Given this, an important observation is that for a given ܤ ൌ  pointwise invertibity of the non-linearity ߮ results in a ,ߚ
distribution of the following form (the derivation is 
straightforward given the above setup): 

           ௑ܲሺܤ|ݔ ൌ ሻߚ ൌ ௄|௃ሺிሻ| ݃ሺܺሻ ∏ ௜݌ ቀ௫ೖିఓೖఉೖ ቁௗ௞ୀଵ               (6) 

where ݌௞ ቀ௫ೖିఓೖఉೖ ቁ ൌ ݌ݔ௞݁ܭ ൬െܽ௞ ቂ ෤߮ ቀ௫ೖିఓೖఉೖ ቁ െ ܿ௞ቃଶ൰ ܭ௞ is a normalizing constant, ܽ௞ ൌ ሺ1 2⁄ ሻ ∑ ൫ܥ௜,௞ଶ ⁄௞ଶߪ ൯ௗ௜ୀଵ   

and ܿ௞ ൌ Γ௞ ൅ ∑ ∑ ಴೔,ೕ಴೔,ೖ഑ೖమ ୻ೕ೏೔సభೕಯೖ
∑ ಴೔,ೖమ഑ೖమ೏ೖసభ , ෤߮ ؠ ߮ିଵ. 

Also, ݃ሺܺሻ ൌ ݌ݔ݁ ൤െ ∑ ௜,௝௜ஷ௝ܩ ෤߮ ቀ௫೔ିఓ೔ఉ೔ ቁ ෤߮ ൬௫ೕିఓೕఉೕ ൰൨ 

where ܩ௜,௝ ൌ ∑ ஼ೖ,೔஼ೖ,ೕఙೖమௗ௞ୀଵ  and ܭ ൌ ௘௫௣ቌି ∑ ቀ಴ೖ೅౳ቁమమ഑ೖమ೏ೖసభ ቍ
ሺଶగሻ೏/మ ∏ ఙೖ௄ೖ೏ೖసభ  

We have found the following linear-quadratic non-linearity 
to effectively capture the statistics of real data: 

     ߮ሺݏሻ ൌ ሻݏߪଵሺݑߪݏଵߛൣ ൅  (7)             ߚሻ൧ݏߪଶሺݑሻߪݏଶ߮௤ሺߛ 

where, functions ݑଵ and ݑଶ are defined in the next section, ߮௤ሺݏሻ ൌ ߚ ,ሻݏሺ݊݃ݏଶݏ ൒ ߪ ,0 ൒ 0, and ݏ א Թ. 

This non-linearity furnishes a natural generalization of the 
Gaussian distribution—in particular it consists of both a linear 
and quadratic channel and reduces to a multidimensional 
Gaussian distribution when only the linear channel is active. 

B. Theoretical Properties of NCG 

As described in the previous section, an important 
consideration is the characterization of the conditions under 
which equation (7) is invertible. This is because invertibility 
makes it possible to generate generalized distributions of the 
form (5) whereas in general one will obtain a mixture 
distributions which, though more general, are computationally 
less tractable. The following Lemma gives a characterization 
the invertibility of ߮ in (7) for the case where d=1 (which 
therefore applies to the invertibility of the general case since ߮ 
is a component-wise transform). 

Lemma 1. Let ߛଵݑଵሺݏሻ ൌ ሻݏଶሺݑଶߛ ଵ andߣ ൌ ,ଵߣ ଶ such thatߣ  ଶ are real constants. Then ߮ in Equation (7) is invertibleߣ

for all x if and only if ߣଵߣଶ ൒ 0. 

Proof. We consider first the converse case i.e. assume ߣଵߣଶ ൒ 0: 

Case 1: ߣଵ ൒ 0 and ߣଶ ൒ 0. Then equation (7) becomes: 

|ݔ|       ൌ ሾߛଵ|ݑ|ݏ||ߪଵሺݏߪሻ ൅ ߛଶߪଶ|ݏ|ଶݑଶሺݏߪሻሿߚ (since ݊݃ݏሺݔሻ ൌ  (ሻݏߪሺ݊݃ݏ

 

ଶߣߚଶߪଶ|ݏ| ⇒ ൅ |ݏ|ଵߣߚߪ  െ |ݔ| ൌ  0 

|ݏ| ⇒ ൌ  ିఙఉఒభ േ ඥሺఙఉఒభሻమାସ|௫|ఙమఉఒమଶఙమఉఒమሺ௦ሻ  

Thus the only feasible solution is: 

|ݏ|                ൌ  ିఙఉఒభା ඥሺఙఉఒభሻమାସ|௫|ఙమఉఒమଶఙమఉఒమ  

Case 2: ߣଵ ൑ 0 and ߣଶ ൑ 0 

In this case, |݊݃ݏ|ݔሺݔሻ ൌ െ݊݃ݏሺݏሻሾߛଵ|ݑ|ݏ||ߪଵሺݏߪሻ ൅ ߛଶߪଶ|ݏ|ଶݑଶሺݏߪሻሿߚ 
We once again solve:   

|ݔ|             ൌ ሾߛଵ|ݑ|ݏ||ߪଵሺݏߪሻ ൅ ߛଶߪଶ|ݏ|ଶݑଶሺݏߪሻሿߚ  
to get the unique solution above together with the 

relationship: ݊݃ݏሺݔሻ ൌ െ݊݃ݏሺݏߪሻ. 

Thus in both cases ߮ is invertible thus proving sufficiency. 

Now assume that ߮ is invertible. We then have 4 cases: 



Case 1: ߣଵ ൒ 0 and ߣଶ ൒ 0. See above. 

Case 2: ߣଵ ൑ 0 and ߣଶ ൑ 0. See above. 

For Cases 3 and 4, where Case 3: ߣଵ ൒ 0 and ߣଶ ൏ 0 and 

Case 4: ߣଵ ൏ 0 and ߣଶ ൒ 0, we are forced to solve the 

original quadratic problem wherein: 

ሻݏሺ݊݃ݏଶݏଶߪߚଶߣ                    ൅ ߣଵݏߪߚ െ ݔ ൌ  0         (8) 

It is easy to show for these cases it is always possible to find 

x such that (8) does not have a unique solution.           ฀ 

From Lemma 1 we note that by setting ߛଵ ൌ 1 and ߛଶ ൌ 0, 
NCG reduces to the CG distribution as a special case. The 
following Lemma details a complementary direction in which 
the above model can be extended. 

Lemma 2. Let ߣଵሺݏሻ ൌ ሻݏଶሺߣ ሻ andݏଵሺݑሻݏଵሺߛ ൌ  .ሻݏଶሺݑሻݏଶሺߛ

Then ߮ in (4) is invertible if ߣଵሺݏሻߣଶሺݏሻ ൌ 0. 

Proof. The proof follows by noting that the condition ߣଵሺݏሻߣଶሺݏሻ ൌ 0 ensures that one and only one of the two 

channels (i.e. the linear and quadratic channels as described 

in II-A) are active for a given value of s. Thus invertibility of ߮ trivially follows. This establishes the lemma.           ฀ 

We note that under Lemma 2, NCG reduces to the 

Multilinear ICA (MICA) distribution [10-11] which thus 

formally complements the CG model. Thus the NCG model 

subsumes both the CG and MICA distributions as special 

cases. Importantly the following lemma, furnishes a closed 

form expression for the Jacobian |ܬሺܺሻ|: 
Lemma 3. The Jacobian for the NCG model is: 

|ሺܺሻܬ|            ൌ |ܣ| ∏ ௞ሻௗ௞ୀଵݕ௞߰ሺߚ            (9) 

where ߰ሺݕ௞ሻ ൌ ሻݏଵሺߣ  ൅  |௞ݕ|ሻݏଶሺߣ2 
ൌ ݕ             ෤߮ሺݔሻ 

ሻݏଵሺߣ            ൌ ሻݏଶሺߣ ,ሻݏଵሺݑሻݏଵሺߛ  ൌ  ሻݏଶሺݑሻݏଶሺߛ 

Proof. The proof for the special case of MICA distributions 

where ߣଵሺݏሻ and ߣଶሺݏሻ are defined as in Lemma#2 is given in 

[10]. Thus we complete the proof for the general case by 

focusing on the case where ߣଵሺݏሻ ൌ ሻݏଶሺߣ ଵ andߣ ൌ  ଶ areߣ

constants. 

We observe that for all k, l: 

                            
డ௫೘డ௦೙  ൌ  ௠ሻݕ௠߰ሺߚ௠,௡ܣ 

where,              ߰ሺݕ௠ሻ ൌ ଵߣ  ൅  |௠ݕ|ଶߣ2 
Given this we have that: 

|ሺܺሻܬ|  ൌ ݐ݁݀ ൬ቂడ௫೘డ௦೙ ቃ௠,௡൰ 

            ൌ ݐ݁݀ ቀൣܣ௠,௡ߚ௠߰ሺݕ௠ሻ൧௠,௡ቁ 

             ൌ ൫∏ ௞ሻௗ௞ୀଵݕ௞߰ሺߚ ൯݀݁ݐሺܣሻ  

Thus the closed form expression for |ܬሺܺሻ| is established for 

the NCG model.               ฀ 

The existence of the above closed form expression for |ܬሺܺሻ| 
obviates the need for Monte-Carlo simulation for the 
estimation of system parameters. The following section delves 
into more details on the algorithmic aspects of parameter 
estimation for the NCG model. 

III. NCG PARAMETER ESTIMATION ALGORITHM 

We take a two-stage approach to estimating the parameters 
of the NCG model. Given a set of N pairs of I-Q samples 

which are organized in a matrix ܺ א ܴே௫ௗ (alternatively one 
can also model N samples of the 1-D amplitude signal ඥܫଶ ൅ ܳଶ in which case ݀ ൌ 1), we estimate the optimum 
parameter ߚ (assuming the other parameters are known) 
corresponding to each such sample. Each such pair of I-Q 
samples is then normalized by the corresponding ߚ parameter. 
Thereafter the optimum NCG parameters are determined in 
the manner described below. This process is then iterated 
several times until convergence. 

In order to simply matters, we assume as that ܤ is a scalar 
random variable (note that in general one can have a different ܤ random variable for the I and Q channels; this case can also 
be handled by the procedure described below). Let ݔ ൌሾݔଵ, … ,  ௗሿ் denote a sample from the I-Q pair (i.e. d=2 in ourݔ
case; although this methodology can extend to arbitrary d). To 
determine optimum ߚ parameter for each I-Q sample we solve 
the following equation w.r.t. ߚ: ௗ௉೉ሺ௫|஻ୀఉሻௗఉ ൌ ∑ ௔ೖ|௫ೖ|ఒమఉ ݂ ቀ௫ೖఉ ቁௗ௞ୀଵ ൅ ∑ ௜,௝ܩ ቂ݂ ቀ௫೔ఉ ቁ ௝ሻݔሺ݊݃ݏ ൅௜ஷ௝݂ሺݔ௝/ߚሻ݊݃ݏሺݔ௜ሻቃ ൅ ∑ ଶఒమ௦௚௡൫ఝ෥ሺ௫ೖ/ఉሻ൯ఒభାଶఒమ|ఝ෥ሺ௫ೖ/ఉሻ| ଵටఒభమାସఒమ|௫ೖ/ఉ| ሺݔ௞/ௗ௞ୀଵߚሻ െ  ݀ ൌ 0            (10)      

where, ݂ሺݔሻ ൌ ିఒభାඥఒభమାସఒమ|௫|ඥఒభమାସఒమ|௫| . Since ߚ is a scalar parameter, we 

can easily solve for ߚ in a computationally tractable manner 
by employing a brute force approach of evaluating (10) for 
every value of ߚ in a interval [0, max(X)] and choosing the ߚ 
that renders the R.H.S. of (10) closest to zero. Furthermore it 
is easy to verify—both analytically and numerically—that in 
the CG limit (i.e. ߣଵ ൌ 1, ଶߣ ՜ 0) the optimum solution of 
(10) is exactly the closed form solution of ߚ for the CG case 

(i.e. ߚ ൌ ඥ்ݔΣିଵݔ ݀⁄ ) as one would expect. 

 Having obtained normalized the set of I-Q pairs by 
random variable ܤ, we now detail how to update the 
remaining parameters of the NCG model. Firstly in our 
simulations, consistent with the CG model of sea clutter data, 
we set ߤ ൌ 0 and Γ ൌ 0. Thus the parameters that remain to 
be estimated are matrix C, vector σ, and the scalars ߣଵ and ߣଶ. 
For estimating C and σ, we employ a similar trick as used in 

[11]: let ݕ௜ ൌ ෤߮஛ሺݔ௜/ߚሻ where ݔ௜ denotes the i
th
 vector of I-Q 

coefficients, and where the subscript denotes that the non-

linear function ෤߮  depends on ߣ ൌ ሾߣଵ, ଶሿ; then set Cߣ ൌ ඥQ ( 

where Q ൌ ଵே ∑ ௞ሻᇱௗ௞ୀଵݕ௞ሺݕ ), and set ߪ௜ to be the standard 

deviation of the ith component of the normalized and inverted 

I-Q coefficients ሼݕ௞ሽ௞. Note that the computation of C and σ 
assumed knowledge of ߣ, but did not involve any iterative 
procedure for estimation. 

 To compute the optimum ߣ (given knowledge of the other 
NCG parameters) we resort to an unconstrained iterative 
maximum-likelihood estimation approach based on the 
following descent equations: 



ௗ௉೉ሺ௫|஻ୀఉሻௗఒభ ൌ െ ∑ ଵట൫ఝ෥ሺ௫ೖ/ఉሻ൯ ൣ1 ൅ ൫݊݃ݏଶߣ2 ෤߮ሺݔ௞/ௗ௞ୀଵߚሻ൯ ෤߮ ᇱሺݔ௞/ߚሻ൧ െ ∑ 2ܽ௞ ෤߮ሺݔ௞/ߚሻௗ௞ୀଵ ෤߮ ᇱሺݔ௞/ߚሻ െ∑ ௜,௝ൣܩ ෤߮ሺݔ௜/ߚሻ ෤߮ ᇱ൫ݔ௝/ߚ൯ ൅ ෤߮൫ݔ௝/ߚ൯ ෤߮ ᇱሺݔ௜/ߚሻ൧௜ஷ௝          (11) 

A similar gradient equation can also be derived with respect to ߣଶ. Thus the following algorithm summarizes our NCG 
parameter estimation procedure: 

0) Initialize ߚ according to the CG model. From this 
initialize C and σ. 

1) Re-estimate ߚ by solving (10) 

2) Normalize X according to ߚ computed above and re-
estimate C and σ accordingly 

3) Estimate the optimum ߣ via (11). Re-estimate C and σ accordingly 

Iterate steps (1)-(3) until convergence. 

In practice the algorithm converges in a few such iterations. 
We remark that no a priori texture model has been assumed 
for the data in the above analysis. Rather the texture model, 
i.e. the value of ߚ on a sample-by-sample basis, is learnt non-
parametrically via solving (10). The resulting empirical 
distribution of ߚ can then be analytically approximated via 
known distributions such as Gamma or inverse-Gamma 
models. For the IPIX high sea-state sea-clutter data [12] 
analyzed below the Gamma distribution was found to be a 
better fit for the data as compared to the inverse-Gamma 
model. 

We note however that intrinsic in the above calculations 
is the assumption that the texture is uncorrelated on a pulse-
by-pulse basis. Extensions of this to incorporate fully 
correlated [13-14] and partially correlated texture models []15-
16 will be pursued in future work. 

IV. ANALYSIS OF SEA-CLUTTER DATA 

The above NCG parameter estimation algorithm was 
applied to a sea clutter dataset obtained from [12]. We 
simultaneously modeled the I and Q channels of the data as 
described above (similar results were also obtained when 
modeling the amplitude signal alone). Once we have inferred 
the parameters of the NCG and CG models corresponding to 
the data, we generate samples from both of these distributions 
and match them with the underlying empirical distribution. 

Figure 2 shows a snapshot the high sea-state sea clutter 
dataset described in [12] that we are modeling (we are using 
the full dataset [12]; Figure 2 shows only a subset of it). 
Figure 3-a shows the cumulative density functions (cdf’s) 
associated with the empirical, CG and NCG distributions. We 
can visually see that the NCG outperforms the CG distribution 
in modeling the overall distribution; quantitatively, roughly a 
30% decrease in the KLD (Kullback-Leibler Divergence) is 
achieved by the NCG in modeling the empirical distribution. 
The NCG distribution thus obtained may be suitable for 
applications such as imaging. However when examining the 
tails of the distributions more closely in Figure 3-b we see that 
in this narrow region the NCG slightly underperforms the CG 
model. 

However the NCG has considerable flexibility in modeling 
stochastic phenomena which we exploit as follows. Figure 4-a 
shows the performance of another NCG distribution when 
modeling the same dataset, but where ߣ was chosen to better 
match the tail of the empirical distribution. Apart from 
outperforming the CG distribution overall, when examining 
the tail regions of the distributions in Figure 4-b we see that 
the NCG decisively outperforms CG in the tail region! Thus 
this type of NCG distribution may be more suitable for target 
detection applications. Note that we have not optimized the 
choice of lambda for matching the tail; but have just shown an 
illustrative example of this. The problem of optimizing ߣ for 
matching the tail distribution is a subject of future work. 

These results therefore illustrate both the flexibility and 
superiority of the NCG distribution over CG in the modeling 
of sea clutter phenomena. 

V. DISCUSSION 

We introduced a novel distribution, NCG, that generalizes 

both the CG and MICA models, and that offers greater 

flexibility and power in modeling sea clutter statistics—both 

in modeling the entire distribution and in capturing the tail 

behavior of the empirical distribution over the traditional CG 

model. 

We anticipate that this can open up many exciting avenues 

for various applications of interest in radar signal processing 

such as in imaging and detection. We further point out in this 

connection that since CG model has been tremendously 

useful in image processing for applications such as denoising, 

we should expect similar applicability of the NCG model 

beyond the modeling of sea-clutter [1]. Thus NCG is a 

general model that could be used a building block for more 

complex probabilistic models of both sea-clutter and scene 

structure. 

Turning now to the phenomenological underpinnings of 

the NCG model in relation to sea clutter, we speculate that 

the quadratic non-linearity that we have introduced in the 

NCG model is related to the coupling between the capillary 

and gravity waves which may manifest itself in terms of 

higher order correlations in the multiplicative term ݃ሺܺሻ. The 

exploration of these and related questions stemming from this 

work is a subject of future work. 
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Figure 2: A Snapshot of a portion of the High Sea-state Sea-Clutter Data [12]



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-a Fig. 3-b 

Figure 3-a: NCG Distribution Optimized for Global fit of the Empirical distribution. The full cdf is 

shown here. Quantitatively NCG outperforms CG in terms of Global fit to the Empirical distribution. 

Figure 3-b: The same NCG Distribution Optimized as in Figure 3-a – but just zoomed into the tail. Note 

that the tail performance of the NCG is not as good as that of the CG (since it is not optimized for the 

tail); this is addressed in Figure 4 

 

Fig. 4-a Fig. 4-b 

Figure 4-a: NCG Distribution Chosen to better fit the tail of the Empirical distribution. The full cdf is 

shown here. Here NCG quantitatively outperforms CG slightly in terms of Global fit to the Empirical 

distribution; but also significantly in terms of Tail fit 

Figure 4-b: The same NCG Distribution Optimized as in Figure 4-a – but just zoomed into the tail. 

Note that the NCG significantly outperforms CG in the tail region. 

 




