
Chin S. Chu 
Graduate Research Assistant, 

Kristin L. Wood 
Associate Professor. 

Ilene J. Busch-Vishniac 
Professor. 

Department of Mecfianical Engineering, 
Ttie University of Texas, 

Austin, TX 

A Nonlinear Dynamic Model With 
Confidence Bounds for 
Hydrodynamic Bearings 
In conventional rotordynamic modeling, hydrodynamic bearings are often char-
acterized by a set of linear stiffness and damping coefficients obtained from a 
first-order Taylor series expansion of bearing reactions. Theoretically, these 
coefficients are only valid for small amplitude motion about an equilibrium 
position. In this paper, a nonlinear dynamic model that overcomes the small 
amplitude assumption in the conventional linear analysis is described. By includ-
ing higher-order terms in the bearing reaction expansion, nonlinearity in the 
oil film forces for large amplitude motion can be captured and represented by 
a set of nonlinear stiffness and damping coefficients. These coefficients are 
functions of static bearing displacement. A finite difference approach is de-
scribed and is used to solve for these coefficients. The stated model is applied 
to a conventional slider bearing and a mechanical smart slider bearing that 
experiences large variations in load. Error assessment is performed numerically 
on the higher-order solutions to determine an acceptable displacement bound 
for the higher order coefficients. 

1 Introduction 
There are generally two approaches to representing fluid film 

bearings in rotordynamic modeling: namely, a linearized model 
and a time-transient model (Shapiro and Rumbarger, 1971). 
The linearized model represents bearing systems by constant 
stiffness and damping coefficients evaluated about a nominal 
operating position. Dynamic response and stability conditions 
can be evaluated using a time-invariant linear dynamic model 
with these stiffness and damping coefficients. The time-transient 
model, on the other hand, produces a time history of the bearing 
displacement in all degrees of freedom without any linearization 
assumptions. The latter approach provides the closest simulation 
of the actual system performance; however, repetitive solution 
of the governing fluid equation is required over a time span, 
resulting in costly computational requirements. It is therefore 
a common practice to use the linearized approach unless the 
linearized assumption deteriorates, i.e., when the bearing motion 
amplitude becomes large. 

In some cases, the linearized model may be shown to be 
valid over a range of bearing parameters and operating condi-
tions. Shapiro and Rumbarger (1971) suggest that displace-
ments over 10 percent of the operating film thickness would 
require appropriate modification of linear spring and damping 
constants. Lund (1987), who introduced the linearized bear-
ing analysis, states that the linear coefficients maybe valid for 
amplitudes up to 40 percent of bearing minimum clearance. 
However, there is no justification of his criterion in terms of 
coefficient accuracy at such high displacement amplitudes. 
Obviously, such a linearized approach would require an evalu-
ation of the linearized error to set forth an acceptable bound 
for the linear solutions. Hashi and Sankar (1984) have at-
tempted to estimate the linearized error. Deviations of linear-
ized journal bearing coefficients from the nonlinear systems 
are calculated. Error estimation charts for some important 
cases of plain journal bearings under unbalance loading are 
provided. 
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When the bearing displacement amplitude exceeds a certain 
limit, bearing reactions become nonlinear. There are limited 
studies which have been performed on the nonlinearity within 
the bearing oil film. Hattori (1993) shows that for a rotary 
compressor under large dynamic loads (displacement ampli-
tude varies more than 50 percent of the radial clearance per 
revolution), journal bearing stiffness and damping coeffi-
cients can vary by more than one order of magnitude, demon-
strating that oil film nonlinearity seriously influences rotor 
motion. The linearized model is therefore not acceptable for 
such cases and some form of nonlinear analysis is required. 
Choy, et al. (1991) use a nonlinear approach in modefing the 
nonlinearity within the oil film forces. They expand the bear-
ing reactions using a power series and retain the higher order 
terms. They show that at displacements far away from the 
equilibrium, nonlinearity in the oil film is significant and can 
be modeled closely by higher order stiffness and damping 
coefficients. Their results indicate that the range of accuracy 
for the higher-order coefficients can be extended by including 
more terms in the expansion. 

In this paper, a quasi-static nonlinear dynamic model for 
hydrodynamic bearings is described. There are two features to 
this model: (j) a nonlinear dynamic model capable of capturing 
the nonlinearity in oil film forces under large amplitude excur-
sions, and («) an error scheme that evaluates higher-order trun-
cation error in the oil film force expansion. The first feature 
enables the designer to calculate the nonlinear oil film forces. 
The second feature provides a useful way for the designer to 
set a confidence bound on the nonlinear solutions. Depending 
on the application requirements, additional terms can be added 
to the bearing load expansion. 

A finite difference scheme with successive-over-relaxation 
(SOR) is employed to solve the stated nonlinear model. This 
model is first applied to a conventional slider bearing to bench-
mark the new model and then to a new Micro-Electro-Mechani-
cal Systems (MEMs) smart bearing concept (Hearn et al., 
1995). The MEMs smart bearing concept involves active con-
trol of the film thickness profile to induce desirable bearing 
performance. A typical MEMs smart bearing consists of an 
actively deformable surface (actuators) and pressure sensors 
(Hearn et al., 1995). Preliminary results from a linear model 
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indicate that MEMs smart bearing's minimum clearance could 
vary as much as 30 percent upon the actuation of the deformable 
surface. The nonlinear model described in this paper is well 
suited for this bearing because of the large amplitude excursion 
experienced by the bearing during the actuation process. Other 
potential applications of the present modeling approach include 
modeling of dynamic loading on a journal bearing within a 
rotary compressor (Hattori, 1993) or other smart bearing con-
cepts such as the one developed by Rylander, et al, (1995) . In 
the latter example, a smart bearing concept that can reduce 
bearing vibration amplitudes through an active transformation 
of journal bearing form is tested. This bearing experiences large 
amplitude excursions that can be modeled by the present ap-
proach. 

2 Analysis 

In this section, the modeling approach is first discussed, and 
the formulation of a 1-D quasi-static nonlinear dynamic model 
is detailed. The remaining sections present a description of the 
numerical solution scheme, the solution procedure, and the spe-
cific appUcation of the 1-D nonlinear dynamic model in a MEMs 
smart bearing. 

2.1 Modeling Concept. Most of the analysis of the dy-
namic characteristics of hydrodynamic bearings involves linear-
ization of oil film forces about an static equilibrium position 
using a first-order Taylor series expansion (Lund, 1987; Ham-
rock, 1994). This approach assumes that the dynamic amplitude 
of the rotor center motion is negligible. However, when the 
rotor center is experiencing large variations in dynamic load, 
the rotor motion amplitudes cannot be ignored. Then, linear 

coefficients obtained at one position are meaningless. In this 
case, if the higher-order terms in the Taylor series expansion 
are retained, the bearing load becomes a nonlinear function of 
rotor displacement and rotor velocity up to any desirable order. 
Such a model is valid even for large dynamic motion ampli-
tudes. Depending on the designer's application ranges, the order 
of the expansion can be adjusted accordingly through a trunca-
tion error evaluation. In terms of system representation, the 
bearing system can be conveniently represented by a set of 
nonlinear stiffness and nonlinear damping coefficients defined 
from the classical definitions of stiffness and damping coeffi-
cients. This allows the representation of bearing dynamic char-
acteristics without regard to a particular rotor system. Such a 
representation depends on bearing geometry as presented in the 
next section. 

2.2 Geometry, Fluid Model, and Equation of Motion. 
A slider bearing model is used to demonstrate the development 
of a nonUnear dynamic model. The present approach is general 
and applies equally well for a journal bearing geometry. Figure 
1 depicts a conventional smooth slider bearing. The bearing pad 
is rectangular in shape with length L and breadth 5 . The bearing 
is characterized by an inlet-to-outlet ratio {hjlho) and has a 
runner velocity U. The two dimensional dynamic pressure dis-
tribution within the bearing gap P{x, y, t) is governed by the 
time dependent Reynolds' equation (Hamrock, 1994; Pinkus 
and Stemlicht, 1961): 

dx 

dP_ 

dx dx 

, 3 ^ 

OX 

. ^.dh , - dh 
= 6^iU—+ 12M ^ , (1) 

Nomenclature 

^ Z Z ' ^ZZZ> 

hi = inlet film thickness 
ho = outlet or minimum film 

thickness 
h = film thickness at each lo-

cation 
P - time dependent fluid film 

pressure 
W = time dependent bearing 

load 
t = time 

L = bearing pad length 
B = bearing pad breadth 
/i = lubricant viscosity 
IJ = bearing runner speed 
m - mass of the bearing sys-

tem 
hi - linear damping 
k^ = linear stiffness 

fit) = forcing function 
z — displacement 
z = velocity 

Az = perturbed displacement 
Az = perturbed velocity 
Zo = arbitrary displacement op-

erating point 
Zo = arbitrary velocity op-

erating point 
Wo = steady state load 

, . . . = stiffness terms 
, . . . = damping terms 

. . = cross-coupling terms 
hs = initial steady state film 

thickness 

Po, Pz, Pi> • • • = perturbed pressures 
L,Lo,L\,Li = operator for expansion 

relations 
/ = integral operator (/[] 

k„i = nonlinear stiffness 
b„i = nonlinear damping 
E = perturbation error 

function 
Enom, = normalized error 

within a perturbation 
space 

Ji = hlho = normahzed film thick-
ness 

X = xlL = normalized length co-
ordinate 

J = ylB = normalized breadth co-
ordinate 

/„ = source terms for the 
standard Reynolds' 
equation 

F„ — normalized perturbed 

pressures 
l̂ a = normalized steady state 

load 
^j . ẑz. • • • = normalized stiffness 

terms 
bi = normalized linear 

damping 
ẑz. ẑzz. • • • = normalized cross-cou-

pling terms 
a,,y fij = coefficients for the fi-

nite difference formu-
lation 

E = 

F = 

Az = Az/ho = 
Az = Az/U 

X WK) = 
Po = 

AP = 
{x*,y*) = 

pjacobi 

Ax, Ay = 

7max ^maxi J max 

h„ -

ro 

ri 

a 

normalized error func-
tion 
normalized pressure 
normalized displacement 

normalized velocity 
static pressure 
dynamic pressure 
caviation boundary 
over-relaxation factor 
residual error at i, j 
spectral radius of a Ja-
cobi iteration 
step sizes in the X and y 
directions 

number of grid points in 
the i and j directions 
central film thickness for 
a tapered land thrust 
bearing 
sector pad inclination 
angle 
sector pad outer radius 
sector pad inner radius 
sector angle 
normalized nonlinear 
steady load 
normalized nonlinear 
stiffness 
normalized nonlinear 
damping 
membrane feature actua-
tion height 
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Fig. 1 Conventional slider bearing 

where 

h{x, y) = hi - (hi - ho) • (2) 

is the oil film thickness at each location and the bearing reaction 
load W is obtained through 

W(x,y,t)= f f P(x,y,t)dxdy. (3) 
Jo Jo 

This model is valid for isoviscous incompressible fluids. It is 
time dependent and can only be solved with the knowledge of 
the system equation of motion (time-transient approach). 

For a slider bearing with one-dimensional (1-D) loading, the 
equation of motion given by Newton's second law is simply 

mz + b,i + k,z = / ( 0 . (4) 

where m is mass of the system, bi is bearing damping, k^ is 
bearing stiffness, and/(0 is bearing forcing, respectively. 

2.3 1-D Quasi-Static Nonlinear Dynamic Model. To 
avoid the time-dependency of the above model (Eqs. (1) - (4)), 
a quasi-static approach is used to condense the time scale. In 
1-D loading, it appears that bearing reaction is a function of the 
system states: displacement z and velocity i. Applying standard 
perturbation theory, when the bearing vibrates with excursions 
Az and Ajf, the bearing reaction can be expanded using a Taylor 
series expansion up to order n, 

W(za + Az, to -t- A^) = W„ -F ^ (Az) 
dz 

+ —r(A^) + - - ^ ( A z ) ^ 
dz 2 d'-z 

dzdi 
(Az)(Az) + 0[{Az)\ {Aif] (5) 

or 

W(^Zo + Az, zo + Az) = W„ + A:,(Az) -i- bi{,M) 

+ {k^iAzY + \bi,{Ai? + C„(AZ)(AJ!) 

-^0[(Az)^(A^) ' ] , (6) 

where k denotes stiffness terms dependent solely on Az, b 
denotes damping terms dependent solely on Azf, and c denotes 
cross-coupling terms. The indices indicate the origin and the 
order of the terms. In Eq. (6), the first two linear terms are the 
familiar linear stiffness and linear damping. In contrast to the 
conventional linearized theory, this treatment maintains the 
expansion terms above first order in the system to capture the 
nonlinearity within the oil film forces. 

The rotor excursions give rise to a perturbation in the film 
thickness. The new film thickness can be expressed as 

'=K + Az, (7) 

where K denotes the initial steady state film thickness. Since 
Az is not a function of x, and the initial steady state film 
thickness is not a function of t, the following is true; 

dh^dfh, 

dx dx 

^ - 2iM = A ^ = A, 
dt dt dt 

(8) 

(9) 

Likewise, the perturbation in the film thickness gives rise to a 
similar perturbation in the oil film pressure P. Again, the pres-
sure can be expressed by Taylor series expansion as 

Pizo + Az, i„ •¥ Ai)^Po + ^ (Az) + ^ iM) 

az az 

+ 0[(Az) ' , (A^) '] , 

P{Zo + Az,io + Ai) = Pa + PAAz) + Pi(Ai) + ^P^iAzf 

+ |/'ii(Az)^ -H P,i(Az)(Ai) + 0[(A^)^ (A^)']. (10) 

Substituting Eqs. (7)-(9) and 11 into the time-dependent 
Reynolds' equation (Eq. (1)), and expanding and collecting 
like order terms, we obtain a set of relationships for the calcula-
tion of higher-order perturbed pressures. Introducing the follow-
ing operator notation, 

«'=l[<«'!^] 

dx\_ dx _ 

•̂"=i[»-!̂ ; 

OX \_ ax _ 

a 

dy 

a 

a 

>-'*l̂ ] 
" a [ ] l 

.dy \' 

[-f]' 

dy \ 
(11) 

these relationships through second order (n = 2) are 

0[\] L[PA = 6fiU^, 
ax 

0[Az] L[PA = -Li[Po], 

0[Ai] L[Pi] = 12/*, 

0[(Az)'] L[\P^] = -LzlP,] - Li[Po], 

OUAtf] L[iPi] = 0, 

0[Az, A^] LlP^] ^^ UPi). (12) 

The first relationship, 0(1), is the familiar steady-state Reyn-
olds' equation without the time-dependent term. The displace-
ment related terms are functions of the wedge term (dhjdx) 
(Someya, 1989). On the other hand, the velocity and cross-
coupling terms are functions of the squeeze term (dho/dt) (So-
meya, 1989). In terms of computation, not every relationship 
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in (12) needs to be solved. Those relationships with source 
terms equal to zero will have a trivial solution of zero value, 
for instances, Pi^ - 0. 

Once the pressure derivatives are known, the nonlinear pres-
sure expansion (Eq. (10)) can be related to the load expansion 
(Eq. (6)) through a simple integration across the bearing pad 
area (Eq. (3)) . Az and Az are independent of x and y and do 
not affect the integration. As a result, the integration process 
can be performed separately for each order. Collecting similar 
order terms, the oil film coefficients through second order (n 
= 2) are 

W„ = I[Po], 

k, = I[Pz], 

b, = IlPi], 

f^zz "" ' L •» zz J » 

h. = / [Pzz] = 0 , 

C^ = I[Pzz], (13) 

where /[ ] = / * J^ [ ]dxdy. 

2.4 Nonlinear Stiffness and Damping Coefflcients. For 
the purpose of representation, the classical definition of stiffness 
and damping coefficients is used to define a set of nonlinear 
stiffness and damping coefficients from the nonlinear load func-
tion (Eq. (6)) . Defining the nonlinear stiffness as 

kA^z) = 
dW 

d(^z) Az=constant=0 

we then have 

k„,(Az) = K + A:^[Az] + \kJiAzf 

+ lk^[Az? + 0{,[AzY). (14) 

Similarly, defining the nonlinear damping as 

b„,iAz) 
d(Az) Az=conslant*0 

we have 

bniiAz) = b, + cd^z] + 5C^ri[Az]' 

+ g c ^ [ A z ] ' + 0 ( [ A z ] n . (15) 

All the damping terms b^,bii,... except the linear term b^ are 
zero in the expansion. 

The present approach allows the decoupling of the dynamic 
characteristics of a bearing type from the rotor system. Using 
this representation, the nonlinear load function will now appear 
as 

W{Az, Ai) = W, + kni(Az)[Az] + b„,iAz)[At]. (16) 

2.5 Error Function. An error function is defined for the 
investigation of modeling error due to the truncation of higher 
order terms in the load expansion. Rearranging the time-depen-
dent Reynolds' equation (Eq. (1)) and making use of Eq. (7) 
and Eq. (9) , the error function is defined as 

E{Az,Az) = 
dx 

(K + Azy^ 
ox 

a 
+ — 

dy 

{K + Az) 3 ^ 

- 6fiU 
djK + Az) 

dx 
nii{Ai). (17) 

This function is an indicator of the degree of nonlinearity within 
the oil film forces. To declare a valid region for a particular 
order of pressure perturbation, the error function can be further 
normalized by the largest term within the perturbation space, 
i.e.. 

£„om,(Az, Az) = 
E{Az, Az) 

Largest Perturbation Term | 
(18) 

Using the above definition, if the solution is perfect, E„axm = 0. 
The valid space for an nth order perturbation lies within a 
normalized error Enom of [0, 1]. The degree of nonlinearity is 
measured as a fraction of the largest perturbation term. 

2.6 Numerical Solution 

2.6.1 Numerical Scheme. The relationships in Eq. (12) 
are in similar form. To reduce the number of variables under 
study, Eq. (12) is normalized. A finite difference approach 
is developed for the following standard normalized form of 
Reynolds' equation 

dPn 

dx 

' d_ 

dx dx 
=-/,., (19) 

L[Pn] = fn\n = o, z, z, zz, it, zi, ..., 

where Ti = (h/ho) is the normalized film thickness, x = (x/L) 
is the normalized length coordinate, J = iy/B) is the normalized 
breadth coordinate, /„ is the forcing function on the right-hand 
side of Eq. (12), and the normalization for the pressure related 
quantities F„ varies for different orders. P„ through second order 
(« = 2) are listed below: 

Order 

0[1] 

0[Az] 

0[Ai] 

0[(Az)^] 

OHAzf] 

0[Az, Ai] 

Normalized pressure 

P h^ 

° nUL 

Ph^ 

' liUL 

p. - P^h' 

P h^ 

Fu = Q 

P /z" 

Normalized coefficient 

W h^ 

k h* 

Szz = 0 , 

c /z" 
^zz'*o 

(20) 

Given the bearing dimensions and operating parameters, Eq. 
(20) can be used to obtain the normalized pressures and coeffi-
cients. 

Equation (19) is an elliptical equation with four boundary 
conditions. Applying a five-points second order central differ-
ence scheme, it can be reduced to a set of simultaneous linear 
equations of the form 

ai.j(F„)i+ij + bt,j{P„)i-uj + Ci,j(P„)t,j+i 

+ di.j{P„\j-i + e,j{F„)ij = fij, (21) 

where i,j are grid points in the direction jTand y, respectively, 
a n d / j is the source term of Eq, (19) at grid point ((, 7). The 
coefficients in the above equation are functions of film thickness 
and grid spacing. Thus, it represents a transformation of geomet-
ric parameters into flow characteristics (Maddox, 1994). 
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There are several approaches for solving systems of algebraic 
equations where the issues of grid spacing govern the algorithm 
selection. Considering the potential need for a fine mesh size 
to resolve the bearing dimensions, a relaxation method is se-
lected. Such methods do not have grid size limitations that may 
exist for rapid methods or direct matrix methods (Press et al., 
1994). One of the suitable relaxation methods is successive-
over-relaxation (SOR) with Chebyshev acceleration (Press et 
al., 1994). SOR overcorrects predicted solutions at each itera-
tion and increases the rate of convergence. On the other hand, 
Chebyshev acceleration causes the error norm to decrease in 
each iteration, thus ensuring solution convergence. This SOR 
method is selected for this study. A detailed discussion of the 
application of this method for the steady-state Reynolds' equa-
tion solution can be found in (Press et al., 1994; Maddox, 
1994). 

To compute the error function, the normalized form of the 
error function E is used. 

EiAz, Ai) = 
d 

dx 

A 

dp' 
(K + AD' ^ 

ox 

'LV d 

B) dj 
(Tis + I 

A X 3 ^ ^ 

- 6 ^ ^ V - ^ - 1 2 ( A ^ ) . (22) ox 

where the bearing coordinates are normalized as before, ,̂, = 
(hjho) is the normalized initial steady state film thickness, Af 
= (Az/ho) is the normahzed displacement, Az = iAilU){LI 
ha) is the normalized velocity, and the normalized nonlinear 
pressure P is given by 

P{Az, Al) = Po + FAAz) + P,{Ai) 

+ kP^iAz)'' + \Pii{Ai)^ + PAAz)(Al) 

+ 0[(Az)\(Ai)']. (23) 

The process of obtaining E is relatively simple. Once the pertur-
bation coefficients P„ are known from solving Eq. (21) using 
SOR, P can be computed, and E can be evaluated within the 
grid space as functions of normalized displacement Ar and 
normalized velocity Ai. Error contour data are generated for 
further analysis. 

2.6.2 Dynamic Pressure Boundary Conditions. Four 
boundary conditions are required to solve the elliptical equa-
tions (Eq. (19)). These conditions stem from the ambient con-
ditions (atmospheric pressure) at the bearing inlet, outlet, and 
sides 

P(x, y = 0) = P(x, y = B) = P(x = 0, y) 

~ F\X = L^y) ~ r ~ 'atmospheric ~ "• 

In normalized form, 

p{x,y=Q) = P{x,f= 1) 

= P{x = 0, jT) = P{x = 1 , 7 ) = 0. (24) 

Letting P = P„ + AP, where /"„ is static pressure, and AP is 
dynamic pressure, Po = AP = 0 at the bearing edges from Eq. 
(24) (Lund, 1987). The dynamic pressure boundary conditions 
can be recast as 

AP{x, y = 0) = AP(x, 7 = 1 ) 

= AP(x = 0, y) = AP(x = 1, y) = 0. (25) 

An additional condition is required because the oil film could 
possibly cavitate near the trailing edge and under dynamic load-

ing. It is observed that lubricant cavitates at close to ambient 
pressure because of its low saturation pressure (Hamrock, 
1994). The most common approach for proper establishment of 
the cavitation boundary is to apply the Swift-Stieber boundary 
condition, also known as Reynolds' boundary condition (Jacob-
son and Hamrock, 1983; Hamrock, 1994). The Reynolds' 
boundary condition obeys flow continuity and assumes zero 
pressure and zero pressure gradients at the cavitation boundary. 
This condition is selected for the present model. In mathematical 
form, Reynolds' boundary condition at the cavitation boundary 
(x*, y*) is 

P(x*,y*) = 0, 

dP{x*,y*) 

and 

dx 

dP{x*,y*) 

dy 

= 0, 

= 0. (26) 

Assuming that the static pressure P^ at the cavitation boundary 
is zero (Lund, 1987), the dynamic pressure boundary conditions 
according to Reynolds' boundary condition must be: 

AF(x*, JT*) = 0, 

a[AP(x*, y*)] 

dx 

and 

d[AP(x*,y*)] 

dy 

= 0, 

0. (27) 

These conditions are implemented in the numerical solver by 
setting the perturbed pressure P„ = 0. 

2.6.3 Solution Procedure. The overall solution procedure 
is depicted in Fig. 2. As soon as the equilibrium bearing profile 
h, is computed as a function of inlet-to-outlet ratio (hi/h„), the 
SOR solver is used to solve for the perturbed pressures. This 
solution process is sequential since the higher order terms are 
functions of the previous lower-order terms. An over-relation 
parameter WSOR is needed for the SOR solver. This factor over-
corrects the pressure prediction based on the following relation-
ship 

{Pn)u — (Pn)i.j ~ l̂ SOR "^ (28) 

where k is the iteration step, WSOR is the over-relaxation factor, 
Kij is the residual error, defined in the reference (Press et al., 
1994), and e,-,;- is the coefficient of (P„)i.j defined in Eq. (21). 
In the numerical simulation, the relaxation factor (Press et al., 
1994) used is 

WSOR 

1 -I- VI 71 2 
P Jacobi 

where 

IT fAX\ 
— + l^] Af) 

PJacobi 

1 + 
AxV 

Ay) 

(29) 

where ('max and y'max are the number of grid points in the /, j 
directions, respectively, Ax, Ay are the step sizes in the X, y 
directions, respectively, and pjacobi is the spectral radius of the 
Jacobi iteration. The spectral radius of the Reynolds' equation 
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fstartj 

ho 

Generate 
Bearing Profile 

(Equation 2) 

h. 

Calculate 
Perturbed Pressure 

(SOR Solver) 

•* OI "z I ' 

Generate 
Nonlinear Pressure 

Function 

(Equation 19) 

(Equation 23) 

P = P„ + P,Az + ,.. 

Generate 
Error Function 

(Equation 17) 

E{Az, Al) 

Calculate 
Normalized Error 

(Equation 18) 

£̂ n 

(End ) 

Fig. 2 Soiution flow cliart 

is related to the rate of solution convergence. In this case, the 
spectral radius for Poisson's equation is used as a substitute for 
the unknown Reynolds' equation spectral radius (Press et al , 
1994). This is vaUd since Reynolds' equation is of Poisson's 
type. The SOR solver is terminated when the final residual error 
norm is 10"' times the initial error norm. 

Once the perturbed presMres are known, the normalized non-
linear pressure P(Az, Az) is generated. This function feeds 
directly into the evaluation of normalized error function E{Az, 
Az). E is further normalized by the root-mean-square (RMS) 
value of the largest term within the perturbation space. In this 
case, the largest term is {dldX)[hl{dF^Mrbtildx)'\. Contour 
plots of Snorm are generated from the error function. 

3 Applications, Results, and Discussion 
The linear dynamic coefficients generated from a second or-

der nonlinear dynamic model are compared to the published 
results to verify the reUability of the present model. Figure 3 

2 ™ - . . Tapered Und 
Tluust Bearing 

0- I I I I I T ^ 
0.H 0.06 0.1 0.» 0.14 0.1t 0.1B 

( i O - ' l r . 

Fig. 3 Verification of the nonlinear model: a tapered land thrust bearing 
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shows the normahzed steady-state load, hnear stiffness, and 
Unear damping coefficient of a tapered land thrust bearing at 
different central film thicknesses (Someya and Fukuda, 1972). 
Steady-state load W^, stiffness k^, and damping coefficient b; 

in this figure are normalized as W, = {W^e^l^S),\ = (k^e^ta/ 

fiiiiS), and hi = {bie^roljiS), respectively. Here, e = 10"' is a 
constant, uj is runner angular velocity, S is sector pad area, /x 
is lubricant viscosity, and r„ is pad outer radius. The vertical 
axis in this figure represents dimensionless steady state load, 
stiffness, and damping coefficients, respectively. The second-
order nonlinear quadratic results show good agreement with the 
published results in Someya and Fukuda (1972). 

In the subsequent sections, the nonlinear coefficients for the 
conventional and MEMs slider bearing are calculated and com-
pared to the actual curves. The accuracies of the first through 
fourth order nonlinear model are discussed. 

3.1 1-D Nonlinear Coefficients and Higher-Order Mod-
eling Accuracy—Conventional Slider Bearing. Using a 
fourth-order model, the nonlinear load function W of a conven-
tional slider bearing with {hi I ho) = 2 and K = 50 fim is gener-
ated from the numerical solver. This load function is 

W = 0.069248 - 0.148477(Az) 

- 0.138497(Aj) + 5(0.431931 )(Az)" 

-I- 0.296953 (Ar)(Az) - g( 1.597596) ( A r ) ' 

- 1(0.863861 )(Az)"(Az) + ^(7.20808249)(Az)'' 

+ g(3.195191)(Ar)'(Af), (30) 

and the corresponding nonlinear steady load, stiffness, and 
damping coefficients are 

Ws = 0.069248 - 0.148477(Az) 

+ 5(0.431931 ) (Az) ' - g(1.597596)(Ar)^ 

-h ^(7.20808249)(Az)'' (31) 

k„, = 0.148477 - 0.431931 (Ar) 

+ 5(1.597596)(Az-)' - g(7.20808249)(A^)^ (32) 

b„, = 0.138497 - 0.296953(Az) 

+ 5(0.863861 ) (Az) ' - i(3.195191)(Ar) ' . (33) 

These functions can be used to obtain the dynamic characteris-
tics of a conventional slider bearing with known displacement 
and velocity. Also, the accuracy of the higher order modeling 
results can be explored. Figure 4 shows the plot of normalized 
perturbation error for the first through fourth order nonlinear 
model as a function of static normalized displacement Az. Con^ 
tour lines in these figures represent normalized velocity Az 
ranges from 0 to 1. It can be seen that as displacement gets 
larger, the perturbation error exceeds the valid perturbation 
space (̂ norm = 1) rapidly. The perturbation error in some models 
at large displacement ampUtudes can be more than 4 times the 
largest term in their respective perturbation spaces. This is an 
indication of severe nonlinearity in the oil film forces. A con-
ventional linearized approach is therefore unacceptable. Higher 
order effects must be included in the hydrodynamic bearing 
dynamic model. Depending on the application requirement, the 
acceptable error criteria for a nonlinear model must be carefully 
selected based on the system dynamics. A 25 percent error 
tolerance criterion is selected for this study. This criterion 
allows a fourth order model to produce accurate bearing dy-
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Fig. 4 Accuracy of higher order load expansion (conventional slider 
bearing, hi„//i„u, = 2) 
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Fig. 5 Accuracy of higher order dynamic coefficients (conventional 
slider bearing, h,„/h„ut = 2) 

namic characteristics within a displacement amplitude of ±30 
percent minimum clearance. 

The valid displacement bounds for the first through fourth 
order model are evaluated for a 25 percent error tolerance and 
presented in Table 1. The ranges of validity improve as the 
order increases. The first order linear dynamic model is shown 
to be valid for a displacement of approximately ±6 percent 
minimum clearance. This is a much more conservative estimate 
than those quoted by Shapiro and Rumbarger (1971) or Lund 
(1987). For a fourth-order model, the designer is confident that 
the nonlinear dynamic results are valid within a ±30 percent 
minimum clearance. 

The validity of the error bound and the accuracy of the higher 
order model are confirmed through a comparison of nonlinear 
steady state load, stiffness, and damping coefficients to their 
nonlinear curves calculated using a linear dynamic model at a 
small displacement increment ( A r = 0.0125). The results are 
shown in Fig. 5. While the first-order results match the slope 
of the actual curves at the zero displacement location, the sec-
ond-order results match the curvature. The subsequent orders 
agree closer and closer with the actual results. Significant im-
provement in accuracy occurs within the first few orders. Per-
cent deviation of the higher order coefficients from their actual 
curves at a displacement of ±30 percent minimum clearance 
are evaluated and presented in Table 2. In this table, the two 
numbers in the bracket represent percent deviation at (Az//j„) 
= —0.3 and (Az/ho) = 0.3 respectively. These results show 
that upgrading from a first to a fourth order model improves 
the accuracy by more than 40%. For a fourth order model, 
percent deviation ranges from 1.6-7.4 at the ±30 percent mini-
mum clearance location. 

Table 2 Percent deviation of liiglier order coefficients from 
tlieir actual curves at Az/h„ = ±0.3 

% Deviation ( A r = ±0.3) 

Conventional 

Order W, Ki 

0th 
1st 
2nd 
3rd 
4th 

(51.6, 75.5) 
(20.9, 37.0) 
(7.7, 14.3) 
(2.7, 6.1) 
(1.6, 2.0) 

(50.0, 48.1) 
(25.0, 29.6) 
(11.2, 12.9) 
(5.0, 7.4) 

(52.2, 76.0) 
(21.7, 36.0) 
(7.6, 12.0) 
(2.2, 6.0) 

3.2 1-D Nonlinear Coefficients and Higher Order Mod-

eling Accuracy—MEMs Smart Slider Bearing. The non-
linear model is applied to a MEMs active smart slider bearing 
(Heam et al., 1995). The MEMs smart slider bearing geometry 
is similar to the conventional slider bearing except that the 
bearing pad is populated with sensors and active actuators 
(Maddox, 1994). A planar view of a MEMs bearing pad is 
depicted in Fig. 6. Preliminary results from a MEMs smart 
bearing study suggest that the presence of MEMs actuators has 
a significant effect on the conventional bearing's steady state 
performance (Maddox, 1994; Masser, 1996; Wood et al., 
1996). These results also suggest that a MEMs smart bearing 
can have controllable dynamic characteristics. This actively 
controllable dynamic feature can potentially be used to avoid 
turbomachinery instabilities such as oil whirl, critical speeds, 
and cavitation (Ehrich, 1992; Maddox, 1994; Masser, 1996). 
However, the potential effectiveness of an active MEMs bearing 

Table 1 High order model lower and upper displacement 
bounds (25 percent normalized error) 

A^' 

Surface Features 

Order 

1st 
2nd 
3rd 
4th 

Displacement bounds I — 

Conventional 

[-0.064, 0.056] 
[-0.175, 0.137] 
[-0.268, 0.205] 
[-0.344, 0.260] 

Journal of Tribology 

slider Bearing Surface 

Fig. 6 Planar view of a MEMs smart bearing pad 
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w/ho 

Side View Membrane Actuation Profile 

Fig. 7 Side view of a MEiMs bearing pad and a MEMs membrane actuation profiier 

in avoiding these instabilities depends on the magnitude of its 
controllable dynamic characteristics. The nonlinear model is 
used to determine the magnitude of the dynamic characteristic 
changes induced by a MEMs smart bearing. 

In this analysis, the bearing pad is implanted with active 
membrane features without the sensors. These features are 
diaphragm-type actuators which can deform under an applied 
pressure (Maddox, 1994). A side view of the membrane 
feature pad is shown in Fig. 7. These features are fabricated 
on a silicon wafer using wafer fabrication techniques. A 2 
cm by 2 cm membrane feature pad is used in this study. 
These membranes are activated to a height of half of the 
bearing minimum clearance by a pneumatic pressure source. 
The bearing pad profile after actuation is illustrated in Fig. 
7. Bearing geometry and pad feature dimensions are summa-
rized in Table 3. 

The nonlinear load function for the application example, 
a MEMs slider bearing with {hi I ho) = 2 and ho = 50 /xm, 
is 

W = 0.107410 - 0.273233(Ar) 

- 0.208199(Az) + 5(0.954906)(AZ-)' 

+ 0.524181 (Ar)(Az) - | (4.282986)(Ar) ' 

- 5(1.812075)(Ar)^(Aj) + ^(23.557991 )(Ar)* 

+ | (8.051515)(Ar) ' (Az). (34) 

The resultant nonlinear steady load, stiffness, and damping 
functions are 

W, = 0.107410 - 0.273233(Ar) 

+ i(0.954906)(Ar)^ - 5(4.282986)(Az)3 

+ ^(23.557991)(AD', (35) 

Table 3 
pad 

Physical dimensions of a MEMs slider bearing 

Membrane dimension 

Inter-membrane spacing 
Membrane-to-edge spacing 
Number of membranes 
Minimum film thickness (hj 

Actuation height (w) 

Actuation direction 

Inlet-to-outlet ration 

Length (L) 
Breadth (B) 

3.5 mm (length) 
X 19.4 mm (width) 

3464 ^m 
300 ^m 
5 
50 ^m 

25 /im 

All Up 

2 

2.0 cm 
2.0 cm 

i = »^ 

k„, = 0.273233 - 0.954906 (Af) 

+ 5(4.282986)(Az)' - i (23.557991)(Ar)\ (36) 

S„, = 0.20819 - 0.524181 (Ar) 

+ 5(1.812075)(Az)^ - g(8.051515)(Ar)^ (37) 

The coefficients in these nonlinear functions (Eqs. (34) - (37)) 
are significantly larger than those of the conventional slider 
bearing nonlinear functions (Eqs. ( 3 0 ) - ( 3 3 ) ) . Under the same 
dynamic conditions, then, the behavior of the MEMs slider 
bearing is expected to be more nonlinear than the conventional 
slider bearings. 

3.2.1 Convergence Analysis. On a 2 cm by 2 cm baseline 
bearing pad, several cases are simulated to investigate the effect 
of mesh size on higher order dynamic coefficients. Four mesh 
sizes, in the order of increasing mesh density, are simulated. The 
calculated coefficients, together with the number of iterations 
required to achieve a convergence criterion of Final Residual 
Norm/Initial Norm < 10"' , are calculated in Table 4. In all 
cases, simulations resulted in a converged solution. 

Considering Table 4, a number of conclusions are apparent: 

• Increasing the mesh size from 25 X 25 to 100 X 100 
results in a significant change in the calculated higher-
order coefficients. However, a further increase in mesh 
size does not increase the accuracy significantly. Thus, a 
100 X 100 mesh size, corresponding to a normalized step 
size of Ajf: (x/L) = Ay: (y/B) = 0.01, is chosen to 
resolve MEMS bearing features and the governing fluid 
mechanics of a slider bearing. 

• Increasing the mesh size beyond 100 X 100 does not 
affect the error bound significantly. Trends are maintained 
across all four mesh sizes tested. 

• Overall, a single uniform mesh size (100 X 100) is main-
tained for all simulations in this research (Figs. 4, 5, 8, 
and 9). This approach is a matter of choice. A uniform 
mesh size is desirable to extrapolate pressure data when 
executing the iterative solution scheme of Fig. 2. A uni-
form mesh of 100 X 100 may be used for this purpose, 
while maintaining the desired accuracy, as shown by Ta-
ble 4. 

3.2.2 Comparison: MEMs and Conventional Bearings. 
Applying the error scheme, error contour plots are generated 
for the MEMs nonlinear models (Fig. 8). Comparison of these 
plots with those of conventional slider bearing shows much 
higher normalized error for the MEMs slider bearing. Oil film 
nonlinearity is therefore more severe in a MEMs slider bearing. 
The valid displacement bounds for the higher order model are 
smaller than those of conventional slider bearing as shown in 
comparing Table 5 and Table 1. For a fourth-order model, the 
displacement bound is ±23 percent minimum clearance. More 
terms are required to achieve the original goal of capturing 
nonlinearity up to ±30 percent minimum clearance. Comparison 

602 / Vol. 120, JULY 1998 Transactions of the ASME 

Downloaded 24 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 4 Higher order coefficients for different mesh sizes 

Order 25 X 25 Iterations 50 X 50 Iterations 100 X 100 Iterations 200 X 200 Iterations 

W'o 

k. 
b. 

Czz 

k 
C 

0.068830 
0.147450 
0.137660 
0.428440 
0.294900 
1.58235 
0.856880 
7.12646 
3.16471 

98 
98 
98 

109 
99 

110 
109 
110 . 
110 

0.069164 
0.148270 
0.138329 
0.431229 
0.296541 
1.59452 
0.862458 
7.19174 
3.18905 

215 
218 
215 
223 
218 
226 
223 
228 
226 

0.069248 
0.148477 
0.138497 
0,431931 
0.296953 
1.59760 
0.863861 
7.20825 
3.19519 

440 
456 
440 
463 
456 
469 
463 
474 
469 

0.069269 
0.148528 
0.138539 
0.432106 
0.297059 
1.59836 
0.864241 
7.21238 
3.19673 

958 
965 
958 
972 
965 
986 
972 

1000 
986 

of higher-order coefficients to their actual curves in Fig. 9 shows 
consistent trends with the error bound evaluation. In most cases, 
percent deviation of the higher-order coefficients from their 
actual values is greater for the MEMs slider bearing as shown 
in comparing Table 6 and Table 2. For a fourth-order model, 
percent deviation ranges from 1.9-15 percent at the ±30 per-
cent minimum clearance location. 

3.3 Application of Nonlinear Results: Active MEMs 
Smart Slider Bearing. The MEMs active smart slider bearing 
is realized when the membranes are actuated. Before the actua-
tion, the MEMs slider bearing assumes the conventional slider 
bearing form. The actuation of all five membranes generates a 
significant increase in the oil film pressure. Figure 10 shows 
the pressure changes due to membrane actuation. This actuation 
manifests in an increase in nonlinear fluid film forces that can 
be captured by the nonlinear model. Under a constant loading 
condition, the bearing pad moves upward to balance the load. 
After the transient decays, this bearing operates with a thicker 
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Fig. 8 Accuracy of higher order load expansion (MEiy^s smart slider 
bearings, 5 membranes, /i|„//>oui = 2) 

Fig. 9 Accuracy of higher order dynamic coefficients (MEMs smart 
slider bearing, 5 membranes, hi„/h„ut = 2) 

minimum gap. In this case, it is 30 percent thicker than the 
conventional one. 

The nonlinear results described in the previous section are 
directly applicable in this active bearing. Using a fourth order 
nonlinear model, the maximum effects of membrane actuation 
are studied. Figure 11 shows the preliminary nonlinear dynamic 
results. Upon actuation of the active membrane, the steady state 
load, stiffness, and damping increase by 55, 84, and, 50 percent, 
respectively at the zero displacement location. Thus, the pres-
ence of membrane features alters the dynamic characteristics 
significantly. If the bearing displacement and velocity are 
known for the actuation, the time dependent load function can 
then be determined for this bearing. 

4 Conclusion 

A quasi-static nonlinear dynamic model is described in this 
paper. This model includes higher order terms in a typical bear-

Table 5 High order model lower and upper displacement 
bounds (25 percent normalized error) 

Order 

Displacement bounds 

MEMs 

1st 
2nd 
3rd 
4th 

Az 

t-0.071, 0.056] 
[-0.151,0.112] 
[-0.219, 0.157] 
[-0.271,0.193] 

Table 6 Percent deviation of higher order coefficients 
from their actual curves at Az/ft„ = ±0.3 

Order 

0th 
1st 
2nd 
3rd 
4th 

w. 

(51.2, 48.1) 
(25.6, 29.6) 
(12.2, 11.1) 
(6.1, 7.4) 
(3.7, 1.9) 

% Deviation (Az = 

MEMs 

k„, 

(60.0, 50.0) 
(36.0, 42.5) 
(20.0, 20.0) 
(10.7, 15.0) 

±0.3) 

b,:l 

(50.0, 48.3) 
(24.4, 27.6) 
(10.5, 12.1) 
(4.7, 6.9) 

Journal of Tribology JULY 1998, Vol. 120 / 603 

Downloaded 24 Aug 2012 to 128.83.63.20. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.35-

0.3-

0.25-

0.2-

0.15-

0.1-

0.05-

Membrane off 
Membrane on — ,̂  

/ \ 

/ ^ i 

/ \ 

/ / - ^ ^ \ 

/ ^ \ 
0 0.2 0.4 0.6 0.8 

X 

I 
Fig. 10 Effects of membrane actuation on bearing pressure profile 

0.25' 

Oi-

0,1B-

0.1-

0.0B' 

-0 

V 

.3 •o'j 

-̂-̂  

-o'-i 

MwDbmiwOfl — 
MwnbniwOn — 

'-----..̂  

o!i o!2 0 
CMuAw 

Nonlinear Steady State Load 

0.45-

04-

0 ^ -

0.3< 

03-

0.15-

0,1-

-0 

\ 

3 

\ 
\ 

•o'a •o'.i 

MwnbwwOfI — 

*-,. 

^"'•~--—II"""--

o!i o!s D 

Nonlinear Stiffness Coefficient Nonlinear Damping CoefRcient 

Fig. 11 Effects of membrane actuation on dynamic performance 
(fourtli-order accuracy) 

ing load expansion to capture oil film nqnlinearity in the form 
of a nonlinear load function. It is useful in modeling bearing 
systems that are experiencing large dynamic motion amplitudes. 
An error evaluation scheme is described and used to set confi-
dence bounds on the higher order results. Depending on the 
application requirements, additional terms can be added accord-
ingly to improve the valid displacement ranges for a specific 
bearing application. 

The new model is applied to a conventional slider bearing 
and a MEMs smart slider bearing. The nonlinear results suggest 
that oil film nonlinearity is significant, and linearized bearing 

coefficients are shown to be valid only within a small amplitude 
range (±6 percent). The nonlinear steady-state load functions, 
and nonlinear stiffness and damping coefficients, are evaluated 
for a conventional slider bearing and a MEMs smart slider 
bearing. These coefficients show close agreement with the ac-
tual bearing dynamic characteristics within the confidence 
bounds. The usefulness of present modeling approach is demon-
strated through an application of the nonlinear model in an 
active MEMs smart slider bearing. 
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