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A Nonlinear Dynamic Model for Performance
Analysis of Large-Signal Amplifiers in

Communication Systems
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Abstract—A new nonlinear dynamic model of large-signal am-
plifiers based on a Volterra-like integral series expansion is de-
scribed. The new Volterra-like series is specially oriented to the
modeling of nonlinear communication circuits, since it is expressed
in terms of dynamic deviations of the complex modulation envelope
of the input signal. The proposed model represents a generaliza-
tion, to nonlinear systems with memory, of the widely-used ampli-
tude/amplitude (AM/AM) and amplitude/phase (AM/PM) conver-
sion characteristics, which are based on the assumption of a prac-
tically memoryless behavior. A measurement procedure for the ex-
perimental characterization of the proposed model is also outlined.

Index Terms—Communication systems, large-signal amplifiers,
modeling approach, modified Volterra integral series, nonlinear
dynamic systems.

I. INTRODUCTION

CHARACTERIZATION and modeling of large-signal
amplifiers is of basic importance in the design of com-

munications systems. In fact, power amplifiers are among the
most critical components in system design, owing to the need
for optimal tradeoffs between different requirements, such as
linearity, output power, bandwidth, power-added efficiency,
etc. In particular, for correct performance analysis of commu-
nication systems, accurate prediction of nonlinear distortion
and bandwidth limitations is strictly needed. At present,
communication system design is based on the well-known am-
plitude/amplitude (AM/AM) and amplitude/phase (AM/PM)
amplifier input/output characteristics, which enable the predic-
tion of large-signal performance only in the presence of strictly
narrow-band modulated signals. However, in many cases,
modern communication systems involve modulated signals
whose bandwidths are far from negligible with respect to the
dynamic capabilities of the amplifiers, especially when these
also include internal devices for distortion reduction through
compensation of the nonlinear conversion characteristics. In
such cases, a more complex nonlinear dynamic model, which
takes into account the amplifier distortion, due to both the
large amplitude and the large bandwidth of the input signal,
is needed. To this aim, a special-purpose nonlinear modeling
approach is proposed. It is based on a modified Volterra-like
integral series expansion [1]–[5] which has also been expressed
in a particular form specially oriented to nonlinear systems
operating with modulated signals [6].
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II. NONLINEAR DYNAMIC MODEL

We assume that the output of the large-signal amplifier
can be expressed as a generic functional1 of the input
signal which, according to the line-function symbolism [1],
can be expressed in the following form:

(1)

This equation simply means that the amplifier output de-
pends linearly or nonlinearly on the values of over a
sufficiently large “memory interval” 0 around the
instant at which the output is evaluated. In all cases of prac-
tical interest, the input signal , for any shift , can be
described as a single carrier2 with generic amplitude
and phase modulations with respect to in the fol-
lowing form:

(2)

where is the equivalent complex modulation envelope

(3)

and the associated equivalent carrier frequency. On the basis
of (2), (3), the amplifier response can be conveniently described
by a Volterra-like integral series expansion [2], [3] in terms of
the dynamic deviations of the signal with respect to a
convenient reference signal

(4)

with 0 0. In this case, the reference signal is selected as
an equivalent sinusoid with respect to

(5)

1A functional is a real-valued function whose domain is a set of real functions.
A simple example of a functional, on the set of integrable real functions defined
on a prefixed domain D, is the integral on D.

2This is assuming that a single carrier with a generic modulation is not a strong
limitation, since any multicarrier bandpass signal can be described as an equiv-
alent single-carrier signal with appropriate amplitude and phase modulations.
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whose amplitude and phase coincide with that of the input signal
at the instant at which the output is evaluated; in fact,

. Therefore, we can write

(6)

By introducing the dynamic deviation (4), (1) can be
rewritten as follows:

(7)

By expressing the functional of the two functions through a
convenient series (see Appendix A), on the hypothesis that the
bandwidth of the complex modulation envelope is so small as
to make the product of the amplitude of the dynamic deviations

for each almost negligible in practice and by consid-
ering only the spectral components of the output signal compo-
nent within the operating bandwidth centred around , it
can be shown that the output signal can be expressed as follows
[see (A28)]:

(8)

According to this equation, the “in-band” output signal
can be computed as the sum of different terms. The first term
represents the nonlinear memoryless contribution; the second
represents the purely dynamic linear contribution and the last
two the purely dynamic nonlinear contributions. The dynamic
contributions are evaluated through a convolution integral ex-
pressed in terms of the dynamic deviations of the complex mod-
ulation envelope of the input signal (6). In particular, when the
input signal is a nonmodulated signal carrier, i.e., is a con-
stant, according to (6), each dynamic deviation is identically
zero so that the corresponding output in (8) is given only by
the first term. It can be easily shown that the amplitude and
the phase of simply correspond to the well-known
and widely-used AM/AM and AM/PM amplifier characteris-
tics. This means, in practice, that the AM/AM and AM/PM

plots, which are the only data normally provided to charac-
terize the large-signal amplifier response, simply represent a
zero-order approximation with respect to the dynamic devia-
tions of the complex modulation envelope , of the system
behavior. Thus, in the presence of modulated signals, the com-
monly used AM/AM and AM/PM amplifier characterization is
sufficiently accurate only when the bandwidth of the complex
modulation envelope is so small as to make the amplitude
of the dynamic deviations for each almost
negligible in practice. This constraint cannot be met in many
practical cases, when dealing with large bandwidth modulated
signals. In such conditions, for better accuracy, the generalized
“black-box” modeling approach defined by (8) can be used, by
taking into account more terms of the functional series expan-
sion. In fact, even if the series has been truncated to the first
order term 1 , considerable improvement in accuracy is
achieved with respect to the “coarser” zero order approxima-
tion of the conventional AM/AM and AM/PM characteristics
alone. In particular, the in-band output signal can also be
expressed, according to (8), in terms of the equivalent output
complex demodulation envelope in the following form:

(9)

where

(10)

By considering a discrete spectrum modulating signal, the cor-
responding complex modulation envelope can be expressed
in the following form:

(11)

whose modulus is given by (12), as shown at the bottom of page.
Therefore, the difference can be written as
follows:

(13)

(12)
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By substituting into (10), we obtain

(14)

Let us introduce the following incremental frequency functions,
that is

(15)

(16)

(17)

Obviously, we verify that

(18)

If we introduce these equations into (14), this last can be
rewritten as follows:

(19)

Some particular situations can be considered. First, when con-
sidering a low frequency modulating signal (i.e., the s are suf-
ficiently small), according to (18), the large-signal model of (19)
becomes

(20)

This shows that the term alone completely de-
scribes the large-signal amplifier response when the bandwidth
of the modulating signal is relatively small. It can be noted
that the term corresponds to the well-known
quasistatic amplifier characterization based on the AM/AM,
AM/PM conversion plots. However, (20) also shows that only
using the AM/AM and AM/PM conversion characteristics [i.e.,
only the term ] in order to predict the large
signal amplifier response under wide-band modulating signals
can lead to inaccurate results, since in such conditions, the con-
tribution of the other three terms in (19) is no more negligible.
In particular, the second term alone
can take into account the amplifier dynamics with wide-band
modulating signals, but only when the amplitude of the signal

, or equivalently , is sufficiently small. In fact, for
small , the contributions of the last two summation terms
in (19) become negligible, according to (A16), (A23), and
(A24), with respect to the first two terms. Thus, for small ,
or equivalently small , (19) becomes

(21)

where

(22)

is the small-signal amplifier transfer function at the carrier fre-
quency , while clearly represents the difference
between the values taken by the amplifier small-signal transfer
function at the frequencies and , respectively. The
term can be easily measured under small-signal op-
erating conditions by using conventional signal generators and
vector voltmeters. However, when wide-band large-amplitude
modulated signals have to be dealt-with also the last two terms
of (19) must be taken into account. To this aim, a special-pur-
pose measurement procedure, involving wide-band signals and
large-amplitude carrier, is needed for complete model identifi-
cation.

It can be noted that (10) corresponds to the truncation of
a modified Volterra expansion expressed in terms of the dy-
namic deviations of the input signal modula-
tion envelope . In comparison with the classical Volterra se-
ries approach, the modified one has the advantage of allowing
for series truncation to single-fold convolution integrals even
when strongly nonlinear operation is involved, provided that the
system to be described has a relative short memory time with
respect to the modulating signal bandwidth. More details on
the different truncation properties of the classical and modified
Volterra series approaches can be found in [2]–[5].
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Fig. 1. Measurement setup for the experimental characterization of the terms
H(f ; ja(t)j) and H (F + � ) in the large-signal model of (19) of the
amplifier under test (AUT).

III. MEASUREMENT PROCEDURES FOR MODEL IDENTIFICATION

In order to completely identify the large-signal dynamic
model of (19), the four complex functions ,

, , and
must be experimentally characterized, through suitable mea-
surement procedures for any given frequency and a
sufficiently wide set of values for and . As it has been
outlined in the previous section, the terms and

can be experimentally identified by using a
conventional measurement setup like the one of Fig. 1. This
consists of a generator providing a sinusoidal signal at a given
frequency , whose amplitude can be controlled by a
variable amplifier/attenuator. A vector voltmeter provides the
measured ratio between the phasor for the
corresponding first harmonic of the output signal and
the phasor associated to the sinusoidal input signal ;
higher-order harmonics are eliminated by the bandpass filter
(BPF).3 In particular, according to (20), on the hypothesis of
a zero bandwidth modulating signal, the term
can be characterized for any value of and , by simply
applying an input signal with amplitude and fre-
quency , and measuring with the vector voltmeter the
ratio (Fig. 1). Instead, the term

can be characterized, for any value of , by
applying a small-amplitude sinusoidal signal

(23)

with frequency ; this signal can also be represented
in the form defined by (2) and (11) by letting 0 and 0
for any except . In such conditions, according to (21),
the term can be simply computed as

(24)

once the ratio has been measured by the vector
voltmeter.

As far as the terms and
in the model of (19) are concerned, their experi-

mental identification cannot be carried out by using the single-
frequency measurement setup in Fig. 1. In fact, for a full char-
acterization (i.e., for both positive and negative frequency shifts

3In the following, we will assume that the BPF is almost ideal all over the
band of the signal s(t) which have to be used as the input of the large-signal
model of (19). In practice, non idealities of the BPF can be compensated by a
suitable calibration procedure.

), the more flexible setup shown in Fig. 2, which enables for
any type of sinusoidal modulation for a given carrier at fre-
quency , is needed. This consists of a complex envelope mod-
ulator which, by applying suitable signals at its two inputs
and , can implement any complex modulation of the car-
rier provided by a sinusoidal oscillator
(without loss of generality in the following we will assume
1 V). The two baseband modulating signals and are
obtained from a second generator, which provides a sinusoidal
modulating signal at any frequency . In
the following, we will assume that the modulating signal ampli-
tude is small enough, so that the system response is linear
with respect to the modulating signal . It can be noted, owing
to the superposition of the effects in small signal operation, that
there is no loss of generality in considering a purely sinusoidal
modulating signal . It should also be noted that linearization,
with respect to the modulating signal, does not undermine the
possibility of testing the amplifier dynamic nonlinearity, since
this will be detected by suitably varying the amplitude of the
carrier, as it will be discussed in the following. In fact, the car-
rier amplitude , with , can
be controlled through the “biasing” signals and in the
circuit consisting of two sum blocks and two linear blocks with
transfer functions and which provide the two signals at
the input of the complex envelope modulator

(25)

(26)

Therefore, we can write

(27)

According to (2), the signal applied at the amplifier input
can be expressed as follows:

(28)
The output signal given by (7) is bandpass filtered in order
to eliminate all the spectral components which are out of the
signal band of interest (i.e., all the side bands around the har-
monics of ) so that the complex envelope demodulator (see
Fig. 1) can provide the two baseband signals

(29)

(30)
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Fig. 2. Measurement setup for the experimental characterization of the terms G (f + � ; f ja(t)j) and G (f + � ; f ; ja(t)j) in the large-signal model of
(19) of the AUT.

which represent, respectively, the real and imaginary parts of
the complex envelope of the in-band output
signal . Thus, the dc components and can be mea-
sured by a dc voltmeter, while the two in-band transfer func-
tions (or ) represent the ratios of the phasor associated
to the sinusoidal components of [or ] and . Con-
sequently, from (29) and (30), we deduce

(31)

In order to characterize the terms and
in (19), for positive values of the modu-

lating frequency , the test signal

(32)

with sufficiently small amplitude of the complex, term will
be used, so that the inputs of the modulator can be expressed as

(33)

(34)

Consequently, by also taking into account (25) and (26), the
transfer functions and in Fig. 2 must satisfy the con-
ditions

(35)

(36)

or equivalently

(37)

so that the complex modulation envelope of the input signal
becomes

(38)

where , , and are complex quantities. As the
amplitude of the modulating signal is chosen small enough
in order to consider as significant only the linear contributions
around 0, the model of (19) can be linearized with
respect to , so that the corresponding complex modulation
envelope of the output signal can be expressed (see
Appendix B) in the following form:

(39)

By comparing this equation with (31), we can write

(40)

(41)

(42)

Where and have been measured, for a set of values of
and for a given carrier frequency , by using the setup

in Fig. 2 under the first test condition (i.e., for ).
Equations (41) and (42) provide a simple way of extracting the
unknown value of the complex functions , , , and ,
which completely characterize, together with , the large signal
dynamic model defined by the (14). In fact, since according to
(B4), (B5), and (B6), it results

(43)
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so that (42) becomes

(44)

This shows that the unknown term is easily derived from
measurements carried out under the first test condition with a
small modulating signal having a sufficiently small frequency.

In order to complete the spectrum analysis, we must consider
also when the frequency is negative ; to this end, we use as
test signal the quantity

(45)

By considering the second expressions of (33) and (34), we de-
duce

(46)

(47)

Consequently, , or equivalently

(48)

By substituting into (45), we obtain

(49)

Proceeding in a similar manner as in the previous case with pos-
itive frequency , we can deduce the new expression of ob-
tained from (39) by substituting , , and , respectively, with

, , and . Consequently, we obtain

(50)

and comparing again with (31), we obtain

(51)

(52)

(53)

In the particular case of 0, i.e., into (27), from
(39) or (50), we obtain

(54)

In this condition, the real and imaginary part of can
be measured with two dc voltmeters. By applying (54) for dif-
ferent values of , we can estimate . In the general
case of sufficiently low, for each value of , the two com-
plex quantities and can be measured.

A preliminary validation of the above outlined characteriza-
tion procedure has been presented in [7]. The results show that
performance predictions can be achieved which are more accu-
rate than those provided by the conventional AM/AM AM/PM
characterization approach.

IV. CONCLUSION

A nonlinear dynamic model of a power amplifier for commu-
nication systems, which takes into account the amplifier distor-
tion due both to the large amplitude and the large bandwidth of
the input signal, has been proposed. The model derives from the
truncation of a new modified Volterra series expression formu-
lated in terms of dynamic deviations of the complex modula-
tion envelope which describes the input signal. This model can
be considered as a generalization of the conventional AM/AM
and AM/PM conversion characteristics which are commonly
used to describe the nonlinear amplifier behavior for quasistatic
memoryless operating conditions under the hypothesis of a rel-
atively narrow-band input modulating signal. The proposed ap-
proach has the advantage of making the narrow-band modula-
tion constraint much less restrictive. Preliminary validation re-
sults [7] have shown that significant accuracy improvement can
be achieved in comparison with the conventional AM/AM and
AM/PM approach. The proposed approach has been presented
with special emphasis on communication circuits in the pres-
ence of modulated signals. However, it can be potentially ap-
plied also to other types of nonlinear dynamic systems oper-
ating with bandpass signals. In fact, any bandpass signal can
be mathematically described as an equivalent modulation of a
virtual carrier frequency allocated within the signal bandwidth.
Further work will be devoted to the extension of the proposed
modeling approach to the characterization of other types of non-
linear dynamic systems.

APPENDIX A

It can be shown [1] that the functional of the sum of two func-
tions and of the same real variable x can be expressed
through the following series:

(A1)

where , with convenient

parameters, represents the nth derivative of the original func-

tional . This formula gives an extension of the Taylor
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series to functions which depend on all the values of another
function. On this basis (7) can be rewritten as follows:

(A2)

For the traditional Volterra series [1], [4], the functional
can be expressed as follows:

(A3)

where

(A4)

(A5)

being

(A6)

the th kernel of the Volterra series.
Each functional , which is the

th derivative of the functional , can be expressed
through the traditional Volterra series kernels, as follows [1]:

(A7)

By introducing (A3), (A5), and (A7) into (A2), we can write

(A8)

where

(A9)

(A10)

(A11)

The components and have been approximated,
by considering uniquely 1, on the hypothesis that the band-
width of the complex modulation envelope is so small as to make
the product of the amplitude of the dynamic deviations
for each almost negligible in practice. Now, we consider only
the spectral components within the operating bandwidth ,
so that we have

(A12)

In order to obtain the spectral contribution within the
operating bandwidth, we must develop into (A9) the product
[see (5)]

(A13)
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Its contribution within the operating bandwidth, by introducing
[see (3)], is

(A14)

The last passage is due to the fact that each term of the first
double sum (relative to 1) it corresponds, also
since the result must be real, its global conjugate in the second
double sum (relative to 1). It is important to
emphasise that the contributions within the operating bandwidth
are non null only for odd values of . Finally, we can write

(A15)

where we have assumed

(A16)

(A17)

which are complex quantities. The second component
(A10) is already in bandwidth; in fact, by remembering (6), we
obtain

(A18)

By now taking into account (A11), we observe that, by
recalling (6), we have

(A19)

due to the fact that is real. On the other hand, in
analogy with (A13), by introducing (5), we obtain

(A20)

By considering only the contributions with respect to within
the operating bandwidth , we have

(A21)

Obviously, the non-null contributions derive uniquely from even
values of , in order to verify the equalities
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0 (referring to ) and 2 (referring to
). Now, by recalling (3), for which we can write

(A22)

we obtain

(A23)

From (A11), by taking into account (A21), and so considering
only the contribution of within the operating bandwidth,
we can write

(A24)

where

(A25)

(A26)

and

(A27)

which are complex quantities. Being

we have

By taking into account (A15), (A18), (A24), and, in the second
term of this last by substituting the real part of the complex
quantity with the real part of its conjugate, the “in-band” output
signal (A12) can, therefore, be expressed as follows:

(A28)

APPENDIX B

In this sense, by referring to (27) and (38), we develop the
modulus of around 0, that is

(B1)

Besides, by considering negligible the non linear terms in , we
can write

(B2)

By introducing these approximations and (38) into (19), we ob-
tain

(B3)
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where we have assumed

(B4)

(B5)

(B6)

with 0,
0, and

0. Let us now again develop (B3) around
0; by recalling that we consider negligible the nonlinear terms
in , we deduce

(B7)

where

The second term of this equation can be rewritten as follows:

(B8)

By introducing this expression into (B7), after simple manipu-
lations, we obtain

(B9)
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